


STANDARD ATOMIC MASSES 1979 

(Scaled to the relative atomic mass , 
A ,.(I2C) = 12) 

Atomic Atomic Atomic Atomic 
Name Symbol number mass Name Symbol number mass 

Actinium Ac 89 227.0278 Molybdenum Mo 42 95.94 
Aluminium Al 13 26.98154 Neodymium Nd 60 144.24* 
Americium Am 95 (243) Neon Ne 10 20. 179 
Antimony Sb 51 121.75* Neptunium Np 93 237.0482 
Argon Ar 18 39 .948 Nickel Ni 28 58.69 
Arsenic As 33 74.9216 Niobium Nb 41 92.9064 
Astatine At 85 (210) Nitrogen N 7 14 .0067 
Barium Ba 56 137 .33 Nobelium No 102 (259) 
Berkelium Bk 97 (247) Osmium Os 76 190.2 
Beryllium Be 4 9.01218 Oxygen 0 8 15 .9994* 
Bismuth Bi 83 208.9804 Palladium Pd 46 106.42 
Boron B 5 10.81 Phosphorus P 15 30.97376 
Bromine Br 35 79.904 Platinum Pt 78 195.08* 
Cadmium Cd 48 112.41 Plutonium Pu 94 (244) 
Caesium Cs 55 132 .9054 Polonium Po 84 (209) 
Calcium Ca 20 40 .08 Potassium K 19 39.0983 
Californium Cf 98 (25 I) Praseodymium Pr 59 140.9077 
Carbon C 6 12.011 Promethium Pm 61 (145) 
Cerium Ce 58 140. 12 Protactinium Pa 91 231 .0359 
Chlorine Cl 17 35.453 Radium Ra 88 226.0254 
Chromium Cr 24 51.996 Radon Rn 86 (222) 
Cobalt Co 27 58 .9332 Rhenium Re 75 186.207 
Copper Cu 29 63 .546* Rhodium Rh 45 102 .9055 
Curium Cm 96 (247) Rubidium Rb 37 85.4678* 
Dysprosium Dy 66 162 .50* Ruthenium Ru 44 101.07* 
Einsteinium Es 99 (252) Samarium Sm 62 150.36* 
Erbium Er 68 167.26* Scandium Sc 21 44.9559 
Europium Eu 63 151.96 Selenium Se 34 78 .96* 
Fermium Fm 100 (257) Silicon Si 14 28.0855 * 
Fluorine F 9 18.998403 Silver Ag 47 107 .868 
Francium Fr 87 (223) Sodium Na II 22 .98977 
Gadolinium Gd 64 157.25* Strontium Sr 38 87.62 
Gallium Ga 31 69.72 Sulfur S 16 32 .06 
Germanium Ge 32 72 .59* Tantalum Ta 73 180.9479 
Gold Au 79 196.9665 Technetium Tc 43 (98) 
Hafnium Hf 72 178.49* Tellurium Te 52 127.60* 
Helium He 2 4.00260 Terbium Tb 65 158.9254 
Holmium Ho 67 164.9304 Thallium TI 81 204.383 
Hydrogen H I 1.0079 Thorium Th 90 232 .0381 
Indium In 49 114.82 Thulium Tm 69 168.9342 
Iodine I 53 126.9045 Tin Sn 50 118 .69* 
Iridium Ir 77 192 .22* Titanium Ti 22 47 .88* 
Iron Fe 26 55 .847* Tungsten W 74 183.85* 
Krypton Kr 36 83 .80 (U nnilhexium) (Unh) 106 (263) 
Lanthanum La 57 138.9055* (Unnilpentium) (Unp) 105 (262) 
Lawrencium Lr 103 (260) (U nnilquadium) (Unq) 104 (261) 
Lead Pb 82 207.2 Uranium U 92 238.0289 
Lithium Li 3 6.941 * Vanadium V 23 50.9415 
Lutetium Lu 71 174 .967* Xenon Xe 54 131.29* 
Magnesium Mg 12 24.305 Ytterbium Yb 70 173 .04* 
Manganese Mn 25 54.9380 Yttrium Y 39 88.9059 
Mendelevium Md 101 (258) Zinc Zn 30 65.38 
Mercury Hg 80 200.59* Zirconium Zr 40 91.22 

Source: Pure and Applied Chemistry , 51, 405 (1979). By permission . 

Value s are considered reliable to ± I in the last digit or ± 3 when followed by an asterisk(*). Values in 
parentheses are used for radioactive elements whose atomic weights cannot be quoted precisel y without 
knowledge of the origin of the elements; the value given is the atomic mass number of the isotope of that 
element of longest known half-life. 
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FUNDAMENTAL CONSTANTS 
(approximate values; best values are in Appendix IV) 

Quantity 

Gas constant 

Zero of the Celsius scale 

Standard atmosphere 

Standard molar volume 
of ideal gas 

A vogadro constant 

Boltzmann constant 

Standard acceleration of 
gravity 

Elementary charge 

Faraday constant 

Speed of light in vacuum 

Planck constant 

Rest mass of electron 

Permittivity of vacuum 

Bohr radius 

Hartree energy 

Symbol 

R 

To 

Po 

Vo = RTolpo 

e 

F = NAe 

c 

Il 
Ii = h121T' 

In 

en 

41T'eo 
1/41T'eo 
ao = 41T'eoIi2/me2 

Eh = el l41T'eoao 

CONVERSION FACTORS 

Value 

8.314 J K- 1 mol-I 

273.15 K 

1.013 x 105 Pa 

22.41 x 10- 3 m3 mol-I 

6.022 x 1023 mol I 

1.381 x 10- 23 J K- 1 

9.807 m s -2 

1.602 '>\. 10 19 C 

9.648 X 104 C mol-I 

2.998 x lOR m s I 

6.626 x 10 34 J s 
1.055 X 10- 34 J s 

9.110 X 10- 31 kg 

8.854 '>\. 10- 12 C2 N- 1 m 2 

LIB X 10- 10 C2 N- I m -2 

8.988 x 109 N m2 C- 2 

5.292 x 10 II m 

4.360 x: 10 I~ J 

1 L = 10-3 m' (exactly) = 1 dm3 

I atm = 1.01325 Pa (exactly) 
1 A = 10 10 m = 0.1 nm = 100 pm 
I inch = 2.54 cm (exactly) 

I atm = 760 Torr (exactly) 
1 Torr = 1.000 mmHg 
1 cal = 4.184 J (exactly) 
1 erg = 1 dyne cm = 10- 7 J (exactly) 
1 eV = 96.48456 kJ/mol 

1 pound = 453.6 g 
I gallon = 3.785 L 
1 Btu = 1.055 kJ 
I hp = 746 W 
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MATHEMATICAL DATA 

1T = 3.14159265 ... e = 2.7182818 ... In x = 2.302585 ... log x 

(all x) 

In I + x) = x - Y~x" + IA\"3 - Y4X4 + (x" < 1) 

(l + x )-1 - X + x" - X 3 + (x~ < I) 

(l - x )-1 + X + X~ + X 3 + (x" < I) 

(I - X)-" + 2x + 3x~ + 4x3 + ... (x" < 1) 

51 PREFIXES 

Submultiple Prefix Symbol Multiple Prefix Symbol 

10- [ deci d 10 deca da 
10- 2 centi c 10" hecto h 
10- 3 milli m 103 kilo k 
10- 6 mIcro 11.. 106 mega M 
10-9 nano 1} 109 giga G 
10- [2 pico P 1012 tera T 
10 15 femto f 10 15 peta P 
10 - IR atto a 10 18 exa E 
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Foreword 
to the Student 

On most campuses the course in physical chemistry has a reputation for difficulty. 
It is not, nor should it be, the easiest course available; but to keep the matter in 
perspective it must be said that the IQ of a genius is not necessary for understanding 
the subject. 

The greatest stumbling block that can be erected in the path of learning physical 
chemistry is the notion that memorizing equations is a sensible way to proceed. 
Memory should be reserved for the fundamentals and important definitions. Equations 
are meant to be understood, not to be memorized. In physics and chemistry an 
equation is not a jumbled mass of symbols, but is a statement of a relation between 
physical quantities. As you study keep a pencil and scratch paper handy. Play with 
the final equation from a derivation. If it expresses pressure as a function of temperature, 
turn it around and express the temperature as a function of pressure. Sketch the 
functions so that you can "see" the variation. How does the sketch look if one of 
the parameters is changed? Read physical meaning into the various terms and the 
algebraic signs which appear in the equation. If a simplifying assumption has been 
made in the derivation, go back and see what would happen if that assumption were 
omitted. Apply the derivation to a different special case. Invent problems of your 
own involving this equation and solve them. Juggle the equation back and forth until 
you understand its meaning. 

In the first parts of the book much space is devoted to the meaning of equations; 
I hope that I have not been too long-winded about it, but it is important to be able 
to interpret the mathematical statement in terms of its physical content. 

By all means try to keep a good grasp on the fundamental principles that are 
being applied; memorize them and above all understand them. Take the time to 
understand the methods that are used to attack a problem. 

In Appendix I there is a brief recapitulation of some of the most important 
mathematical ideas and methods that are used. If any of these things are unfamiliar 
to you, take the time to review them in a mathematics text. Once the relations 
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between variables have been established, the algebra and calculus are simply mechanical 

devices, but they should be respected as precision tools. 

If problems baffle you, learn the technique of problem solving. The principles 

contained in G. Polya's book, How to Solve It, have helped many of my students.* 

It is available as a paperback and is well worth studying. Work as many problems 

as possible. Numerical answers to all problems can be found in Appendix VII. Make 

up your own problems as often as possible. Watching your teacher perform will not 

make you into an actor; problem solving will. To aid in this, get a good "scientific" 

calculator (the serious student will want a programmable one with continuous memory) 

and learn how to use it to the limit of its capability. Reading the instructions will 

save you hundreds of hours! 

Finally, don't be put off by the reputation for difficulty. Many students have 

enjoyed learning physical chemistry. 

* G.  Polya, How to Solve It. Anchor Book No . 93. New York: Doubleday & Co . ,  1 957.  



Preface 

An introductory course in physical chemistry must expose the fundamental principles 

that are applicable to all kinds of physicochemical systems. Beyond the exposition 
of fundamentals, the first course in physical chemistry takes as many directions as 

there are teachers. I have tried to cover the fundamentals and some applications in 

depth. The primary aim has been to write a book that the student can, with effort, 

read and understand; to provide the beginner with a reliable and understandable 

guide for study in the teacher's absence. I hope that this book is readable enough 

so that teachers may leave the side issues and the more elementary aspects for 

assigned reading while they use the lectures to illuminate the more difficult points. 

Chapters 1, 5, and 6, and most of Chapter 19 contain some general background 

material and are intended exclusively for reading. 

Except where it would needlessly overburden the student, the subject is presented 

in a mathematically rigorous way. In spite of this, no mathematics beyond the 

elementary calculus is required. The justification for a rigorous treatment is pedagogical; 

it makes the subject simpler. The beginner may find it difficult at first to follow a 

lengthy derivation, but can follow it if it is rigorous and logical. Some "simplified" 

derivations are not difficult to follow, but impossible. 

CHANGES IN THIS EDITION 

There are several important differences between this edition and the earlier one. I 

am grateful to Professor James T. Hynes, University of Colorado, who kindly supplied 

the groups of questions at the end of each chapter. These are an important addition 

to the book. The questions range in difficulty; some are relatively simple while others 

challenge the student to take up a line of reasoning from the chapter and apply it 

beyond the topics that are discussed explicitly. Many new problems have been added; 

the total is over 750, about twice the number in the second edition. Answers to all 

the problems are given in Appendix VII. More worked examples are included; these 

are now set apart from the text, while before they were sometimes hidden in the 
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textual material. A separate solutions manual is in preparation in which representative 
problems are worked out in detail. Certain sections of the text are marked with a 
star. The star indicates that the material is either 0) an additional illustration of or 
a side issue related to the topic under discussion, or (2) a more advanced topic. 

In the treatment of thermodynamics, some errors have been corrected, some 
passages clarified, and a few new topics introduced. The emphasis on the laws of 
thermodynamics as generalizations from experience is maintained. The chapter on 
electrochemical cells has been revised and a discussion of electrochemical power 
sources has been added. The chapter on surface phenomena now includes sections 
on the BET isotherm and on the properties of very small particles. 

The chapters on the quantum mechanics of simple systems have been retained 
with only minor revisions, while the chapter on the covalent bond has been extended 
to include a description of molecular energy levels. The basic ideas of group theory 
are introduced here and illustrated by constructing symmetry-adapted molecular 
orbitals for simple molecules. There is a new chapter on atomic spectroscopy; the 
chapter on molecular spectroscopy has been expanded and reorganized. 

The treatment of statistical thermodynamics has been extended to include the 
calculation of equilibrium constants for simple chemical reactions. At the end of the 
book, new sections on photophysical kinetics, electrochemical kinetics, and a brief 
chapter on polymers have been added. 

TERMINOLOGY AND UNITS 

With only a few exceptions I have followed the recommendations of the International 
Union of Pure and Applied Chemistry (IUPAC) for symbols and terminology. I have 
retained the traditional name, "advancement of the reaction" for the parameter �, 
rather than' 'extent of reaction," which is recommended by IUPAC. The connotation 
in English of the words "advancement" and "advance" when applied to chemical 
reactions allow a variety of expression that "extent" and its derivatives do not. For 
thermodynamic work I have retained the sign convention used in the earlier edition. 
I attempted (unsuccessfully, I thought) to write a clear discussion of the Carnot 
cycle and its consequences using the alternate sign convention. Then, after examining 
some other recent books that use the alternate sign convention, I came to the opinion 
that their discussions of the second law are not distinguished by their clarity. It 
seems to me that if the subterfuges used in some of these books are· needed for 
clarity, then the game is not worth the candle. 

The SI has been used almost exclusively throughout the book. Except for the 
thermodynamic equations that involve 1 atm or 1 mol/L as standard states (and a 
few other equations that explicitly involve non-SI units), all the equations in this 
book have been written in the S1, so that if the values of all the physical quantities 
are expressed in the correct SI unit, the quantity desired will be obtained in the 
correct SI unit. The net result is that the calculations of physical chemistry are not 
just simplified, they are e normously simplified. The student no longer has to assemble 
and store all the mental clutter that was formerly needed to use many of the equations 
of physical chemistry. One of the great blessings conferred on the student by the 
SI is that there is only one numerical value of the gas constant, R. The systematic 
value of R is the only one used and the only one printed in this book. To those who 
wish to use any other value, I leave the opportunity to muddle the situation and 
suffer the consequences. 
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S o m e  F u n d a m e nta l 
C h em i ca l  C o n ce pts 

1.1 I NT R O D U CTi O N  

We begin the study of physical chemistry with a brief statement of a few fundamental 
ideas and common usages in chemistry. These are very familiar things, but it is worth 
while recalling them to mind. 

1.2 T H E K I N D S O F  M ATTE R 

The various kinds of matter can be separated into two broad divisions : (1) substances 
and (2) mixtures of substances. 

Under a specified set of experimental conditions a substance exhibits a definite 
set of physical and chemical properties that do not depend on the previous history 
or on the method of preparation of the substance. For example, after appropriate purifi
cation, sodium chloride has the same properties whether it has been obtained from a salt 
mine or prepared in the laboratory by combining sodium hydroxide with hydrochloric 
acid. 

On the other hand, mixtures may vary widely in chemical composition. Consequently 
their physical and chemical properties vary with composition, and may depend on the 
manner of preparation. By far the majority of naturally occurring materials are mixtures 
of substances. For example, a solution of salt in water, a handful of earth, or a splinter of 
wood are all mixtures. 

1.3 T H E K I N D S O F  S U BSTA N C ES 

Substances are of two kinds : elements and compounds. An element cannot be broken 
down into simpler substances by ordinary chemical methods, but a compound can be. An 
ordinary chemical method is any method involving an energy of the order of 1000 kJ/mol 
or less. 
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For example, the element mercury cannot undergo any chemical decomposition 
of the type Hg --+ X + Y, in which X and Y individually have smaller masses than the 
original mass of mercury. In this definition, both X and Y must have masses at least as 
large as that of the hydrogen atom, since the reaction Na --+ Na+ + e - is a chemical 
reaction involving an energy of about 500 kJ/mol. In contrast, the compound methane 
can be decomposed chemically into simpler substances individually less massive than the 
original methane : CH4 --+ C + 2H2 . 

All natural materials can be chemically broken down ultimately into 89 elements. 
In addition to these, at least 18 other elements have been synthesized using the methods 
of nuclear physics (methods involving energies of the order of 108 kJ/mol or larger). 
Because of the great difference in the energies involved in chemical methods and nuclear 
methods, there is no likelihood of confusing the two. The nuclei of atoms endure through 
chemical reactions ;  only the outermost electrons of the atoms, the valence electrons, are 
affected. 

Atoms of one element can combine chemically with atoms of another element to 
form the minute parts of the compound called molecules ; for example, four atoms of 
hydrogen can combine with one atom of carbon to form a molecule of methane, CH4 • 
Atoms of a single element can also combine with themselves to form molecules of the 
element, for example, H2 , O2 , Clz , P4 , S8 ' 

1 .4 ATO M I C  A N D M O LA R  M A S S E S  

Any atom has a tiny nucleus, diameter'" 10- 14 m ,  in the center o f  a relatively enormous 
electron cloud, diameter '" 10 -1 0 m. The negative charge of  the electron cloud exactly 
balances the positive nuclear charge. Each atom, or nuclide, can be described by specifying 
two numbers, Z and A, where Z, the atomic number, is the number of protons in the nucleus 
and A, the mass number, is equal to Z + N, where N is the number of neutrons in the 
nucleus. The atoms of different elements are distinguished by having different values of Z. 
The atoms of a single element all have the same value of Z, but may have different values of 
A. Atoms with the same Z and different values of A are the isotopes of the element. The 
nuclides described by Z = 1, A = 1, or 2, or 3 are the three isotopes of hydrogen sym
bolized by �H, iH, iH. The three principal isotopes of carbon are l�C, l�C, 1�C . 

The isotope of carbon with mass number 12 has been chosen as the defining element 
for the scale of atomic masses. We define the atomic mass unit, symbol u, as exactly 1/12 of 
the mass of one atom of carbon-12. Then u = 1 .6605655 X 10- 2 7 kg. The relative atomic 
mass of an atom, Ar, is defined by: Ar = m/u, where m is the mass of the atom ; for example, 
Ar<� H) = 1 .007825 ; ArC1iC) = 12 (exactly) ; Ar<l �O) = 1 5 .9949 1 .  In any macroscopic 
sample of an element there may be several different isotopes present in the naturally 
occurring isotopic mixture. The entry in the table of atomic masses is the average of the 
relative atomic masses of all the atoms in this natural mixture. If Xi is the atom fraction of 
the particular isotope in the mixture, then the average, <Ar>,  is 

<Ar> = x1(Ar)1 + xz(Ar)z + . . .  = I X;(Ar)i '  ( 1 . 1 )  
i 

III EXAMPLE 1 . 1  The isotopic composition of naturally occurring nitrogen is 99.63 % 
liN for which (Ar)14 = 14.00307 and 0.37 % l�N for which (Ar)15 = 1 5.000 1 1 .  Then the 
average relative atomic mass is 

<Ar> = 0.9963(14.00307) + 0.0037(1 5 .000 1 1 )  = 14.007 
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The variability in isotopic composition of samples of an element from different 
sources is often the principal origin of the uncertainty in the average relative atomic 
mass of that element. 

The relative molar mass of a molecule can be computed by adding the relative atomic 
masses of all the atoms in it. By adding the atomic mass of carbon, 12.0 1 1 ,  to four times the 
atomic mass of hydrogen, 4(1 .008), the molar mass of CH4 , methane, 1 6.043, is obtained. 
This method of computing molar masses assumes that there is no change in mass when the 
carbon atom combines with four hydrogen atoms to form methane. That is, in the reaction 

C + 4 H  � CH4 
the total mass on the left, 1 6.043 units, is equal to the total mass on the right, 1 6.043 units, 
if the molar mass of CH4 is computed by the rule given above. 

The question of whether or not mass is conserved in chemical reactions has been 
the subject of very extensive and very precise experimental investigations, and in no 
case has any change in mass during a chemical reaction been demonstrated. The law of 
conservation of mass holds accurately for chemical reactions within the limits of precision 
of experiments conducted thus far. The expected change in mass accompanying any 
chemical reaction can be computed from the mass-energy equivalence law of relativity 
theory. If the energy involved in the chemical reaction is �U, and �m is the associated 
change in mass, then �U = (�m)c2 , where c, the velocity of light, equals 3 x 108 m/s. 
Computation shows that the change in mass is of the order of 10- 1 1  gram per kilojoule of 
energy involved in a reaction. This change in mass is too small to be detected by con
temporary methods. Therefore the law of conservation of mass may be considered exact 
in all chemical situations. 

Note that the terms " atomic mass " and " molar mass " are interchangeable with the 
traditional terms, " atomic weight " and " molecular weight." 

1 . 5 SYM B O LS ; F O R M U LAS 

Over the years a set of symbols for the elements has evolved. Depending on the context, 
the symbol for an element may stand for several different things : it may merely be an 
abbreviation of the name of the element ; it may symbolize one atom of the element ; 
often it- represents 6.022 x 102 3 atoms of the element, a mole. 

The formulas of compounds are interpreted in a variety of ways, but in every instance 
the formula describes the relative composition of the compound. In substances such as 
quartz and salt, discrete molecules are not present. Therefore the formulas Si02 and 
NaCI are given only empirical meaning ; these formulas describe the relative numbers of 
atoms of the elements present in the compound and nothing more. 

For substances that consist of discrete molecules, their formulas describe the relative 
numbers of the constituent atoms and the total number of atoms in a molecule ; for example, 
acetylene, C2H2 ; benzene, C6H6 ; sulfur hexafluoride, SF 6 . 

Structural formulas are used to describe the way atoms are connected within a 
molecule. Within the limitations imposed by a two-dimensional diagram, they display the 
geometry of a molecule. Bonding within a molecule is illustrated by using conventional 
symbols for single and multiple bonds, electron pairs, and positive and negative centers 
of charge in the molecule. Structural formulas have their greatest utility in representing 
substances with discrete molecules. As yet, no satisfactory abbreviated way of representing 
the structural complexity of substances such as quartz and salt has been devised. In using 
any structural formula, a great deal must be mentally supplied to the diagram. 
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1.6 T H E MO L E  

The concept o f  amount of substance i s  central t o  chemical measurement. The amount of 
substance of a system is proportional to the number of elementary entities of that sub
stance present in the system. The elementary entities must be described ; they may be 
atoms, molecules, ions, or specified groups of such particles. The entity itself is a natural 
unit for measuring the amount of substance ; for example, we can describe the amount 
of substance in a sample of iron by saying that there are 2.0 x 1024 Fe atoms in the sample. 
The amount of substance in a crystal of NaCl can be described by saying that there are 
8.0 x 1020 ion pairs, Na + Cl- ,  in the crystal. 

Since any tangible sample of matter contains such an enormous number of atoms or 
molecules, a unit larger than the entity itself is needed to measure the amount of sub
stance. The SI unit for amount of substance is the mole. The mole is defined as the amount 
of substance in exactly 0.012 kg of carbon- 12. One mole of any substance contains the 
same number of elementary entities as there are carbon atoms in exactly 0.012 kg of 
carbon-12 .  This number is the Avogadro constant, NA = 6.022045 X 102 3 mol- i . 

1.7 C H E M I CA L  E Q U ATI O N S  

A chemical equation is a shorthand method for describing a chemical transformation. 
The substances on the left-hand side of the equation are called reactants ; those on the 
right-hand side are called products. The equation 

Mn02 + HCI ------4 MnCl2 + H20 + Ch 

expresses the fact that manganese dioxide will react with hydrogen chloride to form man
ganous chloride, water, and chlorine. As it is written, the equation does little besides record 
the fact of the reaction and the proper formulas for each substance. 

If the equation is balanced, 

Mn02 + 4 HCl ------4 MnC12 + 2 H20 + C12 , 

it expresses the fact that the number of atoms of a given kind must be the same on both 
sides of the equation. Most important, the balanced chemical equation is an expression of 
the law of conservation of mass. Chemical equations provide the relationship between the 
masses of the various reactants and products, which is ordinarily of utmost importance 
in chemical problems. 

1.7.1 Sto i c h i ometry 

Consider a system having an initial composition described by a set of mole numbers : 
n�, n�, . . .  , n? If a reaction occurs, these mole numbers change as the reaction progresses. 
The mole numbers of the various species do not change independently ; the changes are 
related by the stoichiometric coefficients in the chemical equation. For example, if the 
reaction of manganese dioxide and hydrogen chloride given above occurs once as written, 
we say that one mole of reaction has occurred. This means that 1 mole of Mn02 and 4 
moles of HCI are consumed and that 1 mole of MnC12 , 2 moles of H20 and 1 mole of 
el2 are produced. After � moles of reaction occur, the mole numbers of the substances are 
given by 

nMn02 = n2rn02 - � ; 

nMnCI2 = n2rnCh + � ; 

nHCI = n�C1 - 4� ; 

nH20 = n�20 + 2� ; 
( 1 . 1 )  
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Since reactants are consumed and products are produced, the algebraic signs appear as 
shown in Eqs. ( 1 . 1) .  

The variable ( was first introduced by DeDonder who called it the " degree of ad
vancement " of the reaction. Here we shall call it simply the advancement of the reaction. 
Equations ( 1 . 1) show that the composition at any stage of the reaction is described by the 
initial mole numbers, the stoichiometric coefficients, and the advancement. 

We can see how to generalize this description if we rewrite the chemical reaction by 
moving the reactants to the right side of the equation. It becomes 

0 = MnClz + 2 HzO + Clz + ( - l)MnOz + ( - 4)HCI 

This form suggests that any chemical reaction can be written in the form 

0 = I ViAi 
i 

(1 .2) 

where the Ai represent the chemical formulas of the various species in the reaction, and 
we agree that the stoichiometric coefficients, Vi ' will be given a negative sign for reactants 
and a positive sign for products. Then we see that each of the mole numbers in Eqs. ( 1 . 1 )  
has the form 

(1 .3)  

Equation (1 .3) is the general relation between the mole numbers and the advancement 
of any reaction. 

Differentiating, we obtain 

or 

dni = Vi d( 
dni 

= d( 
Vi 

(1 .4) 

This equation relates changes of all the mole numbers to the change in the one vari
able, d(. 

1 .7.2 The Adva ncement Capaci ty 

The value of ( increases as the reaction advances, reaching a limiting value when one or 
more of the reactants is exhausted. This limiting value of ( is the advancement capacity, 
(0, of the reaction mixture. If we divide Eq. (1 .3)  by � Vi ' we obtain ( nf? ) 

ni = ( - Vi) -'- - ( 
- Vi 

(1 .4) 

If we define (? = n?/( - Vi), then we have 

ni = ( - Vi)«(? - () ( 1 . 5) 

The quantity, n? I( - Vi) = (?,  is called the advancement capacity of the ith substance. 
Clearly, if substance i is a reactant, then - Vi is positive ; thus the advancement capacities 
of the reactants are all positive. If the values of (? are all equal, then this common value-of 
(? = (0, the advancement capacity of the mixture. If the (? are not all equal, then there is at 
least one smallest value, (J. This value identifies the substancej as the limiting reagent, and (J = (0, the advancement capacity of the mixture. The value of ( may not exceed (0, 
since that would mean that reactant j (and possibly others) would have a negative mole 
number. Thus, (0 is the greatest value of (. 
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Similarly, if the substance i is a product, then - Vi is negative and n? I( - Vi) = (? 
is negative. Then it is possible, if none of the product ni is zero, for the reaction to move in 
the reverse direction (( is negative). In this case the (? are the advancement capacities 
of the products. If (P is the least negative of this set, the substance k is the limiting reagent 
for the reverse reaction and (P is the advancement capacity of the mixture for the reverse 
reaction. The value of ( may not be less than (p, since this would mean that the product k 
(and possibly others) would have a negative mole number. Thus (P = ( / ,  the least value of 
(. (Note : quite commonly, no products are present at the beginning of the reaction. Then 
n? = 0 for all the products ; the advancement capacity of the reverse reaction is zero and ( 
may only have positive values.) 

If the reaction goes to completion, then ( = (0, and the final number of moles of the 
various species is given by 

(1 .6) 

If there were no products present initially, then for the product species, ni(final) = Vi (0 ; 
the number of moles of any product is the advancement capacity of the mixture multi
plied by its stoichiometric coefficient. 

The utility of this formulation for simple stoichiometric calculations is illustrated by 
Example 1 .2, in which the quantities appropriate to each species are arranged underneath 
the formula of that species in the chemical equation. Its utility in other applications will be 
demonstrated in later parts of the book. 

III EXAMPLE 1 .2 Assume that 0.80 mole of ferric oxide reacts with 1 .20 mol of carbon. 
What amount of each substance is present when the reaction is complete ? 

Equation : FeZ03 + 3C -------> 2Fe + 3CO 

Vi - 1  - 3  + 2 + 3 

nO , 0.80 1 .20 0 0 

(? = n?/( - v;) 0.80 0.40 0 0 

Therefore, (0 = 0.40 

ni = ( - v ;)((? - () 0.80 - ( 3(0.40 - () 2( 3( 

When ( = (0 = 0.40 

ni(final) = ( - v;)((? _ (0) 0.40 0 0.80 1 .20 

1 .8 T H E I NT E R N ATI O N A L  SYST E M  O F  U N ITS,  81 
In the past, several systems of metric units were commonly used by scientists, each system 
having its advantages and disadvantages. Recently international agreement was reached 
on the use of a single set of units for the various physical quantities, as well as on a recom
mended set of symbols for the units and for the physical quantities themselves. The SI 
will be used in this book with only a few additions. Because of its importance in defining 
the standard state of pressure, the atmosphere will be retained as a unit of pressure in 
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addition to the pascal, the SI unit. The litre will be used with the understanding that 
1 L = 1 dm3(exactly). 

Any system of units depends on the selection of " base units " for the set of physical 
properties that are chosen as a dimensionally independent set. In Appendix III we give the 
definitions of the base units, some of the most commonly used derived units , and a list of 
the prefixes that are used to modify the units. You should become thoroughly familiar 
with the units, their symbols, and the prefixes because they will be used in the text without 
explanation. 





E m p i r i ca l P ro pe rt i es 
of G ases 

2 . 1  B OY L E ' S  LAW ; C H A R LES'S LAW 

Of the three states of aggregation, only the gaseous state allows a comparatively simple 
quantitative description. For the present we shall restrict this description to the relations 
among such properties as mass, pressure, volume, and temperature. We shall assume that 
the system is in equilibrium so that the values of the properties do not change with time, 
so long as the external constraints on the system are not altered. 

A system is in a definite state or condition when all of the properties of the system have 
definite values, which are determined by the state of the system. Thus the state ofthe system 
is described by specifying the values of some or all of its properties. The important question 
is whether it is necessary to give values of fifty different properties (or twenty or five) to 
ensure that the state of the system is completely described. The answer depends to a certain 
extent upon how accurate a description is required. If we were in the habit of measuring the 
values of properties to twenty significant figures, and thank heaven we are not, then quite a 
long list of properties would be required. Fortunately, even in experiments of great 
refinement, only four properties-mass, volume, temperature, and pressure-are ordinarily 
required. 

The equation of state of the system is the mathematical relationship between the values 
of these four properties. Only three of these must be specified to describe the state ; the 
fourth can be calculated from the equation of state, which is obtained from knowledge of 
the experimental behavior of the system. 

The first quantitative measurements of the pressure-volume behavior of gases were 
made by Ro bert Boyle in 1 662. His data indicated that the volume is in versely proportional 
to the pressure : V = C/p, where p is the pressure, V is the volume, and C is a constant. 
Figure 2. 1 shows V as a function of p. Boyle's law may be written in the form 

pV = C ;  (2. 1)  

i t  applies only to a fixed mass of gas at a constant temperature. 
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F igure 2 . 1  Volume a s  a function o f  pres

su re, Boyle's law ( T  = 25 'C) . 

F igure 2.2 Volume as a fu nction of tem 

peratu re, Char les's l a w  (p = 1 atm ) .  

Later experiments by  Charles showed that the constant C i s  a function o f  temperature. 
This is a rough statement of Charles's law. 

Gay-Lussac made measurements of the volume of a fixed mass of gas under a fixed 
pressure and found that the volume was a linear function of the temperature. This is 
expressed by the equation 

v = a + bt, (2.2) 

where t is the temperature, and a and b are constants .  A plot of volume as a function of 
temperature is shown in Fig. 2.2. The intercept on the vertical axis is a = Yo , the volume at 
o 0c. The slope of the curve is the derivative b = (oV/ot)p '* Thus Eq. (2.2) can be written 
in the equivalent form 

v = Vo + eo�)/' (2.3) 

Charles's experiments showed that for a fixed mass of gas under a constant pressure, 
the relative increase in volume per degree increase in temperature was the same for all gases 
on which he made measurements. At a fixed pressure the increase in volume per degree is 
(oV/ot)p ; hence, the relative increase in volume per degree at 0 °C is (l/Vo) (oV/ot)p ' This 
quantity is the coeffiCient of thermal expansion at 0 °C, for which we use the symbol aD : 

aD = :0 eo�t (2.4) 

Then Eq. (2.3) may be written in terms of aD : 

V = Vo(l + ao t) = vo ao(:o + t) ' (2. 5) 

which is convenient because it expresses the volume of the gas in terms ofthe volume at zero 
degrees and a constant, aD , which is the same for all gases and, as it turns out, is very nearly 

* The partial derivative is used rather than the ordinary derivative, since the volume depends on the pressure ; 
a and b are constants only if the pressure is constant . The partial derivative tiJ V/iJt)p is the rate of change of 
volume with temperature at constant pressure ; this is the slope of the line under the conditions of the 
experiment. 
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independent of the pressure at which the measurements are made. If we measure CXo at 
various pressures we find that for all gases CXo approaches the same limiting value at p = O. 
The form of Eq. (2. 5) suggests a transformation of coordinates that should be useful ; 
namely, define a new temperature T in terms of the old temperature through the equation 

1 T = - + t. (2.6) CXo 
Equation (2.6) defines a new temperature scale, called a gas scale of temperature or, more 
exactly, an ideal gas scale of temperature. The importance ofthis scale lies in the fact that the 
limiting value of cxo , and consequently l/cxo , has the same value for all gases. On the other 
hand, CXo does depend on the scale of temperature used originally for t. If t is in degrees 
Celsius (symbol : 0c), then 1/cxo = 273 . 1 5  dc. The resulting T-scale is numerically identical 
to the thermodynamic temperature scale, which we will discuss in detail in Chapter 8. The 
SI unit of thermodynamic temperature is the kelvin (symbol : K). Temperatures on the 
thermodynamic scale are frequently called absolute temperatures or kelvin temperatures. 
According to Eq. (2.6) (see also Appendix III, Sect. A-III-6), 

T = 273 . 1 5  + t. (2.7) 

Equations (2.5) and (2.6) are combined to yield 

V = CXo Vo T, (2.8) 

which states that the volume of a gas under a fixed pressure is directly proportional to the 
thermodynamic temperature. 

2.2 M O LA R  M AS S  O F  A GAS. AVO GA D R O ' S  LAW ; 
T H E  I D EA L  GAS LAW 

So far, two relations between the four variables have been obtained : Boyle's law, Eq. (2. 1)  
(fixed mass, constant temperature), and Gay-Lussac's, or Charles's law, Eq. (2.8) (fixed 
mass, constant pressure). These two equations may be combined into one general equation 
by noting that Vo is the volume at 0 DC, and so is related to the pressure by Boyle's law, 
Vo = Co/p, where Co is the value of the constant at t = O. Then, Eq. (2.8) becomes 

V= Co cxo T 
p 

(fixed mass). (2.9) 

The restriction of fixed mass is removed by realizing that if the temperature and pressure 
are kept constant and the mass of the gasis doubled, the volume will double. This means 
that the constant Co is proportional to the mass of gas ; hence, we write Co = Bw, where 
B is a constant and w is the mass. Introducing this result into Eq. (2.9), we obtain 

Bcxo wT V = --=----
p 

, (2. 10) 

which is the general relation between the four variables V, w, T, and p. Each gas has a 
different value of the constant B. 

For Eq. (2. 10) to be useful, we would have to have at hand a table of values for B for · 
all the various gases. To avoid this, B is expressed in terms of a characteristic mass for each 
gas. Let M denote the mass of gas in the container under a set of standard conditions : 
To , Po ,  Vo · If different gases are confined in the standard volume Vo under the standard 
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temperature and pressure To and Po , then by Eq. (2. 10), for each gas 

M = (B�J (p��o ) . (2. 1 1) 

Since the standard conditions are chosen to suit our convenience, the ratio R = Po YoITo 
has a fixed numerical value for any particular choice and has, of course, the same value for 
all the gases (R is called the gas constant). Equation (2. 1 1) may then be written 

R R M = - or B = -- . Brxo Mrxo 
Using this value for B in Eq. (2. 10), we obtain 

V = (;) RpT . (2. 12) 

Let the number of characteristic masses of the gas contained in the mass w be n = wiM. 
Then V = nRTlp, or 

pV = nRT. (2. 1 3) 

Equation (2. 1 3), the ideal gas law, has great importance in the study of gases. It does not 
contain anything that is characteristic of an individual gas, but is a generalization applicable 
to all gases. 

We now inquire about the significance of the characteristic mass M. Avogadro's law 
says that equal volumes of different gases under the same conditions of temperature and 
pressure contain equal numbers of molecules ; that is, they contain the same amount of 
substance. We have compared equal volumes, Vo , under the same temperature and pressure, 
To and Po ,  to obtain the characteristic masses ofthe different gases. According to Avogadro's 
law these characteristic masses must contain the same number of molecules. If we choose 
Po ,  To , and Vo so that the number is equal to N A = 6.022 X 102 3 , then the amount of 
substance in the characteristic mass is one mole and M is the molar mass. Also, M is N A 
times the mass of the individual molecule, m, or 

M = NAm. (2. 14) 

In Eq. (2. 1 3) n is the number of moles of the gas present. Since the value of R is directly 
related to the definition of molar mass, we shall find that the gas constant appears in 
equations that describe molar properties of solids and liquids, as well as gases. 

The mole was originally defined through the kind of proced ure described above. First, 
the normal isotopic mixture of oxygen was arbitrarily assigned a molar mass of exactly 
32 g/mol. Then a flask of accurately known volume was filled with oxygen at 0 °C and 
1 atm and the mass of oxygen in the flask was measured. Finally, from this measurement 
the volume required to contain exactly 32 g of oxygen (at 0 DC, 1 atm) was calculated. This 
is Vo , the standard molar volume. Knowing Vo , we can calculate the molar mass of any 
other gas from a measurement of the gas density. 

The modern value of Yo ,  based on the carbon-12 definition of the mole, is Vo = 
22.41 383 L/mol = 22.41383  x 10- 3 m3/mol. Since To = 273. 1 5  K (exactly), and Po = 
1 atm = 1 .01325 x 105 Pa (exactly), the value of R is 

R = Po Vo = (1 .01 325 X 105 Pa) (22.4 1383  x 10- 3 m3/mol) 
To 298 . 1 5  K 

= 8 . 3 1441  Pa m3 K - I mol- I = 8 .3 1441  J K- 1 mol- I . 
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For most of our calculations here, the approximate value, 

R = 8 . 3 14  J K- 1 mol- l , 

is sufficiently accurate. Note that R has the dimensions : energy kelvin - 1 mole - 1 . 

2.2 . 1  C o m ments o n  U n its 

The SI unit of pressure is the pascal (Pa) defined by 

1 Pa = 1 N /m2 = 1 J /m 3 = 1 kg m - 1 S - 2 . 

The common practical units of pressure are the atmosphere (atm), the torr (Torr), and the 
millimetre of mercury (mmHg). The standard atmosphere is defined by 

I atm = 1 .01 325 x 105 Pa (exactly). 
The torr is defined by 

760 Torr = 1 atm (exactly). 

The conventional millimetre of mercury (mmHg) is the pressure exerted by a column 
exactly 1 mm high of a fluid having a density of exactly 1 3 .595 1 g/cm3 in a location where 
the acceleration of gravity is exactly 9 .80665 m/s2 . The millimetre of mercury is greater 
than the torr by about 14 parts in 108 . For our purposes, 1 mmHg = 1 Torr. 

The SI unit of volume is the cubic metre. The practical units of volume are the cubic 
centimetre and the litre, L. The relations are 

1 L = 1 dm3 = 1000 cm3 = 10- 3 m3 (all are exact). 

In working problems with the ideal gas law, temperatures are expressed in kelvins, 
pressures in pascals, and volumes in cubic metres. 

III EXAMPLE 2.1  One mole of an ideal gas occupies 12 L at 25 °C. What is the pressure 
the gas ? 

The required relation between the data and the unknown is the ideal gas law. 
Converting to SI we have 

Then 

T = 273 . 1 5  + 25 = 298 K and 

_ nRT _ 1 mol(8 . 3 14  J K - 1 mol- 1) (298 K) _ x 5 J/ 3 p - V - 0.012 m3 - 2.06 10 m 

= 2.06 x 105 Pa = 206 kPa. 

If the pressure is needed in atm, then p = 206 kPa(l atm/lOl kPa) = 2.04 atm. 

III EXAMPLE 2.2 A gas is contained in 50 L under 8 atm pressure at 20 °C. How many 
moles of gas are in the container ? 

Changing to SI, T = 273 . 1 5  + 20 = 293 K, V = 50 L(10- 3 m3/L) = 0.050 m3, 
and 

p = 8 atm(1 .013 x 105 Pa/atm) = 8(1 .013 x 105) Pa. 
Then, 

n = pV = 8(1 .01 3 X 105 Pa) (0.050 m3) = 16.6 mol. 
RT 8 . 3 14  J K 1 mol 1 (293 K) 
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2 .3  T H E E Q U ATI O N  O F  STAT E ; 
EXT E N S IV E  A N D I NT E N S IV E  P R O P E RTI E S  

The ideal gas law, p V = nRT, i s  a relation between the four variables that describe the 
state of any gas. As such, it is an equation of state. The variables in this equation fall into 
two classes : n and V are extensive variables (extensive properties), while p and T are 
intensive variables (intensive properties). 

The value of any extensive property is obtained by summing the values of that prop
erty in every part of the system. Suppose that the system is subdivided into many small 
parts, as in Fig. 2 .3 .  Then the total volume of the system is obtained by adding together the 
volumes of each small part. Similarly, the total number of moles (or total mass) in the 
system is obtained by summing the number of moles in (or mass of) each part. By de
finition, such properties are extensive. It should be clear that the value obtained is inde
pendent of the way in which the system is subdivided. 

Intensive properties are not obtained by such a process of summation but are measured 
at any point in the system, and each has a uniform value throughout a system at equilibrium ; 
for example, T and p. 

Extensive variables are proportional to the mass of the system. For the ideal gas, as an 
example, n = w / M, and V = w R T / M p. Both n and V are proportional to the mass of the 
system. Dividing V by n, we obtain V, the volume per mole : 

- V RT V = - = - . n p (2. 1 5) 

The ratio of V to n is not proportional to the mass, because in forming the ratio the mass 
drops out and V is an intensive variable. The ratio of any two extensive variables is always 
an intensive variable. 

If the ideal gas law is written in the form 

pV = R T, (2. 1 6) 

it is a relation between three intensive variables : pressure, temperature, and molar volume. 
This is important because we can now discuss the properties of the ideal gas without 
continually worrying about whether we are dealing with ten moles or ten million moles. It 
should be clear that no fundamental property of the system depends on the accidental 
choice of 20 g rather than 100 g of material for study. In the atom bomb project, micro 
quantities of material were used in preliminary studies, and vast plants were built based on 
the properties determined on this tiny scale. If fundamental properties depended on the 
amount of substance used, one could imagine the government giving research grants for the 
study of extremely large systems ; enormous buildings might be required, depending upon 
the ambition of the investigators ! For the discussion of principles, the intensive variables 
are the significant ones. In practical applications such as design of apparatus and engineer
ing, the extensive properties are important as well, because they determine the size of 
apparatus, the horsepower of an engine, the production capacity of a plant in tons per day, 
and so forth. 

I I I I 
I I I I 

r--+- -+--+ - -+--
I I I I I I I I - - + - -+--+--+--
I I I I 
I I I I 

F i g u re 2 .3  Su bdivis ion o f  t h e  system. 
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Vi(dm3/mol) F igure 2 .4  I sotherms of the ideal gas. 

2 . 4  P R O P E RT I E S  O F  T H E  I D EA L  GAS 

If  arbitrary values are assigned to any two of the three variables p, V, and T, the value of the 
third variable can be calculated from the ideal gas law. Hence, any set of two variables is a 
set of independent variables ;  the remaining variable is a dependent variable. The fact that 
the state of a gas is completely described if the values of any two intensive variables are 
specified allows a very neat geometric representation of the states of a system. 

In Fig. 2.4, p and V have been chosen as independent variables. Any point, such as A, 
determines a pair of values of p and V; this is sufficient to describe the state of the system. 
Therefore every point in the p-V quadrant (both p and V must be positive to make physical 
sense) describes a different state of the gas. Furthermore, every state ofthe gas is represented 
by some point in the p-V diagram. 

It is frequently useful to pick out all ofthe points that correspond to a certain restriction 
on the state of the gas, as, for example, the points that correspond to the same temperature. 
In Fig. 2.4 the curves labeled T1 , T2 , and T3 collect all the points that represent states of the 
ideal gas at the temperatures Tb T2 , and T3 , respectively. These curves are called iso
therms. The isotherms of the ideal gas are ·· rectangular hyperbolas determined by the 
relation 

RT p = V '  
For each curve, T has a different constant value. 

(2. 1 7) 

In Fig. 2 .5 every point corresponds to a set of values for the coordinates V and T; again 
each point represents a state of the gas, just as in Fig. 2.4. In Fig. 2 .5 points corresponding to 
the same pressure are collected on the lines, which are called isobars. The isobars of the 
ideal gas are described by the equation 

V = (�)T' (2. 1 8) 

where the pressure is assigned various constant values. 
As in the other figures, every point in Fig. 2.6 represents a state of the gas, because it 

determines values of p and T. The lines of constant molar volume, isometrics, are described 
by the equation 

(2. 1 9) 

where V is assigned various constant values. 
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Fig u re 2 .5  I sobars o f  t h e  ideal gas. 
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Fig u re 2 .6  Isometrics o f  t h e  ideal  gas. 

These diagrams derive their great utility from the fact that all the gaseous, liquid, and 
solid states of any pure substance can be represented on the same diagram. We will use this 
idea extensively, particularly in Chapter 12 . 

A careful examination of Figs. 2 .4 , 2.5, and 2.6 and ofEqs. (2. 1 7), (2 . 1 8), and (2. 19) leads 
to some rather bizarre conclusions about the ideal gas. For example, Fig. 2 .5  and Eq. (2. 18 )  
say that the volume of an ideal gas confined under a constant pressure i s  zero at  T = 0 K.  
Similarly, Fig. 2 .4  and Eq. (2. 1 7) tell us  that the volume of the ideal gas kept at  a constant 
temperature approaches zero as the pressure becomes infinitely large. These predictions do 
not correspond to the observed behavior of real gases at low temperatures and high pres
sures. As a real gas under a constant pressure is cooled, we observe a decrease in volume, 
but at some definite temperature the gas liquefies ;  after liquefaction occurs, not much 
decrease in the volume is observed as the temperature is lowered. Similarly, isothermal 
compression of a real gas may produce liquefaction, and thereafter further increase in 
pressure produces little change in the volume. It is apparent from this that there is good 
reason for referring to the relation p V = R T as the ideal gas law. The above discussion 
shows that we may expect the ideal gas law to fail in predicting the properties of a real gas 
at low temperatures and at high pressures. Experiment shows that the behavior of all real 
gases approaches that of the ideal gas as the pressure approaches zero. 

In Chapter 3 deviations from the ideal gas law are discussed in detail. For the moment, 
a few general remarks will suffice on the question of when the ideal gas law may reasonably 
be used for predicting properties of real gases. In practice, if only a rough approximation is 
required, the ideal gas law is used without hesitation. This rough approximation is in many 
cases quite good, within perhaps 5 %. For a rule of such broad scope, the ideal gas law is 
astonishingly accurate in many practical situations. 

The ideal gas law is more accurate the higher the temperature is above the critical 
temperature of the substance, and the lower the pressure is below the critical pressure* 
of the substance. In precision work the ideal gas law is never used. 

* Above the critical temperature, and above the critical pressure, it is not possible to distinguish liquid 
and vapor as separate entities ; see Sec. 3 . 5 .  



D etermi nat ion of M o l a r  M asses 1 7  

2 . 5  D ET E R M I N ATI O N  O F  M O LA R  M A S S E S  O F  G A S E S  A N D 
VO LAT I L E  S U B STA N C ES 

The ideal gas law is useful in determining the molar masses of volatile substances. For this 
purpose a bulb of known volume is filled with the gas at a measured pressure and tempera
ture. The mass of the gas in the bulb is measured. These measurements suffice to determine 
the molar mass of the substance. From Eq. (2. 12) we have p V  = (wIM)RT;  then 

M = (�) Rp
T = (�)R T' (2.20) 

where p = wlV; p is the density. All of the quantities on the right-hand side of Eq. (2.20) 
are known from the measurements ; hence, M can be calculated. 

A rough value of the molar mass is usually sufficient to determine the molecular 
formula of a substance. F�r example, if chemical analysis of a gas yields an empirical 
formula (CH2)n , then the molar mass must be some multiple of 14 gjmol ; the possibilities 
are 28, 42, 56, 70, and so on. If a molar mass determination using Eq. (2.20) yields a value of 
54 gimol, then we may conclude that n = 4 and that the material is one of the butenes. The 
fact that the gas is not strictly ideal does not hinder us in this conclusion at all. In this 
example the possible values of M are well enough separated so that even if the ideal gas law 
were wrong by 5 %, we would still have no difficulty in assigning the correct molecular 
formula to the gas. In this example it is unlikely that the ideal gas law would be in error by as 
much as 2 % for a convenient choice of experimental conditions. 

Since the determination of molar mass together with chemical analysis establishes the 
molecular formula of the gaseous substance, the results are of great importance. For 
example, some very common substances exhibit dimerization, a doubling of a simple unit. 
Table 2. 1 lists some of these substances, all of which are solids or liquids at room tempera
ture. Measurements of molar mass must be made at temperatures sufficiently high to 
vaporize the materials. 

The fact that the behavior of a real gas approaches that of the ideal gas as the pressure 
is lowered is used as a basis for the precise determination of the molar masses of gases. 
According to Eq. (2.20), the ratio of density to pressure should be independent of pressure : 
pip = MIRT. This is correct for an ideal gas, but if the density of a real gas is measured at 
one temperature and at several different pressures, the ratio of density to pressure is found 
to depend slightly on the pressure. At sufficiently low pressures, pip is a linear function of 

Tab le  2 . 1  
D i mer izat ion 

Molecular formula 
Compound Empirical formula in the vapor 

Aluminum chloride AIC13 AlzCl6 
Aluminum bromide AlBr3 AlzBr6 
Formic acid HCOOH (HCOOH)z 
Acetic acid CH3 COOH (CH3 COOHh 
Arsenic trioxide AsZ03 AS406 
Arsenic pent oxide Asz Os AS401 0 
Phosphorus trioxide PZ 03 P406 
Phosphorus pentoxide Pz Os P401 0 



1 8  Emp i r ica l P roperties of Gases 

0 . 7040 

§ 0 .7020 
ro 

"'e 0 .7000 

� :::. 0 . 6980 
15; Ci. � 0 . 6960 

0 . 6940 1....-__ '--__ '--_--' __ --'_ 
o 0 .25  0 . 5  

p/atm 
0 . 75 1 . 0  

F i g u re 2 .7  P lot of  pip versus p fo r  ammon ia  at 
25 °C.  

the pressure. The straight line can be extrapolated to yield a value of p/p at zero pressure 
(p/p)o , which is appropriate to the ideal gas and can be used in Eq. (2.20) to give a precise 
value of M :  

M = (�)
o
R T.  (2.21) 

This procedure is illustrated for ammonia at 25°C in Fig. 2.7. 

2 . 6  M IXTU R ES ;  C O M P O S IT I O N  VA R IA B LES 

The state or  condition of  a mixture of  several gases depends not only on the pressure, 
volume, and temperature, but also on the composition of a mixture. Consequently a method 
of specifying the composition must be devised. The simplest method would be to state the 
mole numbers nl , nz , . . .  of the several substances in the mixture (the masses would also 
serve). This method has the disadvantage that the mole numbers are extensive variables. 
It is preferable to express the composition of a mixture in terms of a set of intensive 
variables. 

It has been shown that the ratio of two extensive variables is an intensive variable. The 
mole numbers can be converted to intensive variables by dividing each one by some 
extensive variable. This can be done in several ways. 

The volume concentrations are obtained by dividing the amount of each substance by 
the volume of the mixture. 

_ ni c · = , V (2.22) 

The S1 unit for volume concentration is mOl/m3 . We will reserve the symbol c\ for the 
volume concentration expressed in mOl/m3 . We will use the symbol Ci for the volume 
concentration in the more commonly used unit, mol/L = mOl/dm3 , called the molar 
concentration or the molarity. Volume concentrations are satisfactory for describing the 
composition of liquid or solid mixtures because the volume is comparatively insensitive to 
changes in temperature and pressure. Since the volume of a gas depends markedly on 
temperature and pressure, volume concentrations are not usually convenient for describing 
the composition of gas mixtures. 
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Mole ratios, ri ' are obtained by choosing one of the mole numbers and dividing all the 
others by that one. Choosing nl as the divisor, we have 

(2.23) 

A variant of the mole ratio description, the molal concentration mi >  is often used for liquid 
solutions. Let the solvent be component 1, with a molar mass M l ' The molality of com
ponent i is the number of moles of i per unit mass (kg) of solvent. Since the mass of the 
solvent is n1 M 1 , the number of moles of solute per kilogram of solvent is mi : 

ni ri mi = -- = - ' n1M1 Ml (2.24) 

The molality is the mole ratio multiplied by a constant, 1jM l ' Since the mole ratios and the 
molalities are completely independent of temperature and pressure, they are preferable to 
the molar concentrations for the physico-chemical description of mixtures of any kind. 

Mole fractions, Xi ' are obtained by dividing each of the mole numbers by the total 
number of moles of all the substances present, nt = nl + nz + . . .  , 

(2.25) 

The sum of the mole fractions of all the substances in a mixture must be unity : 

Xl + Xz + X3 + . . .  = 1 .  (2.26) 

Because of this relation, the composition of the mixture is described when the mole frac
tions of all but one of the substances are specified; the remaining mole fraction is computed 
using Eq. (2.26). Like molalities and mole ratios, mole fractions are independent of 
temperature and pressure, and thus are suitable for describing the composition of any 
mixture. Gas mixtures are commonly described by the mole fractions, since the p VT 
relations have a concise and symmetrical form in these terms. 

2 . 7  E Q U ATI O N S  O F  STATE F O R A GAS M IXTU R E ;  
D A LTO N 'S LAW 

Experiment shows that for a mixture of gases, the ideal gas law is correct in the form 

(2.27) 

where nt is the total number of moles of all the gases in the volume V. Equation (2.27) and 
the statement of the mole fractions of all but one of the constituents of the mixture con
stitute a complete description of the equilibrium state of the system. 

It is desirable to relate the properties of complicated systems to those of simpler 
systems, so we attempt to describe the state of a gas mixture in terms of the states of pure 
unmixed gases. Consider a mixture of three gases described by the mole numbers nl ' nz , n3 
in a container of volume V at a temperature T. If nt = nl + nz + n3 ' then the pressure 
exerted by this mixture is given by 

(2.28) 
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We define the partial pressure of each gas in the mixture as the pressure the gas would 
exert if it were alone in the container of volume V at temperature T. Then the partial 
pressures Pl , P2 , P3 are given by 

Adding these equations, we obtain 

RT  RT PI + P2 + P3 = (nl + n2 + n3) y = nt y' 
Comparison o f  this equation with Eq. (2.28) shows that 

P = PI + P2 + P3 ' 

(2.29) 

(2.30) 

This is Dalton's law of partial pressures, which states that at any specified temperature the 
total pressure exerted by a gas mixture is equal to the sum of the partial pressures of the 

. constituent gases. The first gas is said to exert a partial pressure PI > the second gas exerts a 
partial pressure P2 , and so on. Partial pressures are calculated using Eqs. (2.29). 

Partial pressures are simply related to the mole fractions of the gases in the mixture. 
Dividing both sides of the first of Eqs. (2.29) by the total pressure P, we obtain 

PI nlRT 
P pv '  (2. 3 1) 

but, by Eq. (2.28), P = ntRT/V. Using this value for P on the right-hand side of Eq. (2.3 1), 
we have 

Thus 

These equations are conveniently abbreviated by writing 

(i = 1, 2, 3, . . .  ), (2.32) 

where Pi is the partial pressure of the gas that has a mole fraction Xi '  Equation (2. 32) 
allows the calculation of the partial pressure of any gas in a mixture from the mole fraction 
of that gas and the total pressure of the mixture. 

Two things should be noted about Eq. (2.32) : first, if either molar concentrations or 
mole ratios had been used, the final result would not be as simple an expression as Eq. 
(2.32) ; second, examination of the steps leading to Eq. (2.32) shows that it is not restricted 
to a mixture of three gases ; it is correct for a mixture containing any number of gases. 

2 . 8  T H E PARTIAL- P R ESS U R E  C O N C EPT 

. The definition given in Eqs. (2.29) for the partial pressures of the gases in a mixture is a 
purely mathematical one ; we now ask whether or not this mathematical concept of partial 
pressure has any physical significance. The results of two experiments, illustrated in 
Figs. 2 .8 and 2.9, provide the answer to this question. First consider the experiment shown 
in Fig. 2 .8 .  A container, Fig. 2 .8(a), is partitioned into two compartments of equal volume 
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V. The upper compartment contains hydrogen under a pressure of one atmosphere ; the 
lower compartment is evacuated. One arm of a manometer is covered by a thin palladium 
foil and is connected to the hydrogen-filled compartment. The other arm of the manometer 
is open to a pressure of 1 atm which is kept constant during the experiment as is the tempera
ture. At the beginning of the experiment, the mercury levels in the two arms of the mano
meter stand at the same height. This is possible because the palladium membrane is 
permeable to hydrogen but not to other gases, and so the membrane does not block the 
entrance of hydrogen to the manometer arm. 

The partition is removed, and the hydrogen fills the entire vessel. After a period of time, 
the mercury levels rest in the final positions shown in Fig. 2 .8(b). Since the volume available 
to the hydrogen has doubled, the pressure in the container has fallen to one-half its original 
value. (We neglect the volume of the manometer arm in this computation.) 
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In the second experiment, Fig. 2.9, the lower compartment contains nitrogen (which 
cannot pass the palladium foil) under 1 atm pressure. At the beginning of the experiment, 
the mercury levels stand at the same height. The partition is removed and the gases mix 
throughout the container. After a period of time the levels stand at the positions shown in 
Fig. 2.9(b). The result of this experiment is exactly the same as in the first experiment in 
which the lower compartment was evacuated. The hydrogen behaves exactly as if the 
nitrogen were not present. This important result means that the concept of partial pressure 
has a physical meaning as well as a mathematical one. 

The interpretation of each experiment is direct. In the first experiment, the manometer 
read the total pressure both before and after the partition was removed : 

nH2RT Pinitial = --v- = 1 atm, 

In the second experiment, the manometer read total pressure before the membrane was 
removed, and partial pressure of hydrogen in the mixture after removal of the membrane : 

nH2RT Pinitial = --v- = 1 atm, 

nN2RT 1 PN2 (final) = 2V = 2 atm, 

Ptotal, final = PH2 + PN2 = ! + ! = 1 atm. 

Note that the total pressure in the container does not change upon removal ofthe partition. 
It is possible to measure the partial pressure of any gas in a mixture directly if there is a 

membrane that is permeable to that gas alone ; for example, palladium is permeable to 
hydrogen and certain types of glass are permeable to helium. The fact that at present only 
a few such membranes are known does not destroy the physical reality of the concept of 
partial pressure. Later it will be shown that in chemical equilibria involving gases and in 
physical equilibria such as solubility of gases in liquids and solids, it is the partial pressures 
of the gases in the mixture that are significant (further confirmation of the physical content 
of the concept). 

2 . 9  T H E  BA R O M ET R I C  D I ST R I B UTI O N  LAW 

In the foregoing discussion of the behavior of ideal gases it has been tacitly assumed that 
the pressure of the gas has the same value everywhere in the container. Strictly speaking, 
this assumption is correct only in the absence of force fields. Since all measurements are 
made on laboratory systems that are always in the presence of a gravitational field, it is 
important to know what effect is produced by the influence of this field. It may be said that, 
for gaseous systems of ordinary size, the influence of the gravity field is so slight as to be 
imperceptible even with extremely refined experimental methods. For a fluid of higher 
density such as a liquid, the effect is quite pronounced, and the pressure will be different at 
different vertical positions in a container. 
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A column offluid, Fig. 2. 10, having a cross-sectional area A, at a uniform temperature 
T, is subjected to a gravitational field acting downward to give a particle an acceleration g. 
The vertical coordinate z is measured upward from ground level where z = O. The pressure 
at any height z in the column is determined by the total mass of fluid above that height, m. 
The downward force on this mass is mg ; this force divided by the area is the pressure at the 
height z :  mg 

P = A' 
Let the pressure at the height z + dz be P + dp ; then 

m'g p + dp = A' 
where m' i s  the mass of fluid above the height z + dz. But 

m' + dm = m or m' = m - dm, 
if dm is the mass of fluid in the slice between z and z + dz. Then 

p + dp = (m - dm)g = mg _ g dm 
A A A 

In view of Eq. (2.33) this becomes 

dp = _ g �m . 

(2.33) 

If p is the density of the fluid, then dm = pA dz ; using this in the expression for dp 
yields 

dp = -pg dz. (2.34) 

The differential equation, Eq. (2.35), relates tkchange in pressure, dp, to the density of the 
fluid, the gravitational acceleration, and the increment in height dz. The negative sign 
means that if the height increases (dz is + ), the pressure of the fluid will decrease (dp is - ). 
The effect of change in height on the pressure is proportional to the density of the fluid ; thus 
the effect is important for liquids and negligible for gases. 

If the density of a fluid is independent of pressure, as is the case for liquids, then 
Eq. (2.34) may be integrated immediately. Since p and g are constants, they are removed 
from the integral and we obtain 

r dp = -pg fdZ, 
Po 0 
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which, after integrating, gives 

P - Po = -pgz, (2.35) 
where Po is the pressure at the bottom of the column, and P is the pressure at the height 
z above the bottom of the column. Equation (2.3 5) is the usual equation for hydrostatic 
pressure in a liquid. 

To apply Eq. (2.34) to a gas, it must be recognized that the density of the gas is a 
function of the pressure. If the gas is ideal, then from Eq. (2.20), p = AI p/R T. Using this in 
Eq. (2.34), we have 

dp = Mgp dz 
RT 

Separating variables yields 
dp Mg dz - --
p RT (2.36) 

and integrating, we obtain 

In p = Mgz - - + c. RT (2.37) 

The integration constant C is evaluated in terms of the pressure at ground level ; when 
z = 0, p = Po . Using these values in Eq. (2.37), we find that In Po = C. Substituting this 
value for C and rearranging reduces Eq. (2.37) to 

or 

In (�) = _ Mgz (2.38) 
Po RT 

(2. 39) 
Since the density is proportional to the pressure, and the number of moles per cubic 
metre is proportional to the pressure, Eq. (2.39) can be written in two other equivalent 
forms : 

p = po e-Mgz/RT or - - -Mgz/RT C = co e , (2.40) 
where p and Po are the densities and c and Co are the concentrations in moljm3 at z and at 
ground level. Either of the equations (2.39) or (2.40) is called the barometric distribution 
law or the gravitational distribution law. The equation is a distribution law, because it 
describes the distribution of the gas in the column. Equation (2.39) relates the pressure at 
any height z to the height, the temperature of the column, the molecular weight of the gas, 
and the acceleration produced by the gravity field. Figure 2. 1 1  shows a plot of p/Po versus 
z for nitrogen at three temperatures, according to Eq. (2.39). Figure 2. 1 1  shows that at the 
higher temperature, the distribution is smoother than at the lower temperature. The 
variation in pressure with height is less pronounced the higher the temperature ; if the 
temperature were infinite, the pressure would be the same everywhere in the column. 

It is advisable to look more closely at this exponential type of distribution law, since it 
occurs so frequently in physics and physical chemistry in a more general form as the 
Boltzmann distribution. Equation (2.36) is most informative in discussing the exponential 
distribution ; it can be written 

-dp 
p 

Mg dz 
RT' (2.41 ) 
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which says that the relative decrease* in pressure, - dp/p, is a constant, Mg/R T, multiplied 
by the increase in height, dz. It follows that this relative decrease is the same at all positions 
in the column ; therefore it cannot matter where the origin of z is chosen. For example, 
suppose that for a certain gas the pressure at ground level is 1 atm and the distribution 
shows that the pressure decreases to t atm at a height of 10 km. Then for this same gas, the 
pressure at a height z + 10 km is one-half the value of the pressure at the height z. Thus at 
any height, the pressure is one-half the value it has at a height 10 km below. This aspect of 
the distribution is emphasized in Fig. 2. 12. 

The argument does not depend on the choice of one-half as the relative value. Suppose 
that for some gas the pressure at a height of 6.3 km is 0.8 8  of its value at ground level. Then 
in another interval of 6 .3 km, the pressure will drop again by the factor 0 .88 .  The pressure 
at 2(6.3) = 12.6 km will then be (0.88) (0.88) = 0.774 of the ground level value (see 
Problem 2.33). 

Another point to note about Eq. (2.41) is that the relative decrease in pressure is 
proportional to Mg/RT. Consequently, for any particular gas, the relative decrease is less 
at higher temperatures (see Fig. 2. 1 1) . At a specified temperature the relative decrease is 
larger for a gas having a high molecular weight than for a gas with a low molecular weight. 

For a gas mixture in a gravity field, it can be shown that each of the gases obeys the 
distribution law independently of the others. For each gas 

(2.42) , 

where Pi is the partial pressure of the ith gas in the mixture at the height z, Pio is the partial 
pressure of the gas at ground level, and Mi is the molar mass of the gas. The interesting 
consequence of this law is that the partial pressures of very light gases decrease less rapidly 
with height than do those of heavier gases. Thus in the earth's atmosphere the percentage 
composition at very great heights is quite different from that at ground level. At a height of 
100 km the light gases such as helium and neon form a higher percentage of the atmosphere 
than they do at ground level. 

Using Eq. (2.42), we can estimate the atmospheric composition at different altitudes. 
Even though the atmosphere is not isothermal and not in equilibrium, these estimates are 
not bad. 

* Since dp is an increase, - dp is a decrease . 
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• EXAMPLE 2.3 The partial pressure of argon in the atmosphere is 0.0093 atm. What is 
the argon pressure at 50 km if the temperature is 20 °C? g = 9 .807 m/sz . 

and 

In SI, MAr = 0.0399 kg/mol and z = 50 km = 5 x 104 m. Then 
Mgz = (0.0399 kg/mol) (9.807 m/sZ) (5 x 104 m) = 8.03 RT (8. 3 14  J/K mol) (293 K) 

, 

p = po e-Mgz/RT = 0.0093 atm e- 8 . 03 = 3.0 x 10- 6  atm. 

* 2 . 9 . 1  T h e  D i st r i b u t i o n  of P a rt i c l es i n  a C o l l o i d a l  S o l ut i o n  

The distribution law in Eq. (2.40) not only applies to  gases but also describes the dependence 
ofthe concentration of colloidal particles or polymer particles suspended in liquid solution 
on their position in the solution. The total number of moles of substance in the element of 
volume between Z1 and Zz is given by dn : 

dn = c dV = cA dz (2.43) 

To obtain the total number of moles, n(z1 ' zz), between any two positions, Z1 and Zz , in 
the column, we integrate Eq. (2.43) between those positions : 

J
Z2 J

Z2 n(z1 , zz) = dn = cA dz. Zl . Zl 
The volume enclosed between Z1 and Zz is 

V(z 1 , zz) = f2 A dz. 
The average concentration, (c), in the layer is 

J
Z2CA dz (c) = n(zb zz) = -----'-Z I __ 

V(Z1 ' zz) 
J
Z2A dz Z I 

(2.44) 

(2.45) 

If the column is uniform in cross section, then the area A is constant and we obtain 

f2C dZ (c) = _Z_1 � 

Zz - Z1 (2.46) 

We use C'as a function of z from Eq. (2.40) to evaluate the integral. In this way we can relate 
the concentration in any part of the container to the total number of moles. Since the 
distribution of polymer molecules in a solution is determined by the molar mass of the 
polymer, the difference in concentration between the top and bottom of the solution can be 
used to measure the molar mass of the polymer. 

• EXAMPLE 2.4 Consider a column of air at 20 °C in the earth's gravity field. What 
fraction of the nitrogen present in the atmosphere lies below an altitude of 20 km? 

The number of moles of gas below the height z is given by Eq. (2.44) : 

nCO, z) = dn = cA dz = Aco e-Mgz/RT dz = Aco � ( 1  - e-MgZ/RT). J
z 

J
Z 

1
z RT 

o 0 0 Mg 
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The total number of moles is 

nCO, 00) = dn = Aco - hm (1 - e-Mgz/RT) = Aco- ' fOO RT . RT 
o Mg z-+ oo Mg 

The fraction lying below z is nCO, z)/n(O, 00) = 1 - e-Mgz/RT. For our case, since for 
nitrogen M = 0.0280 kg/mol, z = 2 X 104 m, and T = 293 K, 

then 

Q U E ST I O N S  

Mgz (0.0280 kg/mol) (9. 807 m/s2) (2 x 104 m) 
RT = 

(8 . 3 14  J/K mol) (293 K) 
= 2.25 ; 

nCO, 20 km) 
nCO, 00 ) 1 - e- 2 . 2 5 = 1 - 0. 10 = 0.90. 

2.1 Why are four values of the properties mass, volume, temperature, and pressure insufficient to 
describe the state of a nonequilibrium gas ; for example, a turbulent gas ? 

2.2 Could n in the ideal gas law have been identified as the number of moles without Avogadro's 
hypothesis ? 

2.3 According to Dalton's law, what is most of the pressure of the atmosphere (that is, air) due to ? 

2.4 Why don't all the gas molecules in the atmosphere simply fall to earth ? 

2.5 The force on an ion of negative charge - q in a constant electric field E in the z direction is F = 
- qE. By analogy to the gravitational case, what is the spatial distribution of such ions immersed in 
a column of gas and subject to a constant vertical field E ?  (Ignore the effect of gravity on the ions 
and on the gas.) 

P R O B L E M S  

Con version factors : 
Volume : 1 L = 1 dm3 = 10- 3 m3 (all are exact). 
Pressure : 1 atm = 760 Torr = 1 .01 325 x 105 Pa (all are exact). 

2.1  A sealed flask with a capacity of 1 dm3 contains 5 g of ethane. The flask is so weak that it will 
burst if the pressure exceeds 1 MPa. At what temperature will the pressure of the gas reach the 
bursting pressure ? 

2.2 A large cylinder for storing compressed gases has a volume of about 0.050 m3. If the gas is stored 
under a pressure of 15 MPa at 300 K, how many moles of gas are contained in the cylinder ? 
What would be the mass of oxygen in such a cylinder ? 

2.3 Helium is contained at 30.2 °C in the system illustrated in Fig. 2 . 13 .  The leveling bulb L can be 
raised so as to fill the lower bulb with mercury and force the gas into the upper part of the device. 
The volume of bulb 1 to the mark b is 100.5 cm3 and the volume of bulb 2 between the marks 
a and b is 1 10.0 cm3 . The pressure exerted by the helium is measured by the difference between 
the mercury levels in the device and in the evacuated arm of the manometer. When the mercury 
level is at a, the difference in levels is 20. 14 mm. The density-'ofmercury at 30.2 °C is 13 .5212 g/cm3 
and the acceleration of gravity is 9.80665 m/s2 . What is the mass of helium in the container ? 
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2.4 The same type of apparatus is used as in Problem 2.3.  In this case the volume VI is not known ; 
the volume of bulb 2, vz ,  is 1 10.0 cm3 . When the mercury level is at a the difference in levels is 
1 5.42 mm. When the mercury level is raised to b, the difference in levels is 27.3 5  mm. The 
temperature is 30.2 DC. Use the values of the density of mercury and 9 given in Problem 2.3.  

a) What is the mass of helium in the system? 
b) What is the volume of bulb 1 ? 

2.5 Suppose that in setting up the scales of atomic masses the standard conditions had been chosen 
as Po = 1 atm, Vo = 0.03 m3 (exactly), and To = 300 K (exactly). Compute the " gas-constant," 
the "Avogadro constant," and the masses of a "mole " of hydrogen atoms and oxygen atoms. 

2.6 The coefficient of thermal expansion ex is defined by ex = (I/V)(ilV/8 T)p ' Using the equation of 
state, compute the value of ex for an ideal gas. 

2.7 The coefficient of compressibility K is defined by K = - (1/V)(8 V/8ph . Compute the value of K 
for an ideal gas. 

2.8 For an ideal gas, express the deriv<:\tive (8p/8 T)v in terms of ex and K. 

2.9 Consider a gas mixture in a 2 dm3 flask at 27 DC. For each mixture calculate the partial pressure 
of each gas, the total pressure, and the composition of the mixture in mole percent. Compare the 
results of the four calculations. 
a) 1 g Hz and 1 g Oz 
b) 1 g Nz and 1 g Oz 
c)  l. g CH4 and 1 g NH3 
d) 1 g Hz and 1 g Clz 

2.10  A sample of air is collected over water at 20 DC. At equilibrium the total pressure of the moist air 
is 1 atm. The equilibrium vapor pressure of water at 20 DC is 1 7.54 Torr ; the composition of dry 
air is 78 mole % N z ,  21 mole % Oz , and 1 mole % Ar. 
a) Calculate the partial pressures of nitrogen, oxygen, and argon in the wet mixture. 
b) Calculate the mole fractions of nitrogen, oxygen, argon, and water in the wet mixture. 

2.1 1  Consider a 20 L sample of moist air at 60 DC under a total pressure of 1 atm in which the partial 
pressure of water vapor is 0. 120 atm. Assume the composition of dry air given in Problem 2. 10. 

a) What are the mole percentages of each of the gases in the sample ? 
b) The percent relative humidity is defined as % R.H. = 1 00 Pw/Pwo ' where Pw is the partial 

pressure of water in the sample and Pwo is the equilibrium vapor pressure of water at the 
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temperature in question. At 60 °C, Pwo = 0. 197 atm. What volume must the mixture occupy 
at 60 °C if the relative humidity is to be 100 %?  

c )  What fraction o f  the water will b e  condensed if the total pressure of the mixture is increased 
isothermally to 200 atm? 

2.12 A box contains liquid water in equilibrium with water vapor at 30 °C. The equilibrium vapor 
pressure of water at 30 °C is 3 1 .82 Torr. If the volume of the box is increased, some of the liquid 
water evaporates to maintain the equilibrium pressure. There is 0.90 g of water present. What 
must the volume of the box be if all the liquid is to evaporate ? (The volume of the liquid water 
may be ignored.) 

2.13 The total pressure of a mixture of oxygen and hydrogen is 1 .00 atm. The mixture is ignited and 
the water formed is removed. The remaining gas is pure hydrogen and exerts a pressure of 0.40 atm 
when measured under the same conditions of T and V as the original mixture. What was the 

/� _ original composition of the mixture (mole %) ? 
! 2.14i A mixture of nitrogen and water vapor is admitted to a flask that contains a solid drying agent. 

- � Immediately after admission, the pressure in the flask is 760 Torr. After standing some hours, 
the pressure reaches a steady value of 745 Torr. 
a) Calculate the composition, in mole percent, of the original mixture. 
b) If the experiment is done at 20 °C and the drying agent increases in weight by 0. 1 50 g, what is 

the volume of the flask ? (The volume occupied by the drying agent may be ignored.) 
: 2.15 ' A mixture of oxygen and hydrogen is analyzed by passing it over hot copper oxide and through a 

drying tube. Hydrogen reduces the CuO according to the equation 
CuO + Hz -----+ Cu + H20. 

Oxygen then reoxidizes the copper formed : 
Cu + toz -----+ CuO. 

100.0 cm3 of the mixture measured at 25 °C and 750 Torr yields 84.5 cm3 of dry oxygen measured 
at 25 DC and 750 Torr after passage over CuO and the drying agent. What is the original composi
tion of the mixture ? 

2.16 A sample of CzH6 is burned in a volume of air sufficient to provide twice the amount of oxygen 
needed to burn the CzH6 completely to COz and H20. After the ethane is completely burned, 
what is the composition (mole fraction) of the gas mixture ? Assume that all the water is present as 
vapor and that air is 78 % nitrogen, 21 % oxygen, and 1 % argon . 

. &.17JA gas sample is known to be a mixture of ethane and butane. A bulb of 200.0 cm3 capacity is 
filled with the gas to a pressure of 100.0 kPa at 20.0 DC. If the weight of gas in the bulb is 0.3846 g, 
what is the mole percent of butane in the mixture ? 

2.18 A bulb of 138.2 mL volume contains 0.6946 g of gas at 756.2 Torr and 100.0 DC. What is the 
molar mass of the gas ? 

2.19 Consider an isothermal column of an ideal gas at 25 °C. What must the molar mass of this gas 
be if the pressure is 0.80 of its ground level value at (a) 10 km, (b) 1 km, and (c) 1 m. (d) What 
kinds of molecules have molar masses of the magnitude in (c) ? 

2.20 Assuming that air has a mean molar mass of 28.9 g/mol and that the atmosphere is isothermal 
at 25 DC, compute the barometric pressure at Denver, which is 1 600 m above sea level ; compute 
the barometric pressure at the top of Mt. Evans, 4348 m above sea level. The pressure at sea level 
may be taken as 760 Torr. 

2.21 Consider an " ideal potato gas," which has the following properties : it obeys the ideal gas law, 
and the individual particles have a mass of 100 g, but occupy no volume (that is, they are point 
masses). 

a) At 25 °C compute the height at which the number of potatoes per cubic metre falls to one
millionth of its ground-level value. 
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b) Recognizing that real potatoes do occupy a volume, is there any correspondence between 
the result of the calculation in (a) and the observed spatial distribution of potatoes in a paper 
bag? 

2.22 Consider the pressure at a height of 10 km in a column of air, M = 0.0289 kg/mol. If the pressure 
at ground level remains at 1 atm but the temperature changes from 300 K to 320 K, what will 
be the change in pressure at the 10 km altitude ? 

2.23 At 300 K a gas mixture in a gravity field exerts a total pressure of 1 .00 atm and consists of 0.600 
mole fraction of nitrogen, M = 0.0280 kg/mol ;  the remainder is carbon dioxide, M = 0.0440 
kg/mol. 
a) Calculate the partial pressures of N2 and CO2 , the total pressure, and the mole fraction of 

N 2 in the mixture at 50 km altitude. 
b) Calculate the number of moles of nitrogen between 0 and 50 km altitude in a column having a 

cross-sectional area of 5 m2 . 
2.24 The approximate composition of the atmosphere at sea level is given in the following table. 

Gas Mole percent Gas Mole percent 

Nitrogen 78 .09 Helium 0.0005 
Oxygen 20.93 Krypton 0.0001 
Argon 0.93 Hydrogen 5 x 10- 5  
Carbon dioxide 0.03 Xenon 8 x 10- 6 
Neon 0.0018  Ozone 5 x 10- 5 

By permission from Scientific Encyclopedia, 3d ed. New York : D. Van 
Nostrand, 1 958 ,  p. 34. 

Ignoring the last four components, compute the partial pressures of the others, the total pressure, 
and the composition of the atmosphere in mole percent, at altitudes of 50 and 100 km (t = 25 °q. 

2.25 A solution of a polymer, M = 200 kg/mol, at 27 °C, fills a container to a depth of 10 cm. If the 
concentration of the polymer at the bottom of the solution is co , what is the concentration at 
the top of the solution ? 

2.26 At 300 K consider a colloidal solution, M = 1 50 kg/mol, in a gravity field. If the concentration 
of the colloid is 0.00080 mol/L at the top of the solution and 0.0010 mol/L at the bottom, 
a) How deep is the solution ? 
b) Calculate the average concentration of the colloid in the lowest 0. 10  m of the solution. 
c) Calculate the number of moles in the lowest 0. 10 m of the solution, if the cross-sectional area 

of the container is 20 cm2 . 
2.27 A polymer solution has an average concentration, <c> = 0.100 moljm3 , and an average molar 

mass of 20.0 kg/mol. At 25 °C the solution fills a cylinder that is 50 cm high. What are the con
centrations of the polymer at the top and at the bottom of the cylinder ? 

2.28 At 300 K a polymer solution fills a cylinder to a depth of 0.20 m ;  the cross-sectional area is 
20 cm2 . 
a) If the concentration at the top of the solution is 95 % of that at the bottom, what is the molar 

mass of the polymer ? 
b) Calculate the total mass of polymer in the container, if Co = 0.25 moljm3• 
c) Calculate the average concentration of the polymer in the solution. 

2.29 A balloon having a capacity of 10,000 m3 is :filled with helium at 20 °C and 1 atm pressure. 
If the balloon is loaded with 80 % of the load that it can lift at ground level, at what height will 
the balloon come to rest ? Assume that the volume of the balloon is constant, the atmosphere 
isothermal, 20 °C, the molar mass of air is 28.9 g/mol, and the ground level pressure is 1 atm. 
The mass of the balloon is 1 . 3  x 106 g. 
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2.30 When Julius Caesar expired, his last exhalation had a volume of about 500 cm3 • This expelled 
air was 1 mol % argon. Assume that the temperature was 300 K and the ground-level pressure 
was 1 atm. Assume that the temperature and pressure are uniform over the earth's surface and 
still have the same values. If Caesar's argon molecules have all remained in the atmosphere and 
have been completely mixed throughout the atmosphere, how many inhalations, 500 cm3 each, 
must we make on average to inhale one of Caesar's argon molecules? The mean radius of the 
earth is 6 .37 x 106 m. 

2.31 Show that Xi = (Yi/Mi)/[(Y1/M 1 ) + (Y2/M 2) + . . .  ] , in which Xi , Yb and Mi are the mole fraction, 
the weight percent, and the molar mass of component i, respectively. 

2.32 Express the partial pressures in a mixture of gases (a) in terms of the volume concentrations 
Cb and (b) in terms of the mole ratios ri . 

2.33 If at a specified height Z the pressure of a gas is pz , and that at z = 0 is Po , show that at any 
height z, P = Po rlZ, where f = PZ/Po . 

2.34 Consider an ideal gas with a fixed molar mass and at a specified temperature in a gravity field. 
If at 5.0 km altitude, the pressure is 0.90 of its ground-level value, what fraction of the ground
level value will the pressure be at 10 km? At 15 km? 

2.35 a) Show that if we calculate the total number of molecules of a gas in the atmosphere using the 
barometric formula, we would get the same result if we assumed that the gas had the ground
level pressure up to a height z = RT/Mg and had zero pressure above that level. 

b) Show that the total mass of the earth's atmosphere is given by APo/g, where Po is the total 
ground-level pressure and A is the area of the earth's surface. Note that this result does not 
depend on the composition of the atmosphere. (Do this problem first by calculating the 
mass of each constituent, mole fraction = Xi ' molar mass = Mi , and summing. Then by 
examining the result, do it the easy way.) 

c) If the mean radius of the earth is 6 .37 x 106 m, and Po = 1 atm, calculate the mass of the . 
atmosphere. 

2.36 Since the gases in the atmosphere are distributed differently according to their molar masses, 
the average percentage of each gas is different from the percentage at ground leveL The values, 
x?, of mole fractions at ground level are given. 
a) Derive a relation between the average mole fraction of the gas in the atmosphere and the 

mole fractions at ground leveL 
b) If the mole fractions of N2 , O2 , and Ar at ground level are 0.78, 0 .21 , and 0.01, respectively, 

compute the average mole fractions of N2 , O2 , and Ar in the atmosphere. 
c) Show that the average mass fraction of any gas in the atmosphere is equal to its mole fraction 

at ground level. 

2.37 Consider a column of gas in a gravity field� Calculate the height Z, determined by the condition 
that half the mass of the column lies below Z. 

2.38 For the dissociation N204 ¢ 2N02 , the equilibrium constant at 25 °C is K = 0. 1 1 5 ;  it is related 
to the degree of dissociation ex and the pressure in atm by K = 4ex2p/(1 - e(2). If n is the number 
of moles of N204 that would be present if no dissociation occurred, calculate V/n at p = 2 atm, 
1 atm, and 0 .5 atm, assuming that the equilibrium mixture behaves ideally. Compare the results 
with the volumes if dissociation did not occur. 

2.39 For the mixture described in Problem 2.38, show that as p approaches zero, the compressibility 
factor Z = p V /nRT approaches 2 instead of the usual value of unity. Why does this happen ? 
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3 . 1  D EVIATI O N S  F RO M  I D EA L  B E H AVI O R  

Since the ideal gas law does not accurately represent the behavior of real gases, we shall 
now attempt to formulate more realistic equations of state for gases and explore the impli
cations of these equations. 

If measurements of pressure, molar volume, and temperature of a gas do not confirm 
the relation p V = R T, within the precision of the measurements, the gas is said to deviate 
from ideality or to exhibit nonideal behavior. To display the deviations clearly, the ratio 
of the observed molar volume V to the ideal molar volume �d( = RT/p) is plotted as a 
function of pressure at constant temperature. This ratio is called the compressibility 
factor z. Then, 

Z = V = pV 
- �d RT (3 . 1 )  

For the ideal gas, Z = 1 and i s  independent of  pressure and temperature. For real gases 
Z = Z(T, p), a function of both temperature and pressure. 

Figure 3 . 1  shows a plot of Z as a function of pressure at 0 DC for nitrogen, hydrogen, and 
the ideal gas. For hydrogen, Z is greater than unity (the ideal value) at all pressures. 
For nitrogen, Z is less than unity in the lower part of the pressure range, but is greater 
than unity at very high pressures. Note that the pressure range in Fig. 3 . 1  is very large ; 
near one atmosphere both of these gases behave nearly ideally. Also note that the vertical 
scale in Fig. 3 . 1  is much expanded compared to that in Fig. 3 .2 . 

Figure 3 .2 shows a plot of Z versus p for several gases at 0 DC. Note that for those 
gases that are easily liquefied, Z dips sharply below the ideal line in the low-pressure 
region. 
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3.2 M O D I FYI N G  T H E I D EA L  GAS E Q U ATI O N ; 

T H E VA N D E R  WAA LS E Q U ATI O N  

How can the ideal gas law be modified to yield an equation that will represent the ex
perimental data more accurately ? We begin by correcting an obvious defect in the ideal 
gas law, namely the prediction that under any finite pressure the volume of the gas is 
zero at the absolute zero of temperature : V = R T /p. On cooling, real gases liquefy and 
ultimately solidify ; after liquefaction the volume does not change very much. We can 
arrange the new equation so that it predicts a finite, positive volume for the gas at 0 K by 
adding a positive constant b to the ideal volume : 

- RT V= b + - . P (3.2) 

According to Eq. (3.2) the molar volume at 0 K is b, and we expect that b will be roughly 
comparable with the molar volume of the liquid or solid. 

Equation (3 .2) also predicts that as the pressure becomes infinite the molar volume 
approaches the limiting value b. This prediction is more in accord with experience than 
the prediction of the ideal gas law that the molar volume approaches zero at very high 
pressures. 

Now it would be interesting to see how well Eq. (3.2) predicts the curves in Figs. 
3 . 1  and 3.2. Since by definition Z = pY/RT, multiplication of Eq. (3 .2) by p/RT yields 

Z = 1 � + RT ' (3 .3) 

Since Eq. (3 .3) requires Z to be a linear function of pressure with a positive slope b/RT, 
it cannot possibly fit the curve for nitrogen in Fig. 3 . 1 ,  which starts from the origin with a 
negative slope. However, Eq. (3 .3) can represent the behavior of hydrogen. In Fig. 3 . 1  
the dashed line i s  a plot of  Eq. (3 .3) fitted at the origin to the curve for hydrogen. In  the 
low-pressure region the dashed line represents the data very well. 

We can conclude from Eq. (3. 3) that the assumption that the molecules of a gas have 
finite size is sufficient to explain values of Z greater than unity. Apparently this size 
effect is the dominating one in producing deviations from ideality in hydrogen at 0 0c. It 



Mod i fy ing  the Idea l  Gas Equat ion 35 

is also clear that some other effect must produce the deviations from ideality in gases such 
as nitrogen and methane, since the size effect cannot explain their behavior in the low
pressure range. This other effect must now be sought. 

We have already noted that the worst offenders in the matter of having values of Z 
less than unity are methane and carbon dioxide, which are easily liquefied. Thus we 
begin to suspect a connection between ease of liquefaction and the compressibility 
factor, and to ask why a gas liquefies. First of all, energy, the heat of vaporization, must 
be supplied to take a molecule out of the liquid and put it into the vapor. This energy 
is required because of the forces of attraction acting between the molecule and its neigh
bors in the liquid. The force of attraction is strong if the molecules are close together, as 
they are in a liquid, and very weak if the molecules are far apart, as they are in a gas. The 
problem is to find an appropriate way of modifying the gas equation to take account of 
the effect of these weak attractive forces. 

The pressure exerted by a gas on the walls of a container acts in an outward direction. 
Attractive forces between the molecules tend to pull them together, thus diminishing the 
outward thrust against the wall and reducing the pressure below that exerted by the ideal 
gas. This reduction in pressure should be proportional to the force of attraction between 
the molecules of the gas. 

Consider two small volume elements V i  and V2 in a container of gas (Fig. 3 . 3). Suppose 
that each volume element contains one molecule and that the attractive force between 
the two volume elements is some small value f. If another molecule is added to V2 , keeping 
one molecule in V i '  the force acting between the two elements should be 21 ; addition of a 
third molecule to V2 should increase the force to 3f, and so on. The force of attraction 
between the two volume elements is therefore proportional to C2 , the concentration of 
molecules in V2 . If at any point in the argument, the number of molecules in V2 is kept 
constant and molecules are added to V i '  then the force should double and triple, etc. The 
force is therefore proportional to Cl , the conc�ntration of molecules in V i '  Thus, the force 
acting between the two elements can be written as : force oc C 1 c2 . Since the concentration 
in a gas is everywhere the same, (;1 = (;2 = C, and so, force oc c2 . But c = n/V = I/Y; 
consequently, force oc 1/y2 . 

We rewrite Eq. (3 .2) in the form RT 
p = --- . V - b (3.4) 

Because of the attractive forces between the molecules, the pressure is less than that given 
by Eq. (3 .4) by an amount proportional to 1/y2, so a term is subtracted from the right-hand 
side to yield 

RT a 
p = Y - b - y2 ' (3.5) 

where a is a positive constant roughly proportional to the energy of vaporization of the 
liquid. Two things should be noted about the introduction of the a/y2 term. First, forces 

F igure 3 .3  Vol u me e lements i n  a gas.  
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Gas 

Tab l e  3 . 1  
van der  Waa ls constants 

a/Pa m6 mol- 2 

0.00345 
0.0247 
0. 1 38  
0.366 
0.580 
0.820 

23.4 
26.6 
3 1 .8 
42.9 
3 1 .9 
1 7.0 

Francis Weston Sears, An Introduction to Thermo
dynamics, the Kinetic Theory of Gases, and Statistical 
Mechanics. Reading, Mass . : Addison-Wesley, 1 950. 

acting on any volume element in the interior of the gas balance out to zero ; only those 
eleme'nts of volume near the wall of the container experience an unbalanced force that 
tends to pull them toward the center. Thus the effect of the attractive forces is felt only at 
the walls of the vessel. Second, the derivation assumed an effective range of action of the 
attractive forces of the order of centimetres ;  in fact the range of these forces is of the order of 
nanometres. In Chapter 26 we do the derivation without this assumption and obtain the 
same result .  

Equation (3.5) is the van der Waals equation, proposed by van der Waals, who was the 
first to recognize the influence of molecular size and intermolecular forces on the pressure 
of a gas. These weak forces of attraction are called van der Waals forces. The van der 
Waals constants, a and b, for a few gases are given in Table 3 . 1 .  The van der Waals equation 
is frequently written in the equivalent but less instructive forms 

(p + ;z)CV - b) = RT or 
( nZa) 

p + ¥ (V - nb) = nRT, (3 .6) 

where V = n V has been used in the second writing. 

3 . 3  I M P LI CATI O N S  O F  
T H E VA N D E R  WAALS E Q U AT I O N  

The van der Waals equation takes two effects into account : first, the effect of molecular 
size, Eq. (3.2), 

RT 
p = (V - b) ' 

Since the denominator in the above equation is smaller than the denominator in the ideal 
gas equation, the size effect by itself increases the pressure above the ideal value. According 
to this equation it is the empty space between the molecules, the " free " volume, that 
follows the ideal gas law. Second, the effect of intermolecular forces, Eq. (3. 5), 

RT a 
p = V - b - V2 ' 
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J account. The effect of attractive forces by itself reduces the pressure below the 
.le and is taken into account by subtracting a term from the pressure. 

J calculate Z for the van der Waals gas we multiply Eqo (3 . 5) by V and divide by 
, this yields 

Z _ 
pV 

_ 
V a - RT - V - b - RTV ' 

The numerator and denominator of the first term on the right-hand side are divided by V : 
1 a Z = 1 _ b/V - RTV ' 

At low pressures b/17 is small compared with unity, so the first term on the right may be 
developed into a power series in l/V by division ; thus 1/(1 - b/V) = 1 + (b/17) + 
(b/V)2 + . . . . Using this result in the preceding equation for Z and collecting terms, we 
have 

Z = 1 + (b - R
a
T) � + (� r + (� r + . . .  , (3.7) 

which expresses Z as a function of temperature and molar volume. It would be preferable 
to have Z as a function of temperature and pressure ; however, this would entail solving 
the van der Waals equation for V as a function of T and p, then multiplying the result by 
p/RT to obtain Z as a function of T and p. Since the van der Waals equation is a cubic 
equation in V, the solutions are too complicated to be particularly informative. We 
content ourselves with an approximate expression for Z(T, p) which we obtain from 
Eq. (3.7) by observing that as p � 0, (l/V) � 0, and Z = 1. This expansion of Z, correct 
to the term in p2, is 

Z = 1 + R
I
T (b - R

a
T
)

P + (R �)3 (2b - R
a
T )p2 + . . .  -; (3 .8) 

The correct coefficient for p could have been obtained by simply replacing l/V by the 
ideal value in Eq. (3.7) ; however, this would yield incorrect values of the coefficients of the 
higher powers of pressure. (See Section 3 . 3 . 1 for the derivation of Eq. (3.8).) 

Equation (3.8) shows that the terms responsible for nonideal behavior vanish not only 
as the pressure approaches zero but also as the temperature approaches infinity. Thus, 
as a general rule, real gases are more nearly ideal when the pressure is lower and the 
temperature is higher. 

The second term on the right of Eq. (3.8) should be compared with the second term 
on the right of Eq. (3.3), which considered only the effect of finite molecular volume. The 
slope of the Z versus p curve is obtained by differentiating Eq. (3 08) with respect to pres
sure, keeping the temperature constant : 

(OZ) = _1 (b _ �) + � (2b _ �)p + . . .  op T RT RT (RT)3 RT 0 

At P = 0, all of the higher terms drop out and this derivative reduces simply to 

(OZ) 
_ 

1 (b a ) 
op T 

- RT - RT ' p = 0, (3.9) 
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where the derivative is the initial slope of the Z versus p curve. If b > ajRT, the slope is 
positive ; the size effect dominates the behavior of the gas. On the other hand, if b < ajR T, 
then the initial slope is negative ; the effect of the attractive forces dominates the behavior 
of the gas. Thus the van der Waals equation, which includes both the effects of size and of 
the intermolecular forces, can interpret either positive or negative slopes of the Z versus 
p curve. In interpreting Fig. 3 .2, we can say that at 0 °C the effect of the attractive forces 
dominates the behavior of methane and carbon dioxide, while the molecular size effect 
dominates the behavior of hydrogen. 

Having examined the Z versus p curves for several gases at one temperature, we focus 
attention on the Z versus p curves for a single gas at different temperatures. Equation 
(3.9) shows that if the temperature is low enough, the term ajRT will be larger than b and 
so the initial slope of Z versus p will be negative. As the temperature increases, ajRT 
becomes smaller and smaller ; if the temperature is high enough, aj R T becomes less than b, 
and the initial slope of the Z versus p curve becomes positive. Finally, if the temperature 
is extremely high, Eq. (3 .9) shows that the slope of Z versus p must approach zero. This 
behavior is shown in Fig. 3.4. 

At some intermediate temperature TB , the Boyle temperature, the initial slope must 
be zero. The condition for this is given by Eq. (3.9) as b - ajRTB = O. This yields 

(3 . 10) 

At the Boyle temperature the Z versus p curve is tangent to the curve for the ideal gas at 
p = 0 and rises above the ideal gas curve only very slowly. In Eq. (3.8) the second term 
drops out at TB , and the remaining terms are small until the pressure becomes very high. 
Thus at the Boyle temperature the real gas behaves ideally over a wide range of pressures, 
because the effects of size and of intermolecular forces roughly compensate. This is also 
shown in Fig. 3.4. The Boyle temperatures for several different gases are given in Table 3.2. 

The data in Table 3.2 make the curves in Fig. 3.2 comprehensible. All of them are 
drawn at 0 0c. Thus hydrogen is above its Boyle temperature and so always has Z-values 
greater than unity. The other gases are below their Boyle temperatures and so have Z-values 
less than unity in the low-pressure range. 
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Tab le  3 .2  
Boy le  temperatures for severa l gases 

Gas He Ar 

TalK 23.8 1 16.4 332 410 506 600 624 995 

The van der Waals equation is a distinct improvement over the ideal gas law in that it 
gives qualitative reasons for the deviations from ideal behavior. This improvement is 
gained at considerable sacrifice, however. The ideal gas law contains nothing that de
pends on the individual gas ; the constant R is a universal constant. The van der Waals 
equation contains two constants that are different for every gas. In this sense a different 
van der Waals equation must be used for each different gas. In Section 3 .8 it will be seen 
that this loss in generality can be remedied for the van der Waals equation and for certain 
other equations of state. 

3 . 3 . 1  A M at h e m a t i c a l  T r i c k  

As we pointed out for the van der Waals equation, i t  is impractical to obtain Z as a function 
of T and P in a straightforward manner. It is necessary to use a mathematical trick to 
transform Eq. (3 .7) to a series in powers of the pressure. 

At low pressures we can expand Z as a power series in the pressure. 

Z = 1 + AlP + A2P2 + A3 p3 + " ' , 
in which the coefficients Al , A2 , A3 , . . . , are functions of temperature only. To determine 
these coefficients, we use the definition of Z in Eq. (3. 1) to write (l/Y) = pIRTZ. Using 
this value of (1/Y) in Eq. (3 .7) brings it to the form 

1 + AlP + A2P2 + A3 p3 + . . .  ( a ) P ( b ) 2 p2 ( b ) 3 p3 
= 1 + b - RT RTZ + RT Z2 + RT Z3 + . . . . 

We subtract 1 from each side of this equation and divide the result by P to obtain 

Al + A2P + A3 P2 + . . .  
1 ( a ) 1 ( b ) 2 P ( b ) 3 p2 

= R T b - R T Z + R T Z2 + RT Z3 + . . . . 

In the limit of zero pressure, Z = 1 , and this equation becomes 

Al = R
I
T 
(b - R

a
T
) 

(3. 1 1) 

which is the required value of Al . Using this value of Al in Eq. (3 . 1 1) brings it to the form, 

Al + A2P + A3 P2 + . . .  = Al - + - - + - - + . .  ' . 
( 1 ) ( b ) 2 P ( b ) 3 p2 
Z RT Z2 RT Z3 

We repeat the procedure by subtracting Al from both sides of this equation, dividing by p 
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and taking the limiting value at zero pressure. Note that (Z - l)/p = Al at zero pressure. 
Then, 

Az = (:T r - Ai = 
(R�)3 (2b - RaT) , 

which is the required coefficient of pZ shown in Eq. (3 .8). This procedure can be repeated 
to obtain A3 , A4 , and so on, but the algebra becomes more tedious with each repetition. 

3 .4  T H E  I SOTH E R M S  O F  A R EA L  GAS 

I f  the pressure-volume relations for a real gas are measured at various temperatures, 
a set of isotherms such as are shown in Fig. 3 . 5  are obtained. At high temperatures the 
isotherms look much like those of an ideal gas, while at low temperatures the curves 
have quite a different appearance. The horizontal portion of the low-temperature curves 
is particularly striking. Consider a container of gas in a state described by point A in 
Fig. 3 . 5 .  Imagine one wall of the container to be movable (a piston) ; keeping the tempera
ture at T1 , we slowly push in this wall thus decreasing the volume. As the volume becomes 
smaller, the pressure rises slowly along the curve until the volume Vz is reached. Reduction 
of the volume beyond Vz produces no change in pressure until V3 is reached. The small 
reduction in volume from V3 to V4 produces a large increase in pressure from Pe to p' . 
This is a rather remarkable sequence of events ; particularly the decrease in volume over a 
wide range in which the pressure remains at the constant value Pe ' 

lf we look into the container while all this is going on, we observe that at Vz the first 
drops of liquid appear. As the volume goes from Vz to V3 more and more liquid forms ; 
the constant pressure Pe is the equilibrium vapor pressure of the liquid at the temperature T1 • At V3 the last trace of gas disappears. Further reduction of the volume simply com
presses the liquid ; the pressure rises very steeply, since the liquid is almost incompressible. 
The steep lines at the left of the diagram are therefore isotherms ofthe liquid. At a somewhat 
higher temperature the behavior is qualitatively the same, but the range of volume over 
which condensation occurs is smaller and the vapor pressure is larger. In going to still 
higher temperatures, the plateau finally shrinks to a point at a temperature 1;" the critical 
temperature. As the temperature is increased above 1;" the isotherms approach more and 
more closely those of the ideal gas ; no plateau appears above 1;, .  
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3 . 5  C O N TI N U ITY O F  STATES 

In Fig. 3 .6 the endpoints of  the plateaus in  Fig. 3 . 5 have been connected with a dashed 
line. Just as in any p-V diagram every point in Fig. 3 .6 represents a state of the system. 
From the discussion in the preceding paragraph it can be seen that a point, such as A, 
on the extreme left of the diagram represents a liquid state of the substance. A point, such 
as C, on the right side of the diagram represents a gaseous state of the substance. Points 
under the " dome" formed by the dashed line represent states of the system in which liquid 
and vapor coexist in equilibrium. It is always possible to make a sharp distinction between 
states of the system in which one phase is present and states in which two phases* coexist in 
equilibrium, that is, between those points on and under the " dome " and those outside the 
" dome." However, it should be noted that there is no dividing line between the liquid 
states and the gaseous states. The fact that it is not always possible to distinguish between 
a liquid and a gas is the principle o! 'continuity of states. 

In Fig. 3 .6 points A and C lie on the same isotherm, T1 . Point C clearly represents a 
gaseous state, and point A clearly represents the liquid obtained by compressing the gas 
isothermally. However, suppose that we begin at C and increase the temperature ofthe gas, 
keeping the volume constant. The pressure rises along the line CD. Having arrived at 
point D, the pressure is kept constant and the gas is cooled ; this decreases the volume 
along the line DE. Having arrived at point E, the volume is again kept constant and the 
gas is cooled ; this decreases the pressure until the point A is reached. At no time in this 
series of changes did the state point pass through the two-phase region. Condensation in 
the usual sense of the term did not occur. Point A could reasonably be said to represent 
a highly compressed gaseous state of the substance. The statement that point A clearly 
represented a liquid state must be modified. The distinction between liquid and gas is 
not always clear at all. As this demonstration shows, these two states of matter can be 
transformed into one another continuously. Whether we refer to states in the region of 
point A as liquid states or as highly compressed gaseous states depends purely upon which 
viewpoint happens to be convenient at the moment. 
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F i g u re 3 .6  Two -phase 

V ___ reg ion and  conti n u ity of states. 

A phase is a region of uniformity in a system. This means a region of uniform chemical composition and 
uniform physical properties. Thus a system containing liquid and vapor has two regions of uniformity. 
In the vapor phase, the density is uniform throughout. In the liquid phase, the density is uniform throughout 
but has a value different from that in the vapor phase . 
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If the state point of the system lies under the dome, the liquid and gas can be dis
tinguished, since both are present in equilibrium and there is a surface of discontinuity 
separating them. In the absence of this surface of discontinuity there is no fundamental 
way of distinguishing between liquid and gas. 

3 . 6  T H E I S OT H E R M S  O F  T H E VAN D E R  WAA LS E Q U ATI O N  

Consider the van der Waals equation in the form 
RT  a 

p = V - b - V2 • (3. 12) 

When V is very large this equation approximates the ideal gas law, since V is very large 
compared with b and a/V2 is very small compared with the first term. This is true at all 
temperatures. At high temperatures, the term a/V2 can be ignored, since it is small 
compared with R T(V - b). A plot of the isotherms, p versus V, calculated from the van 
der Waals equation, is shown in Fig. 3 .7. It is apparent from the figure that in the high
volume region the isotherms look much like the isotherms for the ideal gas, as does the 
isotherm at high temperature T3 . 

At lower temperatures and smaller volumes, none of the terms in the equation may be 
neglected. The result is rather curious. At the temperature Yo the isotherm develops a 
point of inflection, point E. At still lower temperatures, the isotherms exhibit a maximum 
and a minimum. , 

Comparison of the van der Waals isotherms with those of a real gas shows similarity 
in certain respects. The curve at Yo in Fig. 3 .7 resembles the curve at the critical tempera
ture in Fig. 3 .5 . The curve at T2 in Fig. 3 .7 predicts three values of the volume, V', v'iI, 
and VIII, at the pressure Pe .  The corresponding plateau in Fig. 3 . 5 predicts infinitely many 
volumes of the system at the pressure Pe .  It is worthwhile to realize that even if a very 
complicated function had been written down, it would not exhibit a plateau such as that 
in Fig. 3 .5 . The oscillation of the van der Waals equation in this region is as much as can be 
expected of a simple continuous function. 

The sections AB and DC of the van der Waals curve at T2 can be realized experi
mentally. If the volume of a gas at temperature T2 is gradually reduced, the pressure 
rises along the isotherm until the point D, at pressure Pe '  is reached. At this point con-
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v - F i g u re 3 .7  I sotherms of  the van der  Waa ls  gas. 
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densation should occur ; however, it may happen that liquid does not form, so that further 
reduction in volume produces an increase in pressure along the line DC. In this region 
(DC) the pressure of the gas exceeds the equilibrium vapor pressure of the liquid, Pe '  at 
the temperature T2 ; these points are therefore state points of a supersaturated (or super
cooled) vapor. Similarly, if the volume of a liquid at temperature T2 is increased, the pres
sure falls until point A, at pressure Pe '  is reached. At this point vapor should form ; however, 
it may happen that vapor does not form, so that further increase in the volume produces 
a reduction of pressure along the line AB. Along the line AB the liquid exists under pres
sures that correspond to equilibrium vapor pressures of the liquid at temperatures below 
T2 . The liquid is at T2 and so these points are state points of a superheated liquid. The states 
of the superheated liquid and those of the supercooled vapor are metastable states ; they 
are unstable in the sense that slight disturbances are sufficient to cause the system to 
revert spontaneously into the stable state with the two phases present in equilibrium. 

The section BC of the van der Waals isotherm cannot be realized experimentally. 
In this region the slope of the P-V curve is positive ; increasing the volume of such a 
system would increase the pressure, and decreasing the volume would decrease the pres
sure ! States in the region BC are unstable ; slight disturbances of a system in such states as 
B to C would produce either explosion or collapse of the system. 

3 . 7  T H E C R IT I C A L  STAT E 

If the van der Waals equation is taken in the form given by Eq. (3 .6), the parentheses 
cleared, and the result multiplied by V2/p, it can be arranged in the form 

-3 ( RT)-2 a - ab V - b + - V + - V - - = o. 
P P P 

(3. 1 3) 

Because Eq. (3. 13) is a cubic equation, it may have three real roots for certain values of 
pressure and temperature. In Fig. 3 .7 these three roots for T2 and Pe are the intersections 
of the horizontal line at Pe with the isotherm at T2 • All three roots lie on the boundary 
of or within the two-phase region. As we have seen in both Figs. 3 .6 and 3 .7 the two-phase 
region narrows and finally closes at the top. This means that there is a certain maximum 
pressure Pc and a certain maximum temperature T;, at which liquid and vapor can coexist. 
This condition of temperature and pressure is the critical point and the corresponding 
volume is the critical volume v,; .  As the two-phase region narrows, the three roots of the 
van der Waals equation approach one another, since they must lie on the boundary or in 
the region. At the critical point the three- roots are all equal to v,; . The cubic equation can 
be written in terms of its roots V', V", V"' : 

(V - V')(V - V")(V - V"') = O. 

At the critical pdint V' = V" = V'" = v,;, so that the equation becomes (V - v,;)3 = O. 
Expanding, we obtain 

V3 - 3 v,; V2 + 3 V; V - V: = O. 

Under these same conditions, Eq. (3 . 1 3) becomes 

V3 _ (b + RT;,)V2 + � V _ 
ab 

= O. 
Pc Pc Pc 

(3. 14) 

(3. 1 5) 
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Equations (3. 14) and (3. 1 5) are simply different ways of writing the same equations ;  thus 
the coefficients of the individual powers of Y must be the same in both equations. Setting 
the coefficients equal, we obtain three equations : *  

- RT 3� = b + _c , 
Pc 

3y2 =
� c , 
Pc 

(3. 1 6) 

Equations (3 . 1 6) may be looked at in two ways. First, the set of equations can be solved 
for v,:, PC ' and 7;; in terms of a, b, and R ;  thus 

� = 3b, a 
Pc = 27b2 ' 

8a 7;; = 27Rb ' (3. 1 7) 

If the values of a and b are known, Eqs. (3. 1 7) can be used to calculate v,: ,  PC ' and 7;; . 
Taking the second point of view, we solve the equations for a, b, and R in terms of 

PC ' v,: , and 7;; . Then 

b = 
v,: 
3 ' (3 . 18) 

Using Eqs. (3 . 1 8), we can calculate values of the constants a, b, and R from the critical 
data. However, the value of R so obtained does not agree well at all with the known value 
of R, and some difficulty arises. 

Since experimentally it is hard to determine � accurately, it would be better if a and b 
could be obtained from Pc and 7;; only. This is done by taking the third member of Eqs. 
(3 . 18) and solving it for � .  This yields 

- 3R7;; 
v.: = -8- ' Pc 

This value of � is put in the first two of Eqs. (3. 1 8) to yield 

(3. 19) 

Using Eqs. (3 . 1 9) and the ordinary value of R, we can calculate a and b from Pc and 7;; 
only. This is the more usual procedure. However, to be honest we should compare the 

* An equivalent method of obtaining these relations is to use the fact that the point of inflection on the p 
versus V curve occurs at the critical point p" T" ,  � .  The conditions for the point of inflection are 

(op/iWh = 0, 

From the van der Waals equation, ( Op ) - RT 2a 

oT' T 
= 

(V - W + t73 ' (02p ) 2RT 6a 

° V2 T 
= 

( V - W -
V4 . 

Hence, at the critical point, 

° = 2RT,,/(� - W - 6a/V'd. 

These two equations, together with the van der Waals equation itself, 

p, = RT,,/(� - b) - aj V�,  
are equivalent to Eqs .  (3. 1 6) .  
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Tab le  3 .3  
Cr it ica l  constants for g ases 

Gas pelMPa Ye/10- 6 m
3 TelK Gas Pe/MPa YellO- 6 m

3 TelK 

He 0.229 62 5.25 CO2 7.40 95 304 
H2 1 .30 65 33.2 SOz 7.8 1 23 430 
N2 3 .40 90 126 HzO 22. 1  57 647 
O2 5 . 10  75 1 54 Hg 360 40 1900 

Francis Weston Sears, An Introduction to Thermodynamics, the Kinetic Theory of Gases, and Statistical Mechanics. 
Reading, Mass . : Addison-Wesley, 1 950. 

value, � = 3R 'Fe/8po with the measured value of � .  The result is again very bad. The 
observed and calculated values of � disagree by more than can be accounted for by the 
experimental difficulties. 

The whole trouble is that the van der Waals equation is not very accurate near the 
critical state. This fact, together with the fact that the values of these constants are nearly 
always calculated (one way or another) from the critical data, means that the van der Waals 
equation cannot be used for a precise calculation of the gas properties-although it is an 
improvement over the ideal gas law. The great virtue of the van der Waals equation is that 
.the study of its predictions gives an excellent insight into the behavior of gases and their 
relation to liquids and the phenomenon of liquefaction. The important thing is that the 
equation does predict a critical state ; it is too bad that it does not describe its properties 
to six significant figures, but that is of secondary importance. Other equations that are very 
precise are available. Critical data for a few gases are given in Table 3 .3 . 

3.8 T H E LAW O F  C O R R ES PO N D I N G  STATE S  

U sing the values o f  a , b , and R given by Eqs. (3 . 1 8), we can write the van der Waals equation 
in the equivalent form 

8pc v;: T 3pc V? P = 3'Fe(v - V;:/3) - y2 ' 
which can be rearranged to the form 

P 8(T/'Fe) 3 
Pc 3(V/V;:) - 1 - (V/y,:)2 . (3.20) 

Equation (3.20) involves only the ratios pipe > T/'Fe , and V/y,: . This suggests that these 
ratios, rather than P, T, and Y, are the significant variables for the characterization of the 
gas. These ratios are called the reduced variables of state, n, 1:, and rjJ :  

n = pipe > 1: = T/'Fe , rjJ = Y/� . 
Written in terms of these variables, the van der Waals equation becomes 

81: 3 n == 3rjJ _ 1 - rjJ2 '  (3.21) 

The important thing about Eq. (3 .21) is that i t  does not contain any constants that 
are peculiar to the individual gas ; therefore it should be capable of describing all gases. 
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In  this way, the loss in generality entailed in using the van der Waals equation, compared 
with the ideal gas equation, is regained. Equations, such as Eq. (3 .21), which express one 
of the reduced variables as a function of the other two reduced variables are expressions 
of the law of corresponding states. 

Two gases at the same reduced temperature and under the same reduced pressure 
are in corresponding states. By the law of corresponding states, they should both occupy 
the same reduced volume. For example, argon at 302 K and under 16 atm pressure, and 
ethane at 3 8 1  K and under 1 8  atm are in corresponding states, since each has l' = 2 and 
n = t. 

Any equation of state that involves only two constants in addition to R can be written 
in terms of the reduced variables only. For this reason equations that involved more than 
two constants were, at one time, frowned upon as contradicting the law of corresponding 
states. At the same time, hopes were high that an accurate two-constant equation could 
be devised to represent the experimental data. These hopes have been abandoned ; it is 
now recognized that the experimental data do not support the law of corresponding states 
as a law of great accuracy over all ranges of pressure and temperature. Although the law 
is not exact, it has a good deal of importance in engineering practice ; in the range of in
dustrial pressures and temperatures, the law often holds with accuracy sufficient for 
engineering calculations. Plots of Z versus P/Pe at various reduced temperatures are 
ordinarily used rather than an equation (Fig. 3 . 8). 

3 . 9  OT H E R  E Q U ATI O N S  O F  STAT E 

The van der Waals equation is only one of many equations which have been proposed 
over the years to account for the observed P VT data for gases. Several of these equations 
are listed in Table 3.4, together with the expression for the law of corresponding states for 
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Table  3.4 
Equations of state 

The van der Waals equation : 

RT a 
P =

V � b
-

V2 

The Dieterici equation : 

RTe- a/VRT 
P = V - b 

The Berthelot equation : 

R T a 
P = 

V - b - TV2 

The modified Berthelot equation : 

P = 
R! [1 + _9 (1 � �)1tJ 
V 1281: ,2 

General virial equation : 

8, 3 
1t =  --- - -

31 - 1 12 

re2 - 2/c/>. 
1t = ---

21 - 1 

8 3 1t = --- - -
31 - 1 ,12 

1281: 16 
1t =  - --

9(41 - 1) 3,12 

RTc 8 --= = 3" = 2.67 
Pc Vc 

RTc 1 2 --= = ze = 3.69 
Pc Vc 

RTc 8 --= = 3" = 2.67 
Pc Vc 

R� = 3; = 3.56 
Pc Vc 

B, C, D, . . .  are called the second, third, fourth, . . .  virial coefficients. 
They are functions of temperature. 

Series expansion in terms of pressure : 

pV = RT(1 + B'p + C'p2 + D'p3 + . . .  ) 

B', C', and so on, are functions of temperature. 

Beattie-Bridgeman equation : 

(1)  Virial form : pV = RT + � + ;2 + �3 
(2) Form explicit in the volume : V = 

RT 
+ L + y'p + 0'p2 + . . .  

p RT 

( Ao a Bo C) y = RT - Bo b + - - -
RT T3 

u = RT --
� (Bo bC) 

T3 

, 1 [ y ( f3 ) 2J Y = 
RT RT 

-
RT 

0' - _1 [� _ � 2(L) 3J - (R T)2 RT (RT)2 
+ RT 

the two-constant equations, and the predicted value of the critical ratio R Yo/Pc Yc .  Of these 
equations, either the Beattie-Bridgeman equation or the virial equation is best suited 
for precise work. The Beattie-Bridgeman equation involves five constants in addition to 
R :  Ao , a, Bo , b, and c. The values of the Beattie-Bridgeman constants for several gases are 
given in Table 3 . 5. 
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Tab le  3.5 
Constants for the Beatt ie-B r idgeman equat ion 

Ao a Bo b 
Gas 

10- 3 Pa m6 mol 2 10 6 m3 mol l 10 6 m3 mol l 10 6 m3 mol l 

He 2. 19  59.84 14.00 0.0 
H2 20.01 - 5.06 20.96 - 43 .59 
O2 1 5 1 .09 . + 25.62 46.24 + 4.208 
CO2 507. 3 1  71 .32 104.76 72.35  
NH3 242.48 170. 3 1  34. 1 5  1 9 1 . 1 3  

c 
K3 m3 mol 1 

0.040 
0. 504 

48.0 
660.0 

4768.8 

Calculated from the values given by Francis Weston Sears, An Introduction to Thermodynamics, the Kinetic Theory 
of Gases, and Statistical Mechanics. Reading, Mass . : Addison-Wesley, 1 950. 

It is interesting to examine the values of the critical ratio R 'Fe/Pc Yc predicted by the 
various equations in Table 3.4. The average value of the critical ratio for a large number 
of nonpolar gases, H2 and He excepted, is 3.65. Clearly then, the van der Waals equation 
will be useless at temperatures and pressures near the critical values ; see Section 3�6. 
The Dieterici equation is much better near the critical point ; however, it is little used 
because of the transcendental function involved. Of the two-constant equations, the 
modified Berthelot equation is most frequently used for estimates of volumes that are 
better than the ideal gas estimate. The critical temperature and pressure of the gas must 
be known to use this equation. 

Finally, it should be pointed out that all of the equations of state that are proposed 
for gases are based on the two fundamental ideas first suggested by van der Waals : (1) 
molecules have size, and (2) forces act between molecules. The more modern equations 
include the effects of the dependence of the intermolecular forces on the distance of 
separation of the molecules. 

QU E STI O N S  

3.1 Describe the two types of intermolecular interactions responsible for deviations from ideal gas 
behavior, and indicate the direction of their effect on the pressure. 

3.2 What common phenomena indicate that intermolecular attractions exist between water molecules 
in the gas phase ? 

3.3 Does O2 or H20 have the higher pressure at the same values of T and V? (Use Table 3 . 1  to 
predict, without calculation.) 

3.4 Describe a path between points A and C in Fig. 3.6 along which liquid and gas can be 
distinguished. 

3.5 Give physical arguments explaining why the critical pressure and temperature should increase 
with increasing van der Waals a values. 

P R O B L E M S  

3.1 A certain gas at 0 °C and 1 atm pressure has Z = 1 .00054. Estimate the value of b for this gas. 
3.2 If Z = 1 .00054 at 0 °C and 1 atm and the Boyle temperature of the gas is 107 K, estimate the 

values of a and of b. (Only the first two terms in the expression of Z are needed.) 
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3.3 The critical constants for water are 374 °C, 22. 1 MPa, and 0.0566 L/mol. Calculate values of 
a, b, and R ;  using the van der Waals equation, compare the value of R with the correct value and 
notice the discrepancy. Compute the constants a and b from Pc and Tc only. Using these values 
and the correct value of R, calculate the critical volume and compare with the correct value. 

3.4 Find the relation of the constants a and b of the Berthelot equation to the critical constants . 
3.5 Find the relation of the constants a and b of the Dieterici equation to the critical constants. 

(Note that this cannot be done by setting three roots of the equation equal to one another.) 
3.6 The critical temperature of ethane is 32.3 DC, the critical pressure is 48.2 atm. Compute the 

critical volume using 
a) the ideal gas law, 
b) the van der Waals equation, realizing that for a van der Waals gas Pc YclRTc = t, and 
c) the modified Berthelot equation. 
d) Compare the results with the experimental value, 0. 139 L/mol. 

3.7 The vapor pressure of liquid water at 25 °C is 23 .8 Torr and at 100 °C it is 760 Torr. Using the 
van der Waals equation in one form or another as a guide, show that saturated water vapor 
behaves more nearly as an ideal gas at 25 °C than it does at 100 dc. 

3.8 The compressibility factor for methane is given by Z = 1 + Bp + Cpz + Dp3 . If p is in atm, the 
values of the constants are as follows : 

T/K B C D 

200 - 5.74 X 10- 3 6.86 X 10- 6 1 8 .0 X 10- 9 
1000 + 0. 1 89 X 10- 3 0.275 X 10- 6 0. 144 X 10- 9 

Plot the values of Z as a function of p at these two temperatures in the range from 0 to 1000 atm. 

3.9 Using the Beattie-Bridgeman equation, calculate the molar volume of ammonia at 300 °C and 
200 atm pressure. 

3.10 Compare the molar volume of carbon dioxide at 400 K and 100 atm calculated by the Beattie
Bridgeman equation with that calculated by the van der Waals equation. 

3.1 1  Using the Beattie-Bridgeman equation, calculate the Boyle temperature for 0z and for COz . 
Compare the values with those calculated from the van der Waals equation. 

3.12 At 300 K, for what value of the molar volume will the contribution to the p Y product of the term 
in l/Yz in the Beattie-Bridgeman equation be equal to that of the term in l/Y (a) for oxygen? 
(b) What value of pressure corresponds to this molar volume ? 

3.13 At low pressures, the Berthelot equation has the form 
_ RT a 
V = - + b - -

p R Tz 

in which a and b are constants. Find the expression for 0(, the coefficient of thermal expansion, 
as a function of T and p only. Find the expression for the Boyle temperature in terms of a, b, 
and R. 

3.14 Show that TO( = 1 + T(a In ZlaT)p , and that pK = 1 - pea In Zlap)T . 
3.15 If the compressibility factor o( a gas is Z(p, T), the equation of state may be written p Y IRT = Z. 

Show how this affects the equation for the distribution of the gas in a gravity field. From the 
differential equation for the distribution, show that if Z is greater than unity, the distribution is 
broader for the real gas than for the ideal gas and that the converse is true if Z is less than unity. 
If Z = 1 + Bp, where B is a function of temperature, integrate the equation and evaluate the 
constant of integration to obtain the explicit form of the distribution function. 
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3.16 At high pressures (small volumes), the van der Waals equation, Eq. (3 . 1 3), can be rearranged 
to the form 

v = b + ; (b + 
R
p
T)V2 _ (;)V3 . 

If the quadratic and cubic terms are dropped, then we obtain Vo = b as a first approximation 
to the smallest root of the equation. This would represent the volume of the liquid. Using this 
approximate value of V in the higher terms, show that the next approximation for the volume 
of the liquid is V = b + b2RTja. From this expression show that the first approximation for the 
coefficient of thermal expansion of a van der Waals liquid is ex = bRja. 

3.17 Using the same technique as that used to obtain Eq. (3 .8), prove the relation given in Table 3.4 
between y and y' for the Beattie-Bridgeman equation. 

3.18 At what temperature does the slope of the Z versus p curve (at p = 0) have a maximum value for 
the van der Waals gas ? What is the value of the maximum slope ? 



4 
The Structu re of G ases 

4 . 1  I NT R O D U CTI O N  

The aim of physics and chemistry is t o  interpret quantitatively the observed properties of 
macroscopic systems in terms of the kinds and arrangement of atoms or molecules that 
make up these systems. We seek an interpretation of behavior in terms of the structure of a 
system. Having studied the properties of a system, we construct in our mind's eye a model 
of the system, bUIlt of atoms and molecules, and forces of interaction between them. The 
laws of mechanics and statistics are applied to this model to predict the properties of such 
an ideal system. If many of the predicted properties are in agreement with the observed 
properties, the model is a good one. If none or only a few of the predicted properties are in 
agreement with the observed properties, the model is a poor one. This ideal model of the 
system may be altered or replaced by different models until the predictions are satisfactory. 

Structurally, gases are nature's simplest substances ; a simple model and elementary 
calculation yield results in excellent agreement with experiment. The kinetic theory of gases 
provides a beautiful and important illustration of the relation of theory to experiment in 
physics, as well as of the techniques that are commonly used in relating structure to 
properties. 

4 . 2  K I N ET I C  T H E O R Y  O F  G A S E S ; 

F U N DA M E N TA L A S S U M PTI O N S  

The model used in the kinetic theory of gases may be described by three fundamental 
assumptions about the structure of gases. 

1. A gas is composed of a very large number of minute particles (atoms or molecules). 
2. In the absence of a force field, these particles move in straight lines. (Newton's first law 

of motion is obeyed.) 
3. These particles interact (that is, collide) with one another only infrequently. 
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In addition to these assumptions we impose the condition that in any collision the total 
kinetic energy of the two molecules is the same before and after the collision. This kind of 
collision is an elastic collision. 

If the gas consists of a very large number of moving particles, the motion of the particles 
must be completely random or chaotic. The particles move in all directions with a variety 
of speeds, some moving quickly, others slowly. If the motion were orderly (let us say that 
all the particles in a rectangular box were moving in precisely parallel paths), such a con
dition could not persist . Any slight irregularity in the wall of the box would deflect some 
particle out of its path; collision ofthis deflected particle with another particle would deflect 
the second one, and so on. Clearly, the motion would soon be chaotic. 

4 .3  CA L C U LATi O N  O F  T H E  P R ESS U R E  O F  A G AS 

If a particle collides with a wall and rebounds, a force is exerted on the wall at the moment 
of collision. This force divided by the area of the wall would be the momentary pressure 
exerted on the wall by the impact and rebound of the particle. By calculating the force 
exerted on the wall by the impacts of many molecules, we can evaluate the pressure exerted 
by the gas. 

Consider a rectangular box of length 1 and cross-sectional area A (Fig. 4. 1) . In the box 
there is one particle of mass m traveling with a velocity U1 in a direction parallel to the 
length of the box. When the particle hits the right-hand end of the box it is reflected and 
travels in the opposite direction with a velocity - U l '  After a period of time i t  returns to the 
right-hand wall, the collision is repeated, and so again and again. If a pressure gauge, 
sufficiently sensitive to respond to the impact of this single particle, were attached to the 
wall, the gauge reading as a function of time would be as shown in Fig. 4.2(a). The time 
interval between the peaks is the time required for the particle to traverse the length of the 
box and back again, and thus is the distance traveled divided by the speed, 2l/u1 ' If a second 
particle of the same mass and traveling in a parallel path with a higher velocity is put in the 
box, the gauge reading will be as shown in Fig. 4.2(b). 

In fact a pressure gauge that responds to the impact of individual molecules does not 
exist. In any laboratory situation, a pressure gauge reads a steady, average value of the 
force per unit area exerted by the impacts of an enormous number of molecules ; this is 
indicated by the dashed line in Fig. 4.2(b). 

To compute the average value of the pressure we begin with Newton's second law of 
motion : 

(4. 1 )  

where F is the force acting on the particle of  mass m ,  a i s  the acceleration, and u i s  the 

Area=A  

(D--u1-

- - - - - - - - - - -l .... ....... ...... ...... 

11-,---- -----.1 F i g u re 4 . 1  
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p = �  
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(a) (b) 
F i g u re 4 .2  Force resu l t ing from a co l l i s ion of part ic les with the wa l l .  

velocity of  the particle. According to Eq. (4. 1 ) the force acting on the particle i s  equal to the 
change of momentum per unit time. The force acting on the wall is equal and opposite in 
sign to this. For the particle in Fig. 4. 1 , the momentum before collision is mUl , while the 
momentum after collision is -mu1 . Then the change in momentum in collision is equal to 
the difference ofthe final momentum minus the initial momentum. Thus we have ( -mU l) -
mU l = - 2mul ' The change in momentum in unit time is the change in momentum in one 
collision multiplied by the number of collisions per second the particle makes with the wall. 
Since the time between collisions is equal to the time to travel distance 21, t = 211ul ' Then 
the number of collisions per second is ul/21. Therefore the change in momentum per second 
equals - 2mu 1 (u tl2l) . Thus the force acting on the particle is given by F = -mui/l, and the 
force acting on the wall by F w = + mui/l. But the pressure pi is 'F wi A ;  therefore 

(4.2) 

in which Al = V, the volume of the box. 
Equation (4.2) gives the pressure pi, exerted by one particle only ; if more particles are 

added, each traveling parallel to the length ofthe box with speeds U2 , U3 , . . .  , the total force, 
and so the total pressure p, will be the sum of the forces exerted by each particle : 

m(ui + u� + u� + . . .  ) P = ---'--=---=-::.,,---=----'-
V (4.3) 

The average of the squares of the velocities, (u2), is defined by 

( 2 2 2 ) 2 _ 
U l + U2 + U3 + . . .  (u ) - N ' (4.4) 

where N is the number of particles in the box. It is this average of the squares ofthe velocities 
that appears in Eq. (4.3). Using Eq. (4.4) in Eq. (4.3), we obtain 

Nm(u2) p =  V (4.5) 

the final equation for the pressure of a one-dimensional gas.* Before using Eq. (4. 5), we 
must examine the derivation to see what effects collisions and the varied directions of 
motion will have on the result. 

* A one-dimensional gas is a gas in which all the molecules are imagined to be moving in one direction (or 
its reverse) only. 
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F igure 4 .3 

The effect of collisions is readily determined. It was assumed that all of the particles 
were traveling in parallel paths. This situation is illustrated for two particles, having the 
same velocity u, in Fig. 4.3(a). If the two particles travel on the same path, we have the 
situation shown in Fig. 4.3(b). In this latter case, the molecules collide with one another and 
each is reflected. One of the molecules never hits the right-hand wall and so cannot transfer 
momentum to it. However, the other molecule hits the right-hand wall twice as often as in 
the parallel-path case. Thus the momentum transferred to the wall in a given time does not 
depend on whether the particles travel on parallel paths or on the same path. We conclude 
that collisions in the gas do not affect the result in Eq. (4. 5). The same is true if the two 
molecules move with different velocities. An analogy may be helpful : A bucket brigade 
carries water to a fire ; if the brigade consists of two men, the same amount of water will 
arrive in unit time whether one man relays the bucket to the other at the midpoint between 
the well and the fire, or both men run the entire distance to the well. 

The fact that the molecules are traveling in different directions rather than in the same 
direction as we originally assumed has an important effect on the result. As a first guess we 
might say that, on the average, only one-third of the molecules are moving in each of the 
three directions, so that the factor N in Eq. (4. 5) should be replaced by iN. This alteration 
gIves 

(4.6) 

This simple guess gives the correct result, but the reason is more complex than the one on 
which the guess was based. To gain a better insight into the effect of directions, Eq. (4.6) will 
be derived in a different way . .  

The velocity vector C of the particle can be resolved into one component normal to the 
wall, u, and two tangential components, v and w. Consider a particle that hits the wall at an 
arbitrary angle and is reflected (Fig. 4.4). The only component of the velocity that is 
reversed on collision is the normal component u. The tangential component v has the same 
direction and magnitude before and after the collision. This is true also of the second 
tangential component w, which is not shown in Fig. 4.4. Since it is only the reversal of the 
normal component that matters, the change in momentum per collision with the wall is 

- 2mu ; the number of impacts per second is equal to u/21. Thus Eq. (4. 5) should read 

Nm(u2) p = �·n V 

F igure 4 .4 Reversa l of the nor
ma l  component of velocity at the 
wa l l .  
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F i g u re 4 .5 Components of the velocity vector .  

where (u2) is the average value of the square of the normal component of the velocity. If 
the components are taken along the three axes x, y, Z, as in Fig. 4.5, then the square of the 
velocity vector is related to the squares of the components by 

(4.8) 
For any individual molecule, the components of velocity are all different, and so each term 
on the right-hand side of Eq. (4.8) has a different value. However, if Eq. (4.8) is averaged 
over all the molecules, we obtain 

(4.9) 
There is no reason to expect that any one of the three directions is preferred after averaging 
over all the molecules. Thus we expect that (u2) = (v2 ) = (w2). Using this result in 
Eq. (4.9), we obtain 

(4. 10) 
The x-direction is taken as the direction normal to the wall ; thus, putting (u2 ) from 
Eq. (4. 10) into Eq. (4.7), we obtain the exact equation for the pressure : 

tNm(c2) p = (4. 1 1 ) V 
the same as Eq. (4.6) obtained by the guess. Note that in Eq. (4.6) u = c, because v and w 
were zero in the derivation of Eq. (4.6). 

Let the kinetic energy of any molecule be f. = !mc2 • If both sides of this equation are 
averaged over all the molecules, then (f.) = !m(c2 ) . Using this result in Eq. (4. 1 1), yields 
p = iN(f.)/V, or 

pV = iN(f.). (4. 12) 
It is encouraging to note that Eq. (4. 12) bears a marked resemblance to the ideal gas 

law. Consequently, we examine the reason for the form in which the volume appears in 
Eq. (4. 12). If the container in Fig. 4. 1 is lengthened slightly, the volume increases by a small 
amount. If the velocities of the particles are the same, more time is required for a particle to 
travel between the walls and so it makes fewer collisions per second with the wall, reducing 
the pressure on the wall. Thus, an increase in volume reduces the pressure simply because 
there are fewer collisions with the wall in any given time interval. 

We now compare Eq. (4. 12) with the ideal gas law, 

pV = nRT. 
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If Eq. (4. 12) describes the ideal gas, then it must be that 

nRT = �N(£). 
Now n and N are related by n = N/N A , where N A i s  the Avogadro constant. Thus, 

(4. 1 3) 
Let U be the total kinetic energy associated with the random motion of the molecules 
in one mole of gas. Then U = NA(£), and 

U = tRT. (4. 14) 
Equation (4. 14) is one of the most fascinating results of the kinetic theory, for it pro

vides us with an interpretation of temperature. It says that the kinetic energy of the random 
motion is proportional to the absolute temperature. For this reason, the random or 
chaotic motion is often called the thermal motion of the molecules. At the absolute zero of 
temperature, this thermal motion ceases entirely. Thus, temperature is a measure of the 
average kinetic energy of the chaotic motion. It is important to realize that temperature is 
not associated with the kinetic energy of one molecule, but with the average kinetic energy 
of an enormous number of molecules; that is, it is a statistical concept. It is (£) and not £ 
that appears in Eq. (4. 1 3). A system composed of one molecule or even of a few molecules 
would not have a temperature, properly speaking. 

The fact that the ideal gas law does not contain anything that is characteristic of a 
particular gas implies that at a specified temperature all gases have the same average kinetic 
energy. Applying Eq. (4. 1 3) to two different gases, we have tRT = NA(£l ), and tRT = 
NA(£2 ) ;  then (£1 ) = (£2), or tm1 (d) = tm2 (d). The root-mean-square speed, Crms ' is 
defined by 

(4. 1 5) 
The ratio of the root-mean-square speeds of two molecules of different masses is equal to 
the square root of the inverse ratio of the masses : 

(4. 1 6) 

where M = N A m is the molar mass. The heavier gas has the smaller rms speed. 
The numerical value of the rms velocity of any gas is calculated by combining Eqs. 

(4. 13) and (£) = tm(c2) ;  thus, RT = �NAtm(c2 ), or (c2 ) = 3RT/M, and 

Crms = J3�T . (4. 1 7) 

• EXAMPLE 4 . 1  If we compare hydrogen, M 1 = 2 g/mol, and oxygen, M 2 = 32 g/mol, 
we have 

At every temperature, hydrogen has an rms speed four times as great as that of oxygen, 
while their average kinetic energies are the same. 
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l1li EXAMPLE 4.2 For oxygen at 20 °C, T = 293 K ;  M = 0.0320 kg/mol. Then 

Crms == 

3(8 .3 14 J K- I mol- I) (293 K)
= /22 8 104 2/ 2 = 478 / = 1720 k /h 

0.0320 kg mol- I Y ' x m s m s m r. 

The last figure shows dramatically the magnitude of these molecular speeds. 
At room temperature, the usual range of molecular speeds is 300 to 500 m/s. 

Hydrogen is unusual because of its low mass ; its rms speed is about 1900 m/s. 

4 .4  D A LTO N 'S LAW O F  PARTIAL P R ES S U R ES 

In a mixture of gases the total pressure is the sum ofthe forces per unit area produced by the 
impacts of each kind of molecule on a wall of a container. Each kind of molecule con
tributes a term of the type in Eq. (4. 1 1 ) to the pressure. For a mixture of gases we have 

or 

NIml <ci> N2m2<d> N3 m3 <cD P = 3V + 3V + 3V + . . .  
P = PI + P2 + P3 + . . .  , 

(4. 1 8) 

(4. 19) 

where PI = NIml <ci>/3V, P2 = N2m2<d>/3 V, . . .  Dalton's law is thus an immediate 
consequence of the kinetic theory of gases. 

4 . 5  D I ST R I B UTI O N S  A N D  D I ST R i B U TI O N  F U N CTI O N S  

The distribution of molecules in a gravity field has been discussed. It was shown that the 
pressure decreased regularly with increase in height, which implies that the molecules are 
distributed in such a way that there are fewer per cubic centimetre at the upper levels than 
at lower levels. The analytical expression that describes this situation is the distribution 
function. A distribution over a space coordinate is a spatial distribution. In the kinetic 
theory of gases it is important to know the velocity distribution, that is, how many mole
cules have velocities in a given range. The task we undertake in the following sections is to 
derive the velocity distribution function. Before proceeding to that problem, however, it is 
necessary to mention a few important ideas about distributions. 

First, a distribution is the division of a group of things into classes. If we have a 
thousand ball bearings and five boxes, and place the ball bearings in the boxes in any 
particular way we please, the result is a distribution. If we divide the population of the U.S. 
into classes according to age, the result is an age distribution. Such a distribution shows 
how many people are between the ages of 0 to 20 years, between 20 to 40 years, 40 to 60 
years, and so on. The population could also be divided into classes according to the 
amount of money in individual savings accounts, according to the amount of money owed 
to pawnbrokers, or according to any other characteristic. Each of these classifications 
constitutes a distribution of greater or less importance. 

Next, the distribution is used to compute average values. From the distributions 
mentioned we could compute the average age of persons in the U.S. , the average amount 
per person in savings accounts, and the average amount per person owed to pawnbrokers. 
For these averages to be reasonably accurate, some attention must be given to the choice 
of the width of the classification interval. Without going into the details that enter into the 
choice of the interval width, we can say that it must be small, but not too small. Consider an 
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age distribution : Clearly it is senseless to choose 100 years as the width of the interval ; 
essentially all of any group falls in that one interval and the group would not be divided into 
classes at all. So the interval width must be smaller. On the other hand, if we choose a very 
small interval width-for example, one day-then in any small group, say of 10 people, 
we will find that one person falls in each of ten intervals and zeros fall in all the others. For 
any large group, the time required just to write down such a detailed distribution would be 
enormous. Furthermore, if the information were gathered on a different day, the entire 
distribution would be shifted. Consequently, in constructing a distribution, the interval 
width chosen must be wide enough to smooth out details of no interest and narrow enough 
to display significant aspects of the distribution and allow meaningful averages to be 
calculated. 

4.6  T H E M AXW E l l  D I ST R I B U T I O N  

In a container of gas, the individual molecules are traveling in various directions with 
different speeds. We assume that the motions of the molecules are completely random. 
Then we set the following problem. What is the probability of finding a molecule with a 
speed between the values c and c + dc, regardless of the direction in which the molecule is 
traveling? 

This problem can be broken down into simpler parts ; the solution of the problem is 
achieved by combining the solutions of the simpler problems. Let u, v, and w denote the 
components of velocity in the x, y, and z directions, respectively. Let dnu be the number of 
molecules that have an x component of velocity with a value in the range between u and 
u + duo Then the probability of finding such a molecule is by definition dnu/N, where N is 
the number of molecules in the container. If the interval width, du, is small, it is reasonable 
to expect that doubling the width will double the number of molecules in the interval. Thus 
dnu/N is proportional to duo Also the probability dnu/N will depend on the velocity com
ponent u. Thus we write 

dnn 2 N = f(u ) du, (4.20) 

where the mathematical form of the function f(u2) is yet to be determined. * 
At this point we must make clear why the function depends on u2 and not simply on u. 

Because of the random nature of molecular motion, the probability of finding a molecule 
with an x component in the range u to u + du must be the same as the probability of finding 
one with an x component in the range -u to - (u + du). In other words, the molecule has 
the same chance of going east with a certain speed as it has of going west with the same speed. 
If the direction mattered, the motion would not be random and the entire mass of gas 
would have a net velocity in the preferred direction. the required symmetry in the function 
is assured if we write f(u2) rather than feu). In the same way, if the number of molecules 
having a y component of velocity between v and v + dv is dnv , the probability of finding a 
molecule whose y component lies in the range v to v + dv is given by 

* 

(4.21) 

In writing Eq.  (4.20) in  this way, we assume implicitly that the probability dnul N is not in  any way dependent 
on the values of the y or z components, v and W. This assumption is valid but will not be justified here. 
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where the function f(v2) must have exactly the sameform as the function f(u2) in Eq. (4.20). 
These functions must have the same form, since the randomness ofthe distribution does not 
allow one direction to be different from another. * With an analogous notation we have for 
the z component, 

(4.22) 

We now ask a more involved question : What is the probability of finding a molecule 
that has simultaneously an x component in the range u to u + du and a y component in 
the range v to v + dv ? Let the number of molecules that satisfy this condition be dnuv; then 
the probability of finding such a molecule is by definition dnnv/N, the product of the prob
abilities of finding molecules that satisfy the conditions separately. That is, dnuv/N = 
(dnu/N) (dnv/N), or 

dnuv = f(u2)f(v2) du dv. N (4.23) 

Figure 4.6 illustrates the meaning of Eqs. (4.20), (4.21), and (4.23). The values of u and 
v for each molecule determine a representative point, marked with a dot, in the u-v co
ordinate system of Fig. 4.6. The representative points for two different molecules might 
conceivably coincide ; this does not matter. The important thing is that every molecule is so 
represented. The total number of representative points is N, the total number of molecules 
in the container. Then the number of molecules having an x component of velocity between 
the values u and u + du is the number of representative points in the vertical strip at 
position u and of width duo This number is dnu , and, by Eq. (4.20), is equal to Nf(u2) duo 
Similarly, the number of representative points in the horizontal strip at the position v 
and of width dv is the number of molecules having a y component of velocity between 
v and v + dv. The number of molecules that satisfies both conditions simultaneously 
is the number of representative points in the little rectangle formed by the intersec
tion of the vertical and horizontal strips. By Eq. (4.23) this number of molecules is 
dnuv = Nf(u2)f(v2) du dv. The density of representative points at the position (u, v) is 
the number dnuv divided by the area of the little rectangle du dv : 

* 

v 

Point density at (u, v) = :un;v = Nf(u2)f(v2). 

dv 

: u  

du 

u 
F i g u re 4 .6 Two - d i mens iona l  veloc ity space. 

(4.24) 

It is assumed here that there is no force field, such as a gravity field, acting in a particular direction. 
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u '-axis 

du '  
F i g u re 4 .7  Two-d i mensiona l  velocity 

u-axis space with d i fferent coord i n ate system .  

To derive the form of the function f(u2), a new set of coordinate axes u' and v ' is intro
duced in the position shown in Fig. 4.7. The velocity ranges in the new coordinate system 
are du' and dv'. The number of representative points in the area du' dv' is given by dnu'v' = 
Nf(u'2)f(v'2) du' dv'. The density of representative points at the position (u', v') is 

dnu'v' 2 2 Point density at (u', v') = du' dv' = Nf(u' )f(v' ). (4.25) 

However, the position (u', v') is the same as the position (u, v), so the density of representative 
points must be the same regardless of which coordinate system is used to describe it. From 
Eqs. (4.24) and (4.25\ 

(4.26) 
The position (u, v) in the first coordinate system corresponds to the position u' = 
(u2 + V2) 1 /2, v' = 0, in the second co.ordinate system. Using this relation in Eq. (4.26), we 
obtain 

f(u2 + v2)f(0) = f(u2)f(v2). 
Since f(O) is a constant, set f(O) = A. Then 

Af(u2 + v2) = f(u2)f(v2). (4.27) 
Appendix I shows that the only functions that satisfy Eq. (4.27) are 

f(u2) = Aepu2 and f(u2) = Ae- pu2, 
where f3 is a positive constant. The physical situation forces us to choose the negative sign 
in the exponential ; that is 

Equation (4.20) becomes 

f(u2) = Ae- pu2, f(v2) = Ae- pv2. (4.28) 

dnu _ A -pu2 d N - e u. (4.29) 

If the positive sign in the exponential had been chosen, Eq. (4.29) would predict that-as 
the velocity component u becomes infinite-the probability of finding such molecules 
becomes infinite. This would require infinite kinetic energy for the system and con
sequently is an impossible case. As it stands, with the negative exponential, Eq. (4.29) 
predicts that the probability of finding a molecule with infinite x component of velocity is 
zero ; this makes physical sense. 
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Although the original problem has not been solved, we have made considerable 
progress. It is well at this point to look back at what has been accomplished. We assumed 
that the probability of finding a molecule with an x component of velocity in the range u to 
u + du depended only on the value of u and the width of the range duo This was expressed in 
Eq. (4.20) as dnu/N = f(u2) duo A rather lengthy argument on the basis of probabilities led 
us finally to the functional form off(u2) = A exp ( -f3/1,z). The important point is the use of 
the notion of randomness. The argument is almost completely mathematical. Only two 
specifically physical assumptions are involved : randomness in the motion and a finite value 
of f(u2) as u -+ 00 .  The form of the distribution function is completely determined by these 
two assumptions. The success of the treatment will give us confidence in picturing a gas as a 
collection of molecules whose motions are completely random. Randomness prompts the 
use of probability theory. The distribution function A exp ( -f3u2) which appears is a 
famous one in probability theory : it is the Gaussian distribution. This function is the 
governing rule in any completely random distribution ; for example, it expresses the 
distribution of random errors in all types of experimental measurements. 

We are now in a position to solve the original problem, namely to find the distribution 
of molecular speeds and to evaluate the constants A and f3 that appear in the distribution 
function. 

The probability dnuvwl N of finding a molecule with velocity components simultaneously 
in the ranges u to u + du, v to v + dv, w to w + dw is given by the product of the individual 
probabilities :  dnuvwlN = (dnuIN) (dnv/N) (dnwIN), or 

According to Eqs. (4.28), 

dnuvw 2 2 2 ---yv---- = feu )f(v )f(w ) du dv dw. 

dnuvw A3 - P(U2 + V2 + W2) d d d ---yv---- = e u v W. (4.30) 

A three-dimensional velocity space* is constructed in Fig. 4 .8 .  In this space a molecule is 
represented by a point determined by the values of the three components of velocity u, v, W. 
The total number of representative points in the parallelepiped at (u, v, w) is dnuvw . The 

* 

u 

F i g u re 4 .8  (a )  Three-d imens iona l  vel oc ity space.  (b )  Spher ica l  she l l .  

Figures 4.6 and 4.7 are examples of  a two-dimensional velocity space. 
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density of points in this parallelepiped is 

P · d · ( ) dnuvw 3 - p( 2 - V2 +W2) omt enslty at u v w = = N A e u " du dv dw ' (4.3 1 ) 

where Eq. (4.30) has been used to obtain the last member of  Eq. (4.3 1). Since e2 = 
u2 + v2 + w2 [see Eq. (4.8) and Fig. 4.5J, we have 

Point density at (u, v, w) = NA3e- Pc2• (4.32) 
The right-hand side of Eq. (4.32) depends only on the constants N, A, and [3 and on e2 ; 
consequently, it does not depend in any way on the particular direction of the velocity 
vector but only on the length ofthe vector, that is, on the speed. The density of representative 
points then has the same value everywhere on the sphere of radius e in the velocity space 
(Fig. 4.8b). 

We now pose the question : How many points lie in the shell between spheres of radii 
e and e + de ? This number of points, dnC ' will be equal to the number of molecules having 
speeds between e and e + dc, without regard for the different directions in which the 
molecules are traveling. The number of points dnc in the shell is the density of points on the 
sphere of radius e multiplied by the volume of the shell ; that is, 

dnc = point density on sphere x volume of shell. (4.33) 
The volume of the shell, dY.hell ' is the difference in volume between the outer and the inner 
sphere : 

4n 3 4n 3 4n 2 2 3 dY.hell = 3 (e + de) - 3 e = 3 [3e de + 3e(de) + (de) ] . 

The terms on the right which involve (de)2 and (de)3 are infinitesimals of higher order that 
vanish more rapidly than de in the limit as de -+ 0 ; these higher terms are dropped out and 
we obtain dY.hell = 4ne2 de. Using this result and Eq. (4.32) in Eq. (4.33), we have 

(4.34) 
which relates dnC ' the number of molecules with speeds between e and e + dc, to N, e, and 
dc, and the constants A and [3. Equation (4.34) is one form of the Maxwell distribution and 
is the solution of the problem posed at the beginning of this section. Before we can use 
Eq. (4.34), the constants A and [3 must be evaluated. 

* 4 . 7  M AT H E M ATI C A L  I N T E R L U D E 

In the kinetic theory of gases we deal with integrals of the general type 

In([3) = 50''' x2n+ le- Px2 dx ([3 > 0 ; n > - 1). 

If we make the substitution, y = [3x2 , the integral reduces to the form 

InC[3) = !r (n+ l ) f)yne - y dy. 

However, the factorial function, n ! , is defined by 

n ! = {OOyne- Y dy (n > - 1), 

(4.35) 

(4.36) 
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so that 

InC[3) = Loox2n+ 1e- Px2 dx = �n !)[3- (n + 1 ). (4. 37) 

The higher-order integrals can be obtained from those of lower order by differentiation ; 
differentiating Eq. (4.37) with respect to [3 yields 

or 

dU[3) 
d[3 

Two cases commonly arise. 

Case I.  n = ° or a positive integer. 

(4.38) 

In this case we apply Eq. (4.37) directly and no difficulty ensues. The lowest member is 

10([3) = 1p- 1 . 
All other members can be obtained from Eq. (4.37) or by differentiating 10([3) and using 
Eq. (4.38). 

Case n. n = -1, 1, t or n = m - 1 where m = ° or a positive integer. 

In this case we may also use Eq. (4.37) directly, but unless we know the value ofthe factorial 
function for half-integral values of the argument we will be in trouble. If n = m - 1, the 
function takes the form 

Im- 1/2([3) = Loox2me- Px2 dx = H(m - 1) !][3- (m + 1 /2) . (4. 39) 

When m = 0, we have 

L 1/2([3) = Looe-px2 dx = [3- 1/2 LOOe- y2 dy = [3- 1/2L 1/z(1), (4 .40) 

where in the second writing, x = [3 - 1 /2y, has been used. Comparing this result with the 
last member of Eq. (4.39) we find that 

L 1/2(1) = Loo e- y2 dy = 1( -1) ! . (4.41) 

The integral, 1 - 1 /2(1), cannot be evaluated by elementary methods. We proceed by writing 
the integral in two ways, 

1 _ 1/2(1) = LOO e-x2 dx 

then multiply them together to obtain, 

and 

1� 1/2(1)  = Loo LXl e- (x2 + y2) dx dy. 

The integration is over the area of the first quadrant; we change variables to r2 = x2 + y2 
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and replace dx dy by the element of area in polar coordinates, r d¢ dr. To cover the first 
quadrant we integrate ¢ from zero to nl2 and r from 0 to 00 :  the integral becomes 

I� 1 /2(1 ) = f/2 
d¢ IXl e- r2r dr = � G) 1''' e- r2 d(r2) = � IXl e - Y dy. 

The last integral is equal to O ! = 1 ; taking the square root of both sides, we have 

I - l lil) = !In. (4.42) 
Comparing Eqs. (4.41) and (4.42), it follows that ( - !) ! = In; now from Eqs. (4.40) and 
(4.42), 

L1/2(P) = !Jnp- 1/2 . 
By differentiation, and by using Eq. (4.38) we obtain 

and 

I (P) - dL 1/2 _ 1. C(1.p- 3/2) 1/2 - - -- - 2y n 2 dP 

I (P) = _ 
dI1 /2 = 1. fir(1.. 1.p - 5/2) 3/2 dP 2y n 2 2 . 

Repetition of this procedure ultimately yields 

I (P) = foox2me- PX2 dx = 1. fir (2m)
.
! p- (m + 1 /2) m- 1/2 2y n 22m 1 . 

o m .  
(4.43) 

By comparing this result with Eq. (4. 39) we obtain the interesting result for half-integral 
factorials 

( _ 1.) 1 = C (2m) ! m 2 · y n  22m , . m .  

Table 4. 1 collects the most commonly used formulas. 

Tab le  4 . 1  
i ntegra ls  that occur  i n  the k inet ic theory of gases 

(3) 1''' x2e - px2 dx = tfitP- 3/2 

(4) 1'''x4e- px2 dx = tfiiP- S/2 

fOO 2 (2n) !p- (n + l/2 ) 
(5) x2ne- Px dx = 1.fi -�--o 2 22nn ! 

(6) foo x2n+ le- px2 dx = O 
-

00 

(7) fooo xe - px2 dx = tP - 1 

(8) 1°O
x3e- px2 dx = tP- 2  

(9) 100 xSe- px2 dx = p- 3 

(4.44) 
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* 4 . 7 . 1  The E rror  F u nct i o n  

We frequently have occasion to  use integrals o f  the type o f  Case I I  above in which the 
upper limit is not extended to infinity but only to some finite value. These integrals are 
related to the error function (erf). We define 

erf (x) = � fe- U2 duo (4.45) 

If the upper limit is extended to x --+ 00, the integral is t.fi so that 

erf (oo) = 1 .  

Thus a s  x varies from zero t o  infinity, erf (x) varies from zero t o  unity. Ifwe add the integral 
from x to 00 multiplied by 2/.fi to both sides of the equation, we obtain 

2 foo 2 [f" foo ] 2 foo 
erf (x) + .fi " e- u2 du = .fi 0 e- u2 du + 

"
e- U2 du = .fi 0 e- u2 du = 1 .  

Therefore 
2 foo 

.fi " 
e- u2 du = 1 - erf (x). 

We define the co-error function, erfc (x), by 

erfc (x) = 1 - erf (x). 

Thus 

Some values of the error function are given in Table 4.2. 

x erf(x) 

0.00 0.000 
0. 10 0. 1 12 
0.20 0.223 
0.30 0.329 
0.40 0.428 
0.50 0.521 
0.60 0.604 
0.70 0.678 

Tab le  4 .2  
The error funct ion : 

2 IX erf(x) = In 0 e- ,, 2  du 

x erf(x) 

0.80 0.742 
0.90 0.797 
1 .00 0.843 
1 . 10 0.880 
1 .20 0.9 10 
1 . 30 0.934 
1 .40 0.952 
1 .50 0.966 

x 

1 .60 
1 . 70 
1 .80 
1 .90 
2.00 
2.20 
2.40 
2.50 

(4.46) 

(4.47) 

erf(x) 

0.976 
0.984 
0.989 
0.993 
0.995 
0.998 
0.9993 
0.9996 
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4 . 8  EVA L U AT I O N  O F  A A N D P 

The constants A and {3 are determined by requiring that the distribution yield correct values 
of the total number of molecules and the average kinetic energy. The total number of 
molecules is obtained by summing dnc over all possible values of c between zero and 
infinity : 

fC = OO N = dnc • c = o 
(4.48) 

The average kinetic energy is calculated by multiplying the kinetic energy, tmc2, by the 
number of molecules, dnc , which have that kinetic energy, summing over all values of c, 
and dividing by N, the total number of molecules. 

fC = OOtmc2 dnc 
< f) = _c:..-=-=o-----=-::--__ 

N (4.49) 

Equations (4.48) and (4.49) determine A and {3. 
Replacing dnc in Eq. (4.48) by the value given by Eq. (4.34), we have 

N = Loo 4nNA3e- fJc2c2 dc. 
Dividing through by N and removing constants from under the integral sign yields 

1 = 4nA3 Looc2e- fJC2 dc. 
From Table 4. 1 we have s: c2e - fJc2 dc = nl/2/4{33/2 . Hence, 1 = 4nA 3nl/2/4{33/2 . So finally 

(4. 50) 

which gives the value of A 3 in terms of {3. 
In the second condition, Eq. (4.49), we use the value for dnc from Eq. (4.34) : 

fOO tmc24nNA3e- fJc2c2 dc 
<f) = _o=---__ --::-::c-___ _ N 

Using Eq. (4. 50), we have ({3) 3/2 roo <f) = 2nm � Jo c4e
- fJc2 dc. 

From Table 4. 1 , we have S: c4e- fJc2 dc = 3nl/2/8{35/2 . So <f) becomes <f) = 3m/4{3, and, 
therefore, 

3m {3 = 4<f) ' (4. 5 1 ) 

which expresses {3 in terms of  the average energy per molecule <f) . However, Eq. (4. 13) 
relates the average energy per molecule to the temperature : 

<f) = � (:JT = ikT. (4. 1 3a) 
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The gas constant per molecule is the Boltzmann constant, k = R/N A = 1 . 3807 X 10- 2 3 J/K. Using this relation in Eq. (4 . 5 1) gives {J explicitly in terms of m and T. 
m 

{J = 2kT ' (4. 52) 
Using Eq. (4. 52) in Eq. (4. 50), we obtain 

( m ) 3/2 A = (2nmkT) 1 /2 . A3 = 2nkT ' (4. 53) 

Using Eqs. (4.52) and (4. 53) for (J and A 3 in Eq. (4.34), we obtain the Maxwell distribution 
in explicit form : 

dn = 4nN -- c2e-mc2/2k T dc. ( m ) 3/2 c 2nkT (4.54) 

The Maxwell distribution expresses the number of molecules having speeds between c and c + dc in terms ofthe total number present, the mass ofthe molecules, the temperature, and 
the speed. (To simplify computations with the Maxwell distribution, note that the ratio m/k = M/R, where M is the molar mass.) The Maxwell distribution is customarily plotted 
with the function (l/N) (dnjdc) as the ordinate and c as the abscissa. The fraction of the 
molecules in the speed range c to c + dc is dnjN ; dividing this by dc gives the fraction of 
the molecules in this speed range per unit width of the interval. 

� dnc _ 4 (�) 3/2 2 -mc2/2k T N dc - n 2nkT c e . (4 . 55) 

The plot of the function for nitrogen at two temperatures is shown in Fig. 4.9. 
The function shown in Fig. 4.9 is the probability of finding a molecule having a speed 

between c and c + dc, divided by the width dc of the range. Roughly speaking, the ordinate 
is the probability of finding a molecule with a speed between c and (c + 1) m/s. The curve 
is parabolic near the origin, since the factor c2 is dominant in this region, and the exponential 
function is about equal to unity ; at high values of c, the exponential factor dominates the 
behavior of the function, causing it to decrease rapidly in value. As a consequence of the 
contrasting behavior of the two factors, the product function has a maximum at a speed cmp ' This speed is called the most probable speed, since it corresponds to the maximum in 
the probability curve ; cmp can be calculated by differentiating the function on the right of 
Eq. (4. 55) and setting the derivative equal to zero to find the location of the horizontal 
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tangents. This procedure yields 

ce-mC2/2kT( 2 - ��) = O. 

The curve has three horizontal tangents : at c = 0; at c --+ 00 ,  when exp ( -1;mc2 jkT) = 0 ; 
and when 2 - mc2jkT = O. This last condition determines cmp ' 

c n = J2kT = J2RT . m" m M (4. 56) 

Figure 4.9 shows that the chance of finding molecules with very low or very high speeds 
is nearly zero. The majority of molecules have speeds that cluster around cmp in the middle 
of the range of c. 

Figure 4.9 also shows that an increase in temperature broadens the speed distribution . 
and shifts the maximum to higher values of e. The area under the two curves in Fig. 4.9 must 
be the same, since it is equal to unity in both cases. This requires the curve to broaden as the 
temperature is increased. The speed distribution also depends on the mass of the molecule. 
At the same temperature a heavy gas has a narrower distribution of speeds than a light gas. 

The appearance of temperature as the parameter of the distribution yields another 
interpretation of the, as yet mysterious, notion of temperature. Roughly, the temperature is 
a measure of the broadness ofthe speed distribution. If by any means we manage to narrow 
the distribution, we will discover that the temperature of the system has dropped. At the 
absolute zero of temperature, the distribution becomes infinitely narrow ; all of the 
molecules have the same kinetic energy, zero. 

4 . 9  CA LC U LATI O N  O F  AVE RAG E VAL U ES 
U S I N G  T H E M AXW E l l  D i ST R I B UTI O N  

From the Maxwell distribution, the average value of any quantity that depends on speed 
can be calculated. If we wish to calculate the average value (g) of some function of speed 
g(c), we multiply the function gee) by dnn the number of molecules that have the speed c ; 
then we sum over all values of c from zero to infinity and divide by the total number of 
molecules in the gas. 

fC = oo
g(e) dnc 

(g) = _c'----=--,-o __ _ 
N (4. 57) 

4 . 9 . 1  Exa m p l es of Average Va l u e  C a l c u lat ions  

IIlII EXAMPLE 4.3 As an example of  the use of  Eq. (4.57), we  can calculate the average 
kinetic energy of the gas molecules ;  for this case, gee) = t = 1;me2. Thus Eq. (4. 57) 
becomes 

I
c = 

00 1;mc2 dnc 
(t) = c = O 

N ' 
which is identical with Eq. (4.49). If we put in the value of dnc and integrate, we would, 
of course, find that (t) = �kT, since we used this relation to determine the constant f3 
in the distribution function. 
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• EXAMPLE 4 . 4  Another average value of importance is the average speed <c) .  Using 
Eq. (4.57), we have 

fC = oo 
c dnc 

< c) = -'
c
'-
=-=-:°N

-=-----

Using the value of dnc from Eq. (4.54), we obtain 

<c) = 4n -- c3e -mc2/Zk T  dc. 
( m ) 3/Z foO 
2nkT o .  

The integral can be obtained from Table 4. 1 or can be evaluated by elementary methods 
through the change in variable : x = !mcz/kT. This substitution yields 

J8kT foO 
<c) = -- xe- x dx. 

But S: xe - x dx = 1 ;  therefore 

nm ° 

<c) = J8kT = J8RT
. 

nm nM (4. 58) 

It should be noted that the average speed is not equal to the rms speed, Crms = (3kT/m)1 /Z, 
but is somewhat smaller. The most probable speed, cmp = (2kT/m)1 /Z, is smaller yet. 
The average speed and the rms speed occur most frequently in physico-chemical 
calculations. 

Since the speeds of the molecules are distributed, we can talk about the deviation of 
the speed of a molecule from the mean value, (j = c - <c) .  The average devi.ation from 
the mean value is zero, of course. However, the square of the deviations fron;. the mean, 
(jz = (c - <c) f, has an average value different from zero. This quantity gives us a measure 
of the breadth of the distribution. Calculation of this kind of average value (Problems 
4.7 and 4.8) gives us an important insight into the meaning of temperature, particularly in 
the case of the energy distribution. 

* 4.1 0 T HE M AXW E L L  D I ST R I B UTI O N  
A S  A N  E N E R G Y  D I ST R I B UTI O N  

The speed distribution, Eq. (4. 54), can be converted to an energy distribution. The kinetic 
energy of a molecule is f. = !mcz . Then c = (2/m)1 /zf. 1 /Z . Differentiating, we obtain dc = 
(1/2m) 1/Zf. - 1 /Z df.. The energy range df. corresponds to the speed range dc, and so the number 
of particles dnc in the speed range corresponds to the number of particles dn, in the energy 
range. By replacing c and dc in the velocity distribution by their equivalents according to 
these equations, we obtain the energy distribution 

dn = 2nN -- f.1/Ze - 'l kT df. 
( 1 ) 3/Z 

• nkT ' (4. 59) 

where dn, is the number of molecules having kinetic energies between f. and f. + df.. This 
form of the distribution function is plotted as a function of f. in Fig. 4. 1O(a). Attention 
should be given to the distinctly different shape of this curve compared with that of the 
speed distribution. In particular, the energy distribution has a vertical tangent at the origin 
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and thus it rises much more quickly than the velocity distribution, which starts with a 
horizontal tangent. After passing the maximum, the energy distribution falls off more 
gently than does the velocity distribution. As usual, the distribution is broadened at higher 
temperatures, a greater proportion of the molecules having higher energies. As before, the 
areas under the curves for different temperatures must be the same. 

It is frequently important to know what fraction of the molecules in a gas have kinetic 
energies exceeding a specified value f'. This quantity can be calculated from the distribu
tion function. Let N(f') be the number of molecules with energies greater than f'. Then 
N(f') is the sum of the number of molecules in the energy range above f'. 

N(f') = foo dn, . 
" 

(4.60) 

The fraction of the molecules with energies above f' is N(f')/N ;  using the expression in 
Eq. (4. 59) for the integrand in Eq. (4.60), this fraction becomes 

N(f') = 2 (_1_) 3/2 fOO 1 /2 - 'lkT d N n nkT "
f e f. (4.61 ) 
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The substitutions 
£ = kTx2 , 

reduce Eq. (4.61)  to 

�- = - xe- x2 d(x2) = - - x d(e- X2). N(£') 2 foo 2 foo N In .j£'/kT In .j£' /kT 
Integrating by parts, we have 

- x2 - x2 d N(£') 2 [ 100 

foo ] � = -
In 

xe 
.j£'lkT 

-
)£'/ kT

e x , 

N(£') = 2(�) 1 /2 e- £'/kT + � foo e- x2 dx. N nkT In �'/kT 
(4.62) 

The integral in Eq. (4.62) can be expressed in terms of the co-error function defined in 
Eq. (4.47). 

N(£') = 2 (�) 1 /2 e - £'/ kT + erfc (J£'/kT). N nkT (4.63) 

However, if the energy £' is very much larger than kT, the value of the integral in Eq. (4.62) 
is approximately zero (since the area under the curve of the integrand is very small from a 
large value of the lower limit to infinity). In this important case, Eq. (4.62) becomes 

�- = 2 -- e- £'/k T  N(£') ( £' ) 1 /2 
N nkT ' £' � kT. (4.64) 

Equation (4.64) has the property that the right-hand side varies quite rapidly with tempera
ture, particularly at low temperatures. Figure 4. 1O(b) shows the variation of N( £')IN with £' 
at three temperatures, calculated from Eq. (4.62). Also, Fig. 4. 10(b) shows graphically that 
the fraction of molecules having energies greater than £' increases markedly with tempera
ture, particularly if £' is in the high-energy range. This property of gases, and of liquids and 
solids as well, has fundamental significance in connection with the increase in the rates of 
chemical reactions with temperature. Since only molecules that have more than a certain 
minimum energy can react chemically, and since the fraction of molecules that have 
energies exceeding this minimum value increases with temperature according to Eq. (4.62), 
the rate of a chemical reaction increases with temperature. * 

4 . 1 1  AVE RAG E VA L U ES O F  I N D IVI D U A L  C O M P O N E NTS ; 
E Q U I PARTITI O N  O F  E N E R G Y  

It is instructive to compute the average values of the individual components of velocity. 
For this purpose, the most convenient form of the Maxwell distribution is that in Eq. (4.30). 
The average value of u is then given by an equation analogous to Eq. (4.57) : 

* 

fOO foo foo u dnuvw (u) = - 00 - 00 - 00 
N 

Other conditions being comparable, the rate of chemical reaction depends on temperature through the 
factor A e - <a/kT, where A is a constant and fa is a characteristic energy. Note the similarity in form to the 
right-hand side of Eq. (4.64) .  
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The integration is taken over all possible values of all three components ; note that any 
component may have any value from minus infinity to plus infinity. Using dnuvw from 
Eq. (4.30), we obtain 

(u) = A3 f:oo f:oo f:oo ue-P(u2 + v2 +w2) du dv dw 
= A3 f:ooue- PU2 du f:ooe- PV2 dv f:ooe- PW2 dw. (4.65) 

By Formula (6) in Table 4. 1 ,  the first integral on the right-hand side of Eq. (4.65) is zero ; 
thus (u) = O. The same result is obtained for the average value of the other components : 

(u) = (v) = (w) = O. (4.66) 

The reason the average value of any individual component must be zero is physically 
obvious. If the average value of any one of the components had a value other than zero, this 
would correspond to a net motion of the entire mass of gas in that particular direction ; the 
present discussion applies only to gases at rest. 

The distribution function for the x component can be written [see Eqs. (4.20), (4.29), 
(4. 52), (4.53)] as 

� dnu = f( 2) = (�)1/2 -mu2/2kT 
N du u 

2nkT 
e , (4.67) 

which is plotted in Fig. 4. 1 1 .  It is the symmetry of the function with respect to the origin of u 
that leads to the vanishing value of (u) . The interpretation of temperature as a measure of 
the width of the distribution is clearly illustrated by the two curves in Fig. 4. 1 1 . The area 
under each curve must have the same value, unity. The probability of finding a molecule 
of velocity u is the same as that of finding one with a velocity - u ; this was assured in our 
original choice of the function as one that depended only on u2• 

Although the average value of the velocity component in any one direction is zero, 
because equal numbers of molecules have components u and - u, the average value of 
kinetic energy associated with a particular component has a positive value. The molecules 
with velocity component u contribute tmu2 to the average and those with component - u 
contribute tm( - U)2 = tmu2 • The contributions of particles moving in opposite directions 
add up in averaging the energy, while in averaging the velocity component the contribu
tions of particles moving in opposite directions exactly cancel one another. To calculate 

25 

1 dnu /(10 - 4  s/m) N du / ' 

- 10 
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the average value of Ex = !mu2, we use the Maxwell distribution in the same way as 
before. 

Using Eq. (4.30), we obtain 

<Ex) = !mA3 f:oo f:oo f:oo u2e- (J(u2 + v2 + w2) du dv dw 

Using Formulas (1) and (2), Table 4. 1 ,  we have 

e- (Jv2 dv = e- (Jw2 dw = - , foo foo (n) 1 /2 
- 00  - 00 f3 

and, by Formulas (1) and (3), Table 4. 1 ,  

J:oo u2e - (Ju2 du = ;;��2 = 
2� (�r /2 

Introducing these values for the integrals leads to 

Using the value of A 3 from Eq. (4.53) and the value of f3 from Eq. (4. 52), we obtain finally 

<Ex) = !kT. 

The same result can be obtained for <Ey) and <Ez) ; therefore 

(4.68) 

Since the average total kinetic energy is the sum of the three terms, its value is J;kT, the 
value given by Eq. (4. 13a) :  

<E) = <Ex) + <Ey) + <Ez) = !kT + !kT + !kT = J;kT. (4.69) 

Equation (4.68) expresses the important law of equipartition of energy. It states that 
the average total energy is equally divided among the three independent components of the 
motion, which are called degrees offreedom. The molecule has three translational degrees of 
freedom. The equipartition law may be stated in the following way. If the energy of the individual molecule can be written in the form of a sum of terms, each of which is propor
tional to the square of either a velocity component or a coordinate, then each of these 
square terms contributes!kTto the average energy. As an example, in a gas the translational 
energy of the individual molecule is 

(4.70) 

Because each term is proportional to the square of a velocity component, each contributes 
!kT to the average energy ; thus we may write 

<E) = !kT + !kT + !kT = �kT. (4.71)  
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4 . 1 2 E Q U I PARTITI O N  O F  E N E R G Y  A N D Q U A N TI ZATI O N  

A mechanical system consisting of N particles is described by specifying three coordinates 
for each particle, or a total of 3N coordinates. Thus there are 3N independent components 
of the motion, or degrees offreedom, in such a system. If the N particles are bound together 
to form a polyatomic molecule, then the 3N coordinates and components of the motion 
are conveniently chosen as follows. 
Translational. Three coordinates describe the position of the center of mass ; motion 
in these coordinates corresponds to translation of the molecule as a whole. The energy 
stored in this mode of motion is kinetic energy only, Etrans = �mu2 + !mv2 + !mw2 . 
Each of these terms contains the square of a velocity component and therefore, as we have 
seen previously, each contributes !kT to the average energy. 
Rotational. Two angfes are needed to describe the orientation of a linear molecule in 
space ; three angles are needed for the description of the orientation of a nonlinear 
molecule. Motion in these coordinates corresponds to rotation about two axes (linear 
molecule) or three axes (nonlinear molecule) in space . The equation for the energy of 
rotation has the forms 

(linear molecule) 
11 2 + 11 2 + 11 2 ( 1 ' 1 1 ) Erot = "2 x Wx "2 y Wy "2 z Wz non lnear mo ecu e 

in which wx , wy , Wz are angular velocities and Ix , Iy , Iz are moments of inertia about 
the X-, Y-, and z-axes, respectively. (In the linear case, Ix = Iy = I.) Since each term 
in the energy expression is proportional to the square of a velocity component, each term 
on the average should have its equal share, !kT, of energy. Thus the average rotational 
energy of linear molecules is JkT, while that of nonlinear molecules is i-kT. The rotational 
modes of a diatomic molecule are illustrated in Fig. 4 . 12 .  

Vibrational. There remain 3N - 5 coordinates for linear molecules and 3N - 6 
coordinates for nonlinear molecules .  These coordinates describe the bond distances 
and bond angles within the molecule . Motion in these coordinates corresponds to 
the vibrations (stretching or bending) of the molecule . Thus linear molecules have 
3N -: 5 vibrational modes ; nonlinear molecules have 3N - 6 vibrational modes. 
Assuming that the vibrations are harmonic, the energy of each vibrational mode can 
be written in the form 

1 (dr)
2 

1 2 Evib = "2Jl dt + "2,{(r - ro) , 

in which Jl is an appropriate mass, '{ is the force constant, ro is the equilibrium value of the 
coordinate r, and dr/dt is the velocity. The first term in this expression is the kinetic energy ; 
the second term is the potential energy. By the equipartition law, the first term should 
contribute !kTto the average energy, since it contains a velocity squared. The second term, 
since it contains the square of the coordinate r - r 0 ,  should also contribute !kT to the 
average energy. Each . yibrational mode should contribute !kT + !kT = kT to the 
average energy of the system. Thus the average energy of the vibrations should be 
(3N - 5)kT for linear molecules or (3N - 6)kT for nonlinear molecules. The total 
average energy per molecule should be 

< Et) = i-kT + JkT + (3N - 5)kT 

<Et) = !kT + !kT + (3N - 6)kT 

(linear molecules) 

(nonlinear molecules). 
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--------- I��--------y 

x 
(a) (b) 

F i g u re 4 . 1 2 Rotat iona l  modes of a d iatomic  molecu le .  ( a )  Rotat ion about the 
x-axis .  (b )  Rotat ion about the y-ax is .  

Ifwe multiply these values by N A ,  the Avogadro number, to convert to average energies 
per mole, we obtain 

Monatomic gases : 

Polyatomic gases : 
[J = �RT 

[J = �RT + �RT + (3N - 5)RT 

[J = �RT + �RT + (3N - 6)RT 

(linear) 

(nonlinear). 

(4.72) 

(4.73) 

(4 .74) 

If heat flows into a gas kept at constant volume, the energy of the gas is increased by 
the amount of energy transferred by the heat flow. The ratio of the increase in energy to the 
increase in temperature of the system is the constant volume heat capacity, Cv ' Thus, by 
definition, 

Cv == (:�t· (4.75) 

By differentiating the molar energies with respect to temperature, we obtain the molar 
heat capacities, Cv , predicted by the equipartition law. 

Monatomic gases : 

Polyatomic gases : 
Cv = �R + �R + (3N - 5)R 

CV = �R + �R + (3N - 6)R 

(linear) 

(nonlinear). 

(4.76) 

(4.77) 

(4.78) 

If we examine the values of the heat capacities we find for monatomic gases, Cv/R = 
1 . 5000, with a high degree of accuracy. This value is independent of temperature over a 
very wide range. 

If we examine the heat capacities of poly atomic gases, Table 4.3, we find two points of 
disagreement between the data and the equipartition law prediction. The observed heat 
capacities ( 1 )  are always substantially lower than the predicted values, and (2) depend 
noticeably on temperature. The equipartition principle is a law of classical physics, and 
these discrepancies were one of the first indications that classical mechanics was not 
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Tab l e  4.3 
H eat capacit ies of gases at 298. 1 5  K 

Monatomic 

Species 

He, Ne, Ar, Kr, Xe 1 .5000 

Diatomic 

Species Ev/R Species 

Hz 2.468 Fz 
N2 , HF, HBr, HCI 2.50 Clz 
CO 2.505 ICI 
HI 2.51  Brz 
O2 2.531  IBr 
NO 2.59 1 Iz 

Triatomic 

Linear Ev/R Nonlinear 

COz 3.466 HzO 
NzO 3.655 HzS 
COS 3.99 NOz 
CSz 4.490 SOz 

Tetratomic 

Linear Ev/R Nonlinear 

CzHz -'l.283  HzCO 
C2Nz 6.844 NH3 

HN3 
P4 

Ev/R 

2.78 
3.08 
3.26 
3 .33 
3 .37 
3.43 

Ev/R 

3.038 
3.09 
3.56 
3.79 

Ev/R 

3 .25 
3 .289 
4.042 
7.05 

adequate to describe molecular properties. To illustrate this difficulty we choose the case 
of diatomic molecules, which are of necessity linear. For diatomic molecules, N = 2, and 
we obtain from the equipartition law 

Cv 3 2 7 Ii.. = :2 + :2 + 1 = :2 = 3 .5 .  

With the exception ofH2 , the observed values for diatomic molecules at ordinary tempera
ture fall between 2.5  and 3 .5 ,  a number of them being very close to 2.50. Since the transla
tional value 1 . 5  is observed so accurately in monatomic molecules we suspect the difficulty 
lies in either the rotational or vibrational motion. When we note that nonlinear molecules 
have Cv!R > 3 .0 we can narrow the difficulty to the vibrational motion. 

The explanation of the observed behavior is that the vibrational motion is quantized. 
The energy of an oscillator is restricted to certain discrete values and no others. This is in 
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contrast to the classical oscillator, which could have any energy value whatsoever. Now 
instead of the energies of the various oscillators being distributed continuously over the 
entire range of energies, the oscillators are distributed in the various quantum states 
(energy levels). The state of lowest energy is called the ground state ; the other states are 
called excited states. The permissible values of the energy of a harmonic oscillator are 
given by the expression 

f.s = (s + !)hv s = 0, 1 , 2, . . .  (4.79) 

in which s, the quantum number, is zero or a positive integer, h is Planck's constant, h = 6.626 X 10- 34 J s ;  and v is the classical frequency of the oscillator, v = (l/2n)Ji1i:t, 
in which l is the force constant and f.1, is the reduced mass of the oscillator. 

The equipartition law depends on the ability of two colliding particles to exchange 
energy freely between the various modes of motion. This condition is satisfied for both 
translational and rotational motion because the molecu�es can accept energy in these 
modes in any amount, however small, subject only to the dynamic restrictions of con
servation of total energy and momentum. But since the vibrational mode is quantized, it 
can accept only an amount of energy equal to the vibrational quantum, hv. For a molecule 
such as oxygen this energy quantum is seven times larger than the average energy of 
translation of the molecules at 25 °C. Thus the collision between two molecules with 
average kinetic energies cannot raise either molecule to a higher vibrational state because 
that would require far more energy than they possess. Consequently, essentially all the 
molecules remain in the ground vibrational state, and the gas does not exhibit a vibrational 
heat capacity. When the temperature is high enough that the average thermal energy is 
comparable to the vibrational quantum, hv, the heat capacity approaches the value pre
dicted by the equipartition law. The temperature required depends on the particular 
vibration. 

* 4. 1 3 CALC U LATI O N  O F  VI B RATI O N A L  H EAT CAPAC ITY 

The distribution of the oscillators is governed by an exponential law (for proof see Section 
29. 1) 

nS = --Q-- (4.80) 

where ns is the number of oscillators having the energy f.s ' The partition junction, Q, is 
determined by the condition that the sum ofthe number of oscillators in all the energy levels 
will yield the total number of oscillators, N. That is, 

00 
L ns = N. (4. 8 1 )  

s = O  

Hence, substituting from Eq. (4.80) for ns 
00 Ne - a £s 
L -Q- = N . 

s = O  
Thus 

(4.82) 

where we have set 1/kT = Il( for momentary mathematical convenience. 
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The average energy is obtained by multiplying the energy of each level by the number 
in that level, summing over all the levels, and dividing by the total number of molecules. 

Replacing ns/N by its value from Eq. (4.80) we obtain 
00 E e-a!s 1 00 

<E) = I _s - = - I Es e -a !s . s = o Q Q s = o 
If we differentiate Eq. (4.82) with respect to ct., we obtain 

Using this result in the expression for <E) reduces it to 

<E) = _�  dQ = _ d In Q . 
Q dct. dct. 

To evaluate Q, we insert Es = (s + !)hv in the expression for Q : 
00 00 00 

Q = I e-ahv(s + 1 /2) = e-ahv/2 I e- ahvs = e-ahv/2 I xS ; s = o s = o s = o 

(4. 83) 

(4. 84) 

in the right-hand side we have set x = e - ahv. But I�=o XS = 1 + x + x2 + . . . , and this 
series is the expansion of 1/(1 - x) ; consequently, we have 

e- ahv/2 e- ahv/2 
Q = -1

-- = 1 ahv ' - x - e 
Differentiating, we obtain 

or In Q = - !ct.hv - In (1 - e-ahv) . 

d In Q 
dct. 

hve- ahv hv - !hv - 1 -ahv = -!hv - ahv 1 · - e e -
Using this expression in Eq. (4. 84) for <E), we obtain, after setting ct. = l/kT, 

1 ltv 
<E) = zhv + hv/k T 1 · e - (4.85) 

The average energy is made up of the zero point energy !hv, which is the lowest energy 
possible for the quantum oscillator, plus a term that depends on temperature. 

At very low temperature, hv/kT � 1, hence exp (hv/kT) � 1 so that the second term is 
very small, and 

<E) = !hv and 

Effectively, all of the oscillators are in lowest quantum state with s = o. 
At very high temperatures such that hv/kT � 1 , we may expand the exponential func

tion : ehv/kT � 1 + hv/kT ;  then ehv/kT - 1 � hv/kT, and we have 

<f) = !hv + kT. 
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1 . 0  

Tie _ 

F igure 4 . 1 3 E i nste i n  fu nct ion for C/R versus Ti e. 

and 

Thus it is only at high temperatures that the vibrational heat capacity attains the classical 
value, R. 

It is customary to define a characteristic temperature 8 = hvjk for each oscillator. 
Then 

and 

1 kU 
<f.) = zhv + OIT l '  e -

Cv(vib) ( 8 ) 2 eOIT -R- = 
T (e8/T - 1)2 ' 

(4. 86) 

(4.87) 

(4.88) 

The function on the right-hand side of Eq. (4.88)  is called an Einstein function. The 
Einstein function is shown as a function of Tj8 in Fig. 4. 1 3 .  Thus for a diatomic molecule 
we have for the heat capacity 

C 5 ( 8 ) 2 eOIT ; = :2 + T (e8/T - 1)2 ' 

In the case of polyatomic molecules that have more than one vibration (for example, 
H20, which has three vibrations) there are three distinct frequencies and therefore three 
distinct characteristic temperatures, so that the heat capacity contains three distinct 
Einstein functions, 

� = 3.0 + (i r (eO t /�': 1)2 + (i r (e02/�2: 1)2 + (i r (e03 /�3: 1 )2 ' 

Values of the characteristic temperatures for a number of molecules are given in Table 4.4. 



SO The Structure of G ases 

Hz 
N2 
Oz 
CO 
NO 
HCI 
HBr 
HI 
Cl2 

Tab le  4 .4 
Va lues of O/K for va r ious gases 

6210  
3340 
2230 
3070 
2690 
4140 
3700 
3200 
8 10  

Brz 470 
Iz 3 10 
COz f}l = 1 890 

f}z = 3360 
f}3 = f}4 = 954 

HzO f}l = 5410 
f}z = 5250 
f}3 = 2290 

Terrell L. Hill, Introduction to Statistical Thermodynamics. 
Reading, Mass. : Addison-Wesley, 1 960. 

* "1..1 4 T H E M AXW E l l-BO LTZ M A N N D I ST R I B UTI O N  LAW 

Two types of distribution functions have been discussed so far : the spatial distribution of 
molecules in a gravitational field, the Boltzmann distribution, and the speed distribution in 
a gas (the Maxwell distribution). These can be written in a combined form, the Maxwell
Boltzmann distribution law. 

The barometric formula governs the spatial distribution of the molecules in a gravity 
field according to the equation 

(4.89) 

where N and No are the numbers of particles per cubic metre at the heights z and zero, 
respectively. The Boltzmann distribution law governs the spatial distribution of any 
system in which the particles have a potential energy that depends on the position. For any 
potential field, the Boltzmann distribution may be written in the form 

(4.90) 

where tp is the potential energy of the particle at the point (x, y, z), and N is the number of 
particles per cubic metre at this position. 

For the special case of the gravity field, tp = mgz. This value of tp in Eq. (4.90) reduces 
it to Eq. (4. 89), since m/k = M/R. 

The combined velocity and space distribution is written 

----=-- = 4n �� eZe - (mc2/z + <pllkT de dN* ( m ) 3/Z 
No 2nkT ' (4.9 1 )  

where dN* i s  the number of  particles per cubic metre at  the position (x, y ,  z) that have speeds 
in the range e to e + de. Equation (4. 9 1 )  is the Maxwell-Boltzmann distribution, which is 
similar to the Maxwell distribution, except that the exponential factor contains the total 
energy, kinetic plus potential, of the molecule instead of only the kinetic energy. 

At any specified position in space, tp has a definite constant value, and so exp ( - tp/kT) 
is a constant. Then the right-hand side of Eq. (4.9 1 )  is simply the Maxwell distribution 
multiplied by a constant. This means that at any position the distribution of speeds is 
Maxwellian regardless of the value of the potential energy at that point. For a gas in a 
gravity field this means that, although there are fewer molecules per cubic metre at 50 km 
height than at ground level, the fraction of molecules that have speeds in a given range is 
the same at both levels. 



Exper i menta l Ver i f icat ion  of the Maxwe l l  D istr ibut ion  law 81 

* 4. 1 5 EXP E R I M E N TA L  V E R I F I CATI O N  
O F  T H E M AXW E l l  D I ST R i B UTI O N  LAW 

The amount of indirect evidence for the correctness of the Maxwell distribution law is 
overwhelming. The relationship of the distribution law to the rate of a chemical reaction 
has already been mentioned briefly (Section 4. 10). We shall see later that the functional 
form of the experimentally determined temperature dependence ofthe rate constant agrees 
with the dependence we expect from the Maxwell distribution. This agreement may be 
regarded as indirect evidence for the correctness of both the Maxwell distribution and our 
ideas concerning reaction rates. 

Suppose for the sake of argument that speeds were not distributed and that all the 
molecules moved with the same velocity. Now consider the effect of a gravity field on such 
a gas. If at ground level all the molecules had the same vertical component of velocity W 
then all would have a kinetic energy!m W2. The maximum height any molecule could reach 
is that at which all of the ground-level kinetic energy is converted into potential energy ; 
this height H is determined by the equality mgH = !mW2, or H = W2/2g. No molecule 
could reach a height greater than H, and if this situation prevailed, the atmosphere would 
have a sharp upper boundary. Furthermore, the density of the atmosphere would increase 
with the height above ground level, since the molecules at the higher levels are moving 
slowly and thus would spend a larger part of the time at these high levels. None of these 
predictions is confirmed by observation. The Maxwell distribution, however, says that 
some molecules have large kinetic energies and so can attain great heights ; but the pro
portion of the molecules with these high energies is small. The Maxwell distribution pre
dicts that the atmospheric density will decrease with increase in height, and that there will 
be no sharp upper boundary. 

A number of direct experimental determinations of the velocity distribution have 
been made, all of which have verified the Maxwell law within the experimental error. A 
sketch of the apparatus used in one method is shown in Fig. 4. 14. The apparatus is entirely 

s 

F i g u re 4 . 1 4 Exper iment to verify the Maxwe l l  d istr ibution .  ( Red rawn by 
permiss ion from K. F. He rzfeld  and H. Sma l lwood, A Treatise on Physical 
Chemistry, H .  S. Taylor and S. G lasstone, eds . ,  vo l .  I I , 3d ed . N ew York : 
D .  Van N ostrand ,  1 95 1 , p. 37 . )  
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enclosed in a highly evacuated chamber. The molecules escape through a pinhole in the 
source S, are collimated by the slits, and then pass through one of the openings between 
the cogs in the cogwheel C l ' The cogwheels el and C 2 are mounted on the same axle, which 
is rotated rapidly. Only those molecules that have a speed such that they travel the length 
L in the time required for the cogwheel to be displaced by the width of one opening can get 
to the detector at R. By changing the velocity of rotation of the cogwheels, molecules having 
different speeds can be admitted to R. The resemblance of this method to that of Fizeau 
for measuring the velocity of light should be noted. * 

Q U ESTI O N S  

4.1 Why are probability laws required to describe gas molecules ? 
4.2 What is the kinetic theory explanation of the ideal gas law dependence p oc V- I ? 
4.3 Give a kinetic interpretation of why p for 1 mole of gaseous O

2 
molecules is one-half that for 2 

moles of gaseous 0 atoms at a given T and V. 
4.4 Why does the Maxwell distribution go to zero at high speeds ? (Imagine what such molecules 

would do to the walls.) At zero speed ? (Imagine the fate of a molecule started at rest in the gas.) 
4.5 If heavier gas molecules move more slowly than light gas molecules, why is the average kinetic 

energy independent of the mass ? 
4.6 Would the average velocity components for gas molecules all vanish for a flowing gas ? 

P R O B LE M S  

4.1  Compute the root-mean-square speed, the average speed, and the most probable speed of an 
oxygen molecule at 300 K and at 500 K. Compare with the values for hydrogen. 

4.2 a) Compare the average speed of an oxygen molecule with that of a molecule of carbon 
tetrachloride at 20 °C. 

b) Compare their average kinetic energies. 
4.3 a) Compute the kinetic energy of a mole of a gas at 300 K and 500 K. 

b) Compute the average kinetic energy of a molecule at 300 K. 
4.4 Kinetic theory was once criticized on the grounds that it should apply even to potatoes. Compute 

the average thermal speed at 25 °C of a potato weighing 100 g. Assuming that the earth's gravity 
field were turned off, how long would it take a potato to traverse 1 m? (After working the problem, 
compare with the result of Problem 2.2 1 . )  

4.5  An oxygen molecule having the average velocity at  300 K is  released from the earth's surface 
to travel upward. If it could move without colliding with other molecules, how high would it go 
before corning to rest ? How high would it go if it had the average kinetic energy at 300 K?  

4.6 Suppose that at some initial time all the molecules in a container have the same translational 
energy, 2.0 x 10- 2 1 J. As time passes, the motion becomes chaotic and the energies finally are 
distributed in a Maxwellian way. 
a) Compute the final temperature of the system. 
b) What fraction of the molecules finally have energies in the range between 1 .98 x 10- 2 1 and 

2.02 x 10- 2 1 J? [Hint : Since the range of energies in part (b) is small, the differential form of 

. .. � the Maxwell distribution may be used.] 
•. 4.� The quantity (c - <C»)2 = c2 - 2c<c) + <C)2 is the square of the deviation of the speed of 
'-� . a molecule from the average speed. Compute the average value of this quantity using the Maxwell 

* For a description of several methods of direct determination of the velocity distribution see K. F. Herzfeld 
and H. Smallwood in A Treatise on Physical Chemistry, H. S. Taylor and S. Glasstone, eds . ,  Vol. II, 3rd ed. 
New York : D.  Van Nostrand, 1 95 1 ,  p.  35ft". 
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distribution, then take the square root of the result to obtain the root-mean-square deviation of 
the distribution. Note the way in which this last quantity depends on temperature and on the 
mass of the molecule. 

4.8 The quantity (E  - «(»)Z = EZ - 2e« )  + «() Z is the square of the deviation of the energy of the 
molecule from the average energy. Compute the average value of this quantity using the Maxwell 
distribution. The square root of this quantity is the root-mean-square deviation ofthe distribution. 
Note its dependence on temperature and the mass of the molecule. 

4.9 The time required for a molecule to travel one metre is lie. 
a) Calculate the average time required for the molecule to travel one metre. 
b) Calculate the root-mean-square deviation of the time from the average time. 
c) What fraction of the molecules require more than the average time to move one metre ? 

4.10 What fraction of molecules have energies within the range ( E) - !kT to (E) + !kT ?  
4.11  Compute the energy corresponding t o  the maximum o f  the energy distribution curve. 

4.12 What fraction of the molecules have energies greater than kT?  2kT?  5kT?  lOkT?  

4 . 13  What fraction of  the molecules have energies between ( E)  - be and (E) + bE, where bE i s  the 
root-mean-square deviation from the average energy? 

4.14 What fraction of the molecules have speeds between (e) - be and (e) + be, where be is the 
root-mean-square deviation from the average speed ? 

4.15 The velocity of escape from a planet's surface is given by De = J2iR. On earth the gravitational 
acceleration is g = 9.80 m/sz, the earth's radius is RE = 6.37 X 106 m. At 300 K what fraction of 
a) hydrogen molecules have velocities exceeding the escape velocity ? 
b) nitrogen molecules have velocities exceeding the escape velocity ? 
On the moon, g = 1 .67 m/s2 ; the moon's radius is RM = 1 .74 X 106 m. Assuming a temperature of 
300 K, what fraction of 
c) hydrogen molecules have velocities exceeding the escape velocity ? 
d) nitrogen molecules have velocities in excess of the escape velocity? 

4.16 What fraction of Clz molecules (8 = 810 K) are in excited vibrational states at 298. 1 5  K ?  at 
500 K ?  at 700 K ?  

4.17 The characteristic vibrational temperature for chlorine i s  8 10 K. Calculate the heat capacity of 
chlorine at 298. 1 5  K ; at 500 K ; at 700 K. 

4.18 The vibrational frequencies in COz are 7.002 x 101 3  s - \ 3.939 X 101 3  s- \ 1 .988 X 101 3  s - \ 
and 1 .988 x 101 3  S- I . Calculate the corresponding characteristic temperatures and the contribu
tions of each vibration to the heat capacity at 298. 1 5  K. 

4.19 The heat capacity of F z at 298. 1 5  K is CoIR = 2.78. Calculate the characteristic vibrational 
frequency. 

4.20 What is the contribution to Cv(vib)IR at T = 0. 18, 0.28, 0.58, 8, 1 . 5e?  
4.21  The water molecule has three vibrational frequencies :  1 1 .27 x 101 3  s - I , 10.94 X 101 3  s - I , 

4.767 X 10 1 3  S - I . Which of these contributes significantly to the vibrational heat capacity at 
298. 1 5  K ? Calculate total heat capacity at 298 . 1 5  K, 500 K, 1000 K, and 2000 K. 

4.22 What fraction of the molecules are in the first excited vibrational state at 300 K, (a) for Iz with 
e = 3 10 K. (b) for Hz with e = 6210 K. 

4.23 At 300 K what fraction of COz molecules are in the first, second, and third excited states of the 
two bending vibrations with v = 1 .988 X 10 1 3  s - I ? 

4.24 What value of Tie is required if less than half of the molecules are to be in the ground vibrational 
state ? To what temperature would this correspond for Iz with e = 310 K?  

4.25 As  a function o f  elT, sketch the fraction o f  molecules in 
a) the ground vibrational state. b) the first excited state. c) the second excited state. 





S o m e  P ro pe rt i es of 
L i q u i d s  a nd So l i d s  

5 . 1  C O N D E N S E D  P H A S E S  

Solids and liquids are referred to collectively as condensed phases. This name emphasizes 
the high density of the liquid or solid as compared with the low density of gases. This 
difference in density is one of the most striking differences between gases and solids or 
liquids. The mass of air in a room of moderate size would not exceed two hundred pounds ; 
the mass of liquid required to fill the same room would be some hundreds of tons. Con
versely, the volume per mole is very large for gases and very small for liquids and solids. 
At STP a gas occupies 22,400 cm3/mole, while the majority of liquids and solids occupy 
between 10 and 100 cm3/mole. Under these conditions the molar volume of a gas is 500 
to 1000 times larger than that of a liquid or solid. 

If the ratio of the gas volume to liquid volume is 1000, then the ratio of the distance 
between the molecules in the gas to that between those in the liquid is the cube root of the 
volume ratio, that is, ten. The molecules of the gas are ten times farther apart on the average 
than are those of the liquid. The distance between molecules in the liquid is roughly equal 
to the molecular diameter ; hence, in the gas the molecules are separated by a distance 
which is, on the average, ten times their diameter. This large spacing in the gas compared 
with that in the liquid results in the characteristic properties of the gas and the contrast of 
these properties with those of the liquid. This comes about simply because of the short
range nature of the intermolecular forces, the van der Waals forces. The effect of these 
forces decreases very sharply with increase in distance between the molecules and falls to 
an almost negligible value at distances of four to five times the molecular diameter. If we 
measure the forces by the magnitude of the term a/fl2 in the van der Waals equation, then 
an increase in volume by a factor of 1000 in going from liquid to gas decreases the term by 
a factor of 106 . Conversely, in the liquid the effect of the van der Waals forces is a million 
times larger than it is in the gas. 

In gases the volume occupied by the molecules is small compared with the total 
volume, and the effect of the intermolecular forces is very smalL In the first approximation 
these effects are ignored and any gas is described by the ideal gas law, which is strictly 
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correct only at p = O. This condition implies an infinite separation of the molecules ; the 
intermolecular forces would be exactly zero, and the molecular volume would be com
pletely negligible. 

Is it possible to find an equation of state for solids or liquids that has the same 
generality as the ideal gas law ? On the basis of what has been said, the answer must be in 
the negative. The distances between molecules in liquids and solids are so small, and the 
effect of the intermolecular forces is correspondingly so large, that the properties of the 
condensed phases depend on the details of the forces acting between the molecules . 
Therefore we must expect that the equation of state will be different for each different 
solid or liquid. If the force law acting between the molecules were a particularly simple 
one and had the same analytical form for all molecules, we could expect that the law of 
corresponding states would have universal validity. In fact, the intermolecular forces do 
not follow such a simple law with precision, so that the law of corresponding states must 
also be expected to fall short of general applicability. It remains a convenient approxima
tion in many practical situations. 

5 . 2  C O E F F I C I E NTS O F  T H E R M A L  EXPA N S I O N  A N D 
C O M P R ES S i B I LITY 

The dependence of the volume of a solid or liquid on temperature at constant pressure 
can be expressed by the equation 

v = Vo(1 + ext), (5 . 1 ) 

where t is the celsius temperature, Vo is the volume of the solid or liquid at 0 °C, and ex is 
the coefficient of thermal expansion. Equation (5. 1 )  is formally the same as Eq. (2. 5), 
which relates the volume of a gas to the temperature. The important difference between 
the two equations is that the value of ex is approximately the same for all gases, while each 
liquid or solid has its own particular value of ex. Any particular substance has different 
values of ex in the solid and in the liquid state. The value of ex is constant over limited ranges 
of temperature. If the data are to be represented with precision over a wide range of 
temperature, it it necessary to use an equation with higher powers of t :  

v = Vo(1 + a t + bt2 + . .  -), (5 .2) 

where a and b are constants. For gases and solids, ex is always positive, while for liquids ex 
is usually positive. There are a few liquids for which ex is negative over a small range of 
temperature. For example, between 0 and 4 °C water has a negative value of ex. In this 
small temperature interval, the specific volume of water decreases as the temperature 
Increases. 

In Eq. (5. 1 ), Vo is a function of pressure. Experimentally, it is found that the relation 
between volume and pressure is given by 

Vo = vg [1 - K(P - l )J , (5. 3) 

where vg is the volume at 0 °C under one atmosphere pressure, p is the pressure in 
atmospheres, and K is the coefficient of compressibility, which is a constant for a particular 
substance over fairly wide ranges of pressure. The value of K is different for each substance 
and for the solid and liquid states of the same substance. It is shown in Section 9.2 that 
the necessary condition for mechanical stability of a substance is that K must be positive. 

According to Eq. (5.3) the volume of a solid or liquid decreases linearly with 
pressure. This behavior is in sharp contrast to the behavior of gases in which the volume 
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is inversely proportional to the pressure. Furthermore, the values of K for liquids and 
solids are extremely small, being of the order of 10 - 6 to 10 - 5 atm - 1 . If we take K = 10 - 5 , 
then for a pressure of two atmospheres, the volume of the condensed phase is, by Eq. 
(5.3), V = vg [1 - 10- 5(1)] . The decrease in volume in going from 1 atm to 2 atm 
pressure is 0.001 %. If a gas were subjected to the same change in pressure, the volume 
would be halved. Because moderate changes in pressure produce only very tiny changes 
in the volume of liquids and solids, it is often convenient to consider them to be incompressible (K = 0) in the first approximation. 

The coefficients a and K are usually given more general definitions than are implied 
by Eqs. (5. 1 )  and (5.3). The general definitions are 

a = � (:�t K = - � (�;) T' (5 .4) 

According to Eq. (5.4), a is the relative increase (av/V) in volume per unit increase in 
temperature at constant pressure. Similarly, K is the relative decrease in volume ( - av  IV) 
per unit increase in pressure at constant temperature. 

If the temperature increment is small, the general definition of a yields the result in 
Eq. (5. l) . Rearranging Eq. (5 .4), we have 

dV 
V = a dT. (5. 5) 

If the temperature is changed from To to T (corresponding to a change from 0 °C to t DC), 
then the volume changes from Vo to V. Integration assuming a is constant yields 
In (V/Vo) = a(T - To), or V =  Vo ea(T - To). If a(T - To) � 1 , we can expand the exponen
tial in series to obtain V = Vo [1 + a(T - To)] , which is the same as Eq. (5. 1) if To = 
273 . 1 5  K. By a similar argument, the definition of K can be reduced for a small increment 
in pressure to Eq. (5.3). 

Combining Eqs. (5. 1) and (5.3) by eliminating Vo yields an equation of state for the 
condensed phase : 

V = vg[1 + a(T - To)] [1 - K(P - 1)] . (5.6) 

To use the equation for any particular solid or liquid, the values of a and K for that sub
stance must be known. Values of a and K for a few common solids and liquids are given 
in Table 5 . 1 .  

Tab le  5 . 1  
Coeff ic ients of therma l  expans ion and compress i b i l ity at 20  °C 

Solids 

Copper Graphite Platinum Quartz Silver NaCl 

0:/10- 4 K- 1 0.492 0.24 0.265 0. 15  0.583 1 .21 
K/1O- 6 atm- I 0.78 3.0 0.38 2.8 1 .0 4.2 

Liquids 

C6H6 CCl4 C2H5OH CH30H H2O Hg 

0:/10- 4 K- 1 12.4 12.4 1 1 .2 12.0 2.07 1 . 8 1  
K/1O- 6 atm- 1 94 103 1 10 120 45.3 3.85 
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5 . 3  H EATS O F  f U S I O N ; VA P O R i ZATI O N ; S U B LI M ATI O N  

The absorption or release of heat without any accompanying temperature change is 
characteristic of a change in the state of aggregation of a substance. The quantity of heat 
absorbed in the transformation of solid to liquid is the heat of fusion. The quantity of heat 
absorbed in the transformation of liquid to vapor is the heat of vaporization. The direct 
transformation of a solid to vapor is called sublimation. The quantity of heat absorbed is 
the heat of sublimation, which is equal to the sum of the heats of fusion and vaporization. 

An obvious but important fact about condensed phases is that the intermolecular 
forces hold the molecules together. The vaporization of a liquid requires the molecules to 
be pulled apart against the intermolecular forces. The energy required is measured 
quantitatively by the heat of vaporization. Similarly, energy is required to pull the mole
cules out of the ordered arrangement in the crystal to the disordered arrangement, usually 
at a slightly larger distance of separation, existing in the liquid. This energy is measured 
by the heat of fusion. 

Liquids composed of molecules that have comparatively strong forces acting hetween 
them have high heats of vaporization, while those composed of weakly interacting mole
cules have low heats of vaporization. The van der Waals a is a measure of the strength of 
the attractive forces ; we expect the heats of vaporization of substances to fall in the same 
order as the values of a. This is in fact correct ; it can be shown that for a van der Waals 
fluid the heat of vaporization per mole, Qvap ' is equal to alb. 
5 . 4  VA P O R  P R ESS U R E  

If a quantity of a pure liquid is placed in an evacuated container that has a volume greater 
than that of the liquid, a portion of the liquid will evaporate so as to fill the remaining 
volume of the container with vapor. Provided that some liquid remains after the equilib
rium is established, the pressure of the vapor in the container is a function only of the 
temperature of the system. The pressure developed is the vapor pressure of the liquid, 
which is a characteristic property of a liquid ; it increases rapidly with temperature. The 
temperature at which the vapor pressure is equal to 1 atm is the normal boiling point 
of the liquid, Tb • Some solids are sufficiently volatile to produce a measurable vapor 
pressure even at ordinary temperatures ; if it should happen that the vapor pressure of the 
solid reaches 1 atm at a temperature below the melting point of the solid, the solid sub
limes. This temperature is called the normal sublimation point, Ts . The boiling point and 
sublimation point depend upon the pressure imposed upon the substance. 

The existence of a vapor pressure and its increase with temperature are consequences 
of the Maxwell-Boltzmann energy distribution. Even at low temperatures a fraction of 
the molecules in the liquid have, because of the energy distribution, energies in excess of 
the cohesive energy of the liquid. As shown in Section 4 . 10, this fraction increases rapidly 
with increase in temperature. The result is a rapid increase in the vapor pressure with 
increase in temperature. The same is true of volatile solids. 

The argument implies that at a specified temperature a liquid with a large cohesive 
energy (that is, a large molar heat of vaporization Qvap) will have a smaller vapor pressure 
than one with a small cohesive energy. At 20 °C the heat of vaporization of water is 
44 kJ/mol, while that of carbon tetrachloride is 32 kllmol ;  correspondingly, the vapor 
pressures at this temperature are 2.33 kPa for water and 12. 1 3  kPa for carbon tetrachloride. 

From the general Boltzmann distribution, the relation between the vapor pressure 
and heat of vaporization can be made plausible. A system containing liquid and vapor in 
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equilibrium has two regions in which the potential energy of a molecule has different 
values. The strong effect of the intermolecular forces makes the potential energy low in 
the liquid ; W = O. Comparatively, in the gas the potential energy is high, W By the 
Boltzmann law, Eq. (4.90), the number of molecules of gas per cubic metre, N = 
A exp ( - WIRT), where A is a constant. In the gas, the number of molecules per cubic 
metre is proportional to the vapor pressure, so we have P = B exp ( - WIRT), where B is 
another constant. The energy required to take a molecule from the liquid and put it in the 
vapor is W, the energy of vaporization. As we shall see later, the molar heat of vaporization, 
Qvap , is related to W by Qvap = W + R T. Putting this value of W in the expression for p, 
we obtain 

(5.7) 

where Poo is also a constant. Equation (5.7) relates the vapor pressure, temperature, and 
the heat of vaporization ; it is one form of the Clausius-Clapeyron equation for which we 
will give a more rigorous derivation in Section 12.9. The constant Pro has the same units 
as p, and can be evaluated in terms of Qvap and the normal boiling point 1/,. At 1/, the vapor 
pressure is 1 atmosphere, so that 1 atm = pooe- Qvap/RTb . Then 

Poo = (l atm)e +Qvap/RTb. (5.8) 

The auxiliary Eq. (5.8) suffices to evaluate the constant Pro .  
Taking logarithms, Eq. (5.7) becomes 

1 
Qvap 1 n p = - R T + n poo, (5.9) 

which is useful for the graphic representation of the variation of vapor pressure with 
temperature. The function In p is plotted against the function liT. Equation (5.9) is then 
the equation of a straight line, with the slope - Qvap/R. (If common logarithms are used, 
the slope is - Qvap/2.303R.) The intercept at liT = 0 is In Poo (or 10gl o Poo). Figure 5 . 1  is a 
typical plot of this kind ; the vapor-pressure data are for benzene. 

A convenient method for determining the heat of vaporization ofa liquid is to measure 
its vapor pressure at several temperatures. After the experimental data are plotted in the 
manner of Fig. 5 . 1 ,  the slope of the line is measured and from this the value of Qvap is 
calculated. If only simple apparatus is used, this method is capable of yielding results of 
higher accuracy than would a calorimetric determination of Qvap using simple apparatus. 
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5.5 OTH E R  P R O P E RTi ES O F  L IQU I D S 

The viscosity, or more precisely, the coefficient of viscosity, of a liquid measures the resis
tance to flow under stress. Because the molecules of liquid are very close to one another, a 
liquid is much more viscous than a gas. The close spacing and the intermolecular forces 
both contribute to this resistance to flow. Viscosity is discussed in somewhat greater 
detail in Chapter 30. 

A molecule in the bulk of a liquid is attracted by its neigh bors about equally, and over 
a long time interval does not experience an unbalanced force in any particular direction. 
A molecule in the surface layer of a liquid is attracted by its neighbors, but since it only has 
neighbors below it in the liquid, it is attracted toward the body of the liquid. "Since the 
molecules on the surface are bound only to the molecules on one side, they do not have 
as Iow an energy as do those in the body of the liquid. To move a molecule from the body 
of the liquid to the surface requires the addition of energy. Since the presence of another 
molecule in the surface increases the surface area, it follows that energy must be supplied 
to increase the area of the liquid surface. The energy required to effect an increase of 1 m2 
is called the surface tension of the liquid. Surface tension is dealt with in more detail in the 
chapter on surface properties . For the moment we simply note that the intermolecular 
forces are responsible for this phenomenon. 

5 . 6  R EV I EW O F  STR U CTU R A L  D i F F E R E N C E S  
B ETWE E N  S O li DS ,  L IQU I DS ,  A N D G A S E S  

We have described the structure ofa gas simply in  terms o f  the chaotic motion o f  molecules 
(thermal motion), which are separated from one another by distances that are very large 
compared with their own diameter. The influence of intermolecular forces and finite 
molecular size is very small and vanishes in the limit of zero pressure. 

Since in a liquid the molecules are separated by a distance of the same magnitude as 
the molecular diameter, the volume occupied by a liquid is about the same as the volume 
of the molecules themselves. At these close distances the effect of the intermolecular 
forces is very large, with the result that each molecule has a low potential energy compared 
with its energy in the gas. The difference in potential energy between gas and liquid is the 
energy that must be supplied to vaporize the liquid. The motion of the molecules in the 
liquid is still chaotic, but since the liquid occupies a much smaller volume, there is less 
randomness in the space distribution of the molecules .  The liquid has a very low compress
ibility simply because there is very little empty space left between the molecules. The liquid 
is capable of flow under stress because the molecule does have freedom to move anywhere 
within the volume ; it must, however, push other molecules aside to do so, and as a con
sequence the resistance to flow is greater than for the gas. 

The molecules in a solid are locked in a regular pattern ; the spatial arrangement is not 
random as in the gas or liquid, but completely ordered. The solid does not flow under the 
application of a small stress, as do liquids or gases, but deforms slightly, snapping back 
when the stress is removed. This highly ordered arrangement is always accompanied by 
a lower potential energy, so that energy is required to convert the solid to a liquid. The 
ordered arrangement usually has a somewhat smaller volume (perhaps 5 to 10 %) than 
the liquid volume. The solid has a coefficient of compressibility that is about the same 
magnitude as that of the liquid. 

The distribution of energies in solids and liquids is essentially the same as in the gas 
and, so long as the temperature is sufficiently high, is described by the Maxwell-Boltzmann 
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distribution function. The motion in gases is characterized by kinetic energy only ; in 
solids and liquids there is a potential energy as well. The motion in solids consists purely 
of vibration. In liquids, some of the molecules are moving through the liquid while others 
are momentarily caged by their neighbors and are vibrating in the cage. The motion in 
the liquid has some of the characteristics of the unhampered motion of molecules in the 
gas and some of the characteristics of the vibration of molecules in the solid. Overall, the 
liquid bears a closer resemblance to a solid than to a gas. 

Q U ESTI O N S 

5.1 Why are liquids, and not gases, used in hydraulic pumps ? 
5.2 A typical liquid with ex = 10- 3 K - 1 and K = 10-4 atm - 1 is heated by 10 K. Estimate the external 

pressure required to keep the density of the liquid constant. 
5.3 For most molecular substances, the heat of vaporization is several times larger than the heat of 

fusion. Explain this on the basis of structure and forces. 
5.4 What argument can be given that solid naphthalene (mothballs) has a measureable vapor pressure 

at room temperature ? 
5.5 The heat of vaporization of H20 is about 1 . 5  times that of CCI4 . Which liquid should have the 

larger surface tension ? 

P R O B LE M S  

5.1 At 25 °C a sealed, rigid container is completely filled with liquid water. If the temperature is 
raised by 10 °C, what pressure will develop in the container ? For water, ex = 2.07 x 10- 4 K - 1 ; 
K = 4.50 X 10- 5 atm- 1 • 

5.2 The coefficient of linear expansion is defined by a = ( 1/T)(dljdt). If a is very small and has the 
same value in any direction for a solid, show that the volume expansion coefficient ex is approxi
mately equal to 3a. 

5.3 The correction term to the pressure in the van der Waals equation, a/y2, has the dimensions of 
energy per unit volume, Jjm3 ; therefore a/V is an energy per mole. Suppose that the energy per 
mole of a van der Waals fluid has the form [J = J(T) - a/V. At a given temperature find the 
difference between the energy of water as a gas and the energy of liquid water, assuming that 
Ygas = 24 dm3jmol and Yliq = 18 cm3jmol. For water, a = 0.580 m6 Pa mol- 2 . Compare this 
difference with the heat of vaporization, 44.016  kJjmol. 

5.4 The heat of vaporization of water is 44.016 kJjmol. The normal (1 atm) boiling point is 100 °C. 
Compute the value of the constant Poo in Eq. (5.7) and the vapor pressure of water at 25 °C. 

5.5 The Clausius-Clapeyron equation relates the equilibrium vapor pressure P to the temperature T. 
This implies that the liquid boils at the temperature T if it is subjected to a pressure p. Use this 
idea together with the Boltzmann distribution to derive a relation between the boiling point of a 
liquid T, the boiling point under 1 atm pressure To , and the height above sea level z. Assume 
that the pressure at sea level is Po = 1 atm. The temperature of the atmosphere is Ta . If the 
atmosphere is at 27 °C compute the boiling point of water at 2 km above sea level ; Qvap = 

44.016 kJjmol ; To = 373 K. 
5.6 If ex = (ljV)(8Vj8T)p , show that ex = - (ljp)(8pj8T)p , where p is the density. 
5.7 Show that (dpjp) = - ex  dT + K dp, where p is the density, p = wjV, where the mass, w, is constant, 

and V is the volume. 
5.S Since in forming second derivatives of a function of two variables, the order of differentiation 

does not matter, we have (82 Vj8T 8p) = (82 V/8p 8T). Use this relation to show that (8ex/8ph = 

- (8K/8T)p . 
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5.9 The following vapor pressure data are available for liquid metallic zinc. 

p/mmHg 10 40 100 400 

ttC 593 673 736 844 

From an appropriate plot of the data, determine the heat of vaporization of zinc and the normal 
boiling point. 

5.10 From the general definition of ct., we find V = Va exp (S� ct. dt). If ct. has the form ct. = ct.a + ct.'t + 
�ct."t2 where ct.a , ct.', and ct." are constants, find the relation between ct.o , ct.', and ct." and the constants 
a, b, and c in the empirical equation 

V = Vo(l + at + bt2 + ct3). 



T h e  Laws of 
T h e rmodyn a m i cs :  
G e n era l i t i es a n d t h e  
Zerot h Law 

6 . 1  K I N D S O F  E N E R G Y  A N D T H E F I R ST LAW O F  
T H E R M O DY NA M I CS 

Since a physical system may possess energy in a variety of ways, we speak of various kinds 
of energy. 

1. Kinetic energy : energy possessed by a body in virtue of its motion. 
2. Potential energy : energy possessed by a body in virtue of its position in a force field ; 

for example, a mass in a gravity field, a charged particle in an electrical field. 
3. Thermal energy : energy possessed by a body in virtue of its temperature. 
4. Energy possessed by a substance in virtue of its constitution ; for example, a compound 

has " chemical " energy, nuclei have " nuclear " energy. 
5. Energy possessed by a body in virtue of its mass ; the relativistic mass-energy equiva

lence. 
6. A generator " produces " electrical energy. 
7. A motor " produces " mechanical energy. 

Many other examples could be mentioned : magnetic energy, strain energy, surface 
energy, and so forth. The object of thermodynamics is to seek out logically the relations 
between kinds of energy and their diverse manifestations. The laws of thermodynamics 
govern the transformation of one kind of energy into another. 

In the last two examples a " production " of energy is mentioned. The electrical 
energy " produced " by the generator did not come from nothing. Some mechanical 
device, such as a turbine, was needed to run the generator. Mechanical energy disappeared 
and electrical energy appeared. The quantity of electrical energy " produced " by the 
generator, plus any friction losses, is exactly equal to the quantity of mechanical energy 
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" lost " by the turbine. Similarly, in the last example, the mechanical energy produced by the 
motor, plus the friction losses, is exactly equal to the electrical energy supplied to the 
motor from the power lines. The validity of this conservation law has been established by 
many most careful and painstaking direct experimental tests and by hundreds ofthousands 
of experiments that confirm it indirectly. 

The first law of thermodynamics is the most general statement of this law of conserva
tion of energy ; no exception to this law is known. The law of conservation of energy is a 
generalization from experience and is not derivable from any other principle . 

6 . 2  R EST R I CTI O N S  O N  T H E C O N VE R S I O N  O F  
E N E R G Y  F R O M  O N E  F O R M  TO A N OT H E R  

The first law of thermodynamics does not place any restriction on the conversion of energy 
from one form to another ; it simply requires that the total quantity of energy be the same 
before and after the conversion. 

It is always possible to convert any kind of energy into an equal quantity of thermal 
energy. For example, the output of the generator can be used to operate a toaster im
mersed in a tub of water. The thermal energy of the water and the toaster is increased by 
just the amount of electrical energy expended. The electric motor can turn a paddle wheel 
in the tub of water (as in Joule's experiments), the mechanical energy being converted 
to an increase in the thermal energy of the water, which is manifested by an increase in the 
temperature of the water. All kinds of energy can be completely transformed into thermal 
energy manifested by an increase in temperature of some sample of matter, usually water. 
The quantity of energy involved can be measured by measuring the temperature rise of a 
specified mass of water. 

Energy may also be classified according to its ability to increase the potential energy 
of a mass by lifting it against the force of gravity. Only a limited number of the kinds of 
energy can be completely converted into the lifting of a mass against gravity (for example, 
the mechanical energy produced by the electric motor). The thermal energy of a steam 
boiler or the chemical energy of a compound can be only partly converted into the lifting 
of a mass. The limitations on the conversion of energy from one form to another lead us to 
the second law of thermodynamics. 

6 . 3  T H E S E CO N D  LAW O F  T H E R M O DY N A M I CS 

Imagine the following situation. A hard steel ball is suspended at a height h above a hard 
steel plate. Upon release the ball travels downward losing its potential energy and 
simultaneously increasing its velocity and hence its kinetic energy. The ball hits the plate 
and rebounds. We assume that the collision with the plate is elastic ; no energy is lost to the 
plate in the collision. On the rebound the ball travels upward, gaining in potential energy 
and losing kinetic energy until it returns to the original height h. At this point the ball has 
its original energy, mgh, and its original kinetic energy, zero. We can either stop the motion 
at this point or let the ba11repeat the motion as often as we please. The first law of thermo
dynamics in this case is simply the law of conservation of mechanical energy. The sum of 
the potential energy and the kinetic energy must be a constant throughout the course of 
the motion. The-first law is not in the least concerned with how much of the energy is 
potential or how much is kinetic, but requires only that the sum remain constant. 



The Second Law of Thermodynamics 95 

Now imagine a somewhat different situation. The ball is poised above a beaker of 
water. Upon release, it loses potential energy and gains kinetic energy, then enters the 
water and comes to rest at the bottom of the beaker. Strictly from the standpoint of 
mechanics, it seems that some energy has been destroyed, because in the final state the 
ball has neither potential energy nor kinetic energy, while initially it possessed potential 
energy. Mechanics makes no prediction of the fate of this energy which has " disappeared." 
However, careful examination of the system reveals that the temperature of the water is 
slightly higher after the ball has entered and come to rest than before. The potential energy 
of the ball has been converted to thermal energy of the ball and the water. The first law of 
thermodynamics requires that both the ball and the beaker of water be included in the 
system, and that the total of potential energy, kinetic energy, and thermal energy of both 
ball and water be constant throughout the motion. Using Eb and Ew for the energies of the 
ball and water, the requirement can be expressed as 

Eb(kin) + Ew(kiO) + Eb(pot) + Ew(pot) + Eb(therm) + Ew(therm) = constant. 

As in the case of the ball and the plate, the first law is not concerned with how the constant 
amount of energy is distributed among the various forms. 

There is an important difference between the case of the steel plate and that of the 
beaker of water. The ball can bounce up and down on the plate for an indefinite period, but 
it falls only once into the beaker of water. Fortunately, we never observe a ball bearing in a 
glass of water suddenly leaping out ofthe glass, leaving the water slightly cooler than it was. 
It is important to realize, however, that the first law of thermodynamics does not rule out 
this disconcerting event. 

The behavior of the ball and the beaker of water is typical of all real processes in one 
respect. Every real process has a sequence that we recognize as natural ; the opposite 
sequence is unnatural. We recognize the falling of the ball and its coming to rest in the 
water as a natural sequence. If the ball were at rest in the beaker and then hopped out of 
the water, we would admit that this is not a natural sequence of events. 

The second law of thermodynamics is concerned with the direction of natural pro
cesses. In combination with the first law, it enables us to predict the natural direction of any 
process and, as a result, to predict the equilibrium situation. To choose a complicated 
example, if the system consists of a gasoline tank and an engine mounted on wheels, the 
second law allows us to predict that the natural sequence of events is : consumption of 
gasoline, the production of carbon dioxide and water, and the forward motion ofthe whole 
device. From the second law, the maximum possible efficiency of the conversion of the 
chemical energy of the gasoline into mechanical energy can be calculated. The second law 
also predicts that we cannot manufacture gasoline by feeding carbon dioxide and water 
into the exhaust and pushing this contraption along the highway ; not even if we push it 
backwards along the highway ! 

Obviously, if thermodynamics can predict results of this type, it must have enormous 
importance. In addition to having far-reaching theoretical consequences, thermo
dynamics is an immensely practical science. A simpler example of the importance of the 
second law to the chemist is that it allows the calculation of the equilibrium position of 
any chemical reaction, and it defines the parameters that characterize the equilibrium 
(for example, the equilibrium constant). 

We shall not deal with the third law of thermodynamics at this point. The principal 
utility of the third law to the chemist is that it permits the calculation of equilibrium 
constants from calorimetric data (thermal data) exclusively. 
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6 . 4  T H E  Z E R OT H  l AW O F  T H E R M O DY N A M I CS 

The law of thermal equilibrium, the zeroth law of thermodynamics, is another important 
.principle. The importance of this law to the temperature concept was not fully realized 
until after the other parts of thermodynamics had reached a rather advanced state of 
development ; hence the unusual name, zeroth law. 

To illustrate the zeroth law we consider two samples of gas. * One sample is confined 
in a volume V1 , the other in a volume Vz .  The pressures are Pl and P2 , respectively. At the 
beginning the two systems are isolated from each other and are in complete equilibrium. 
The volume of each container is fixed, and we imagine that each has a pressure gauge, 
as shown in Fig. 6. 1 (a). 

The two systems are brought in contact through a wall. Two possibilities exist : 
when in contact through the wall the systems either influence each other or they do not. 
If the systems do not influence each other, the wall is an insulating, or adiabatic, wall ; of 
course, in this situation the pressures of the two systems are not affected by putting the 
systems in contact. If the systems do influence one another after putting them in contact, 
we will 0 bserve that the readings of the pressure gauges change with time, finally reaching 
two new values P'l and p� which no longer change with time, Fig. 6. 1 (b). In this situation the 
wall is a thermally conducting wall ; the systems are in thermal contact. After the properties 
of two systems in thermal contact settle down to values that no longer change with time, 
the two systems are in thermal equilibrium. These two systems then have a property in 
common, the property of being in thermal equilibrium with each other. 

Consider three systems A, B, and C arranged as in Fig. 6.2(a). Systems A and B are in 
thermal contact, and systems B and C are in thermal contact. This composite system is 
allowed sufficient time to come to thermal equilibrium. Then A is in thermal equilibrium 
with B, and C is in thermal equilibrium with B. Now we remove A and C from their contact 
with B and place them in thermal contact with each other (Fig. 6.2b). We then observe 
that no changes in the properties of A and C occur with time. Therefore A and C are in 
thermal equilibrium with each other. This experience is summed up in the zeroth law of 
thermodynamics : Two systems that are both in thermal equilibrium with a third system 
are in thermal equilibrium with each other. 

The temperature concept can be stated precisely by : (1) Systems in thermal equilibrium 
with each other have the same temperature ; and (2) systems not in thermal equilibrium 
with each other have dIfferent temperatures. The zeroth law therefore gives us an opera
tional definition of temperature that does not depend on the physiological sensation of 
" hotness " or " coldness." This definition is in agreement with the physiological one, 

* 

F i g u re 6 . 1  ( a )  Systems iso lated . (b)  Systems i n  thermal  contact. 

The argument does not depend in the least on whether gases, real or ideal, or liquids or solids were chosen. 
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(b) 

since two bodies in thermal equilibrium feel the same as far as hotness is concerned. The 
zeroth law is based on the experience that systems in thermal contact are not in complete 
equilibrium with one another until they have the same degree of hotness, that is, the same 
temperature. 

6 . 5  T H E R M O M ET R Y  

The zeroth law suggests a method for measuring the temperature o f  any system. We 
choose a system, the thermometer, having some property y that is conveniently measur
able and that varies reasonably rapidly with temperature. The thermometer is allowed to 
come to thermal equilibrium with a system whose temperature is reproducible (for 
example, melting ice). The value of y is measured. For the thermometer, suppose that we 
choose a small quantity of gas confined in a box of constant volume, which is fitted with a 
pressure gauge. After this thermometer comes to thermal equilibrium with the melting 
ice, the needle of the pressure gauge will stand in a definite position. This position we can 
mark with any number we please ; let us follow Celsius and mark it zero. The thermometer 
is next allowed to come to thermal equilibrium with another system having a reproducible 
temperature : water boiling under 1 atm pressure. The needle stands at some new position, 
which we can mark with any arbitrary number ; again following Celsius we mark the new 
position with 100. Between the 0 and the 100 we place 99 evenly spaced marks ; the dial 
above 100 and below 0 is divided into intervals of the same width. The thermometer is 
ready. To measure the temperature of any body, the thermometer is allowed to come to 
thermal equilibrium with the body ; the position of the needle indicates the temperature of 
the body in degrees. One caution is in order here : the property chosen as the thermometric 
property must continually increase or decrease in value as the temperature rises in the 
range of application of the thermometer. The thermometric property may not have a 
maximum or minimum or stationary value in the temperature range in which the ther
mometer is to be used. 

6 . 5 . 1  The  Thermomet r i c  Equat i o n  

The procedure i s  easily reduced t o  a formula by  which the temperature can b e  calculated 
from the measured value of the thermometric property y. Let Yi be the value at the ice 
point and Ys be the value at the steam pOInt. These points are separated by 100 degrees. 
Then 

dy 
dt 

Ys - Yi 
100 - 0 
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The right-hand side of this equation is a constant ; multiplying through by dt and inte
grating, we obtain 

(6. 1)  

where C is an integration constant. But at t = 0, Y = Yi ; using these values, Eq. (6. 1)  
becomes Yi = C. Using this value for C, Eq. (6. 1)  reduces to 

Solving for t, we obtain 

. Ys - Yi Y = lO()t + Yi ' 

t = Y - Yi 100 
Ys - Yi ' (6.2) 

which is the thermometric equation. From the measured value of the thermometric 
property Y the temperature on this particular scale can be calculated. 

More generally, suppose we choose any two fixed temperatures to which we assign 
the arbitrary values t 1 and tz . If Y 1 and Yz are the values of the thermometric property at 
these temperatures, the thermometric equation, Eq. (6.2), becomes 

Y - Y1 t = t1 + (tz - t 1) Yz - Y1 
Again, from a measurement of Y we can calculate t. 

(6.3) 

An objection may be raised against this procedure on the grounds that it seems to 
require that the thermometric property be a linear function of the temperature. The 
objection is without substance, because we have no way of knowing whether a property 
is linear with temperature until we have chosen some method of measuring temperature. 
In fact, the method of operation by its very nature automatically makes the thermometric 
property a linear function of the temperature measured on that particular scale. This 
reveals a very real difficulty associated with thermometry. A different scale of temperature 
is obtained for every different property chosen as the thermometric property. Even with 
one substance, different scales of temperature will be obtained depending on which prop
erty is chosen as the thermometric property. Truly, this is an outrageous turn of events ; 
imagine the consequences if a similar state of affairs existed in the measurement of length : 
The size of the centimetre would be different depending on whether the metre stick was 
made of metal or wood or paper. 

We can attempt to save the situation by searching for a class of substances all of which 
have some property that behaves in much the same way with temperature. Gases come to 
mind. For a given change in temperature, the relative change in pressure at constant volume 
(or relative change in volume under constant pressure) has nearly the same value for all 
real gases. The behavior of gases can be generalized in the limit of zero pressure to that of 
the ideal gas. So we might use an ideal gas in the thermometer and define an ideal gas scale of temperature. This procedure is quite useful, as we have seen in Chapter 2. In 
spite of its utility, the ideal gas scale of temperature does not resolve the difficulty. In the 
first situation different substances yielded different temperature scales, but at least each 
of the scales depended upon some property of a real substance. The ideal gas scale is a 
generalization to be sure, but the scale depends on the properties of a hypothetical sub
stance ! 
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Fortunately, there is a way out of this predicament. Using the second law of thermo
dynamics it is possible to establish a temperature scale that is independent of the particular 
properties of any substance, real or hypothetical. This scale is the absolute, or the thermodynamic, temperature scale, also called the Kelvin scale after Lord Kelvin, who first 
demonstrated the possibility of establishing such a scale. By choosing the same size degree, 
and with the usual definition of the mole of substance, the Kelvin scale and the ideal gas 
scale become numerically identical. The fact of this identity does not destroy the more 
fundamental character of the Kelvin scale. We establish this identity because of the con
venience of the ideal gas scale compared with other possible scales of temperature. 

Having overcome the fundamental difficulties, we use all sorts of thermometers with 
confidence, requiring only that if the temperatures of two bodies A and B are measured 
with different thermometers, the thermometers must agree that tA > tB or that tA = tB 
or that tA < tB ' The different thermometers need not agree on the numerical value of 
either t A or t B ' If it is necessary, the reading of each thermometer can be translated into the 
temperature in kelvins ; then the numerical values must agree. 

Originally the ice point on the Kelvin scale was determined by using a constant-volume 
gas thermometer to measure the pressure and assigning 100 degrees between the ice point 
and the steam point. The temperature on this centigrade gas scale is given by 

t = P - Pi (100), 
Ps - Pi 

where P is the pressure at t ; Pi and Ps are the pressures at the ice point and steam point, 
respectively. It turns out that the quantity 

'T' _ l ' 
100Pi 

1 0  - 1m ---

Pi -+ O Ps - Pi 
is a universal constant, independent of the gas in the thermometer. The thermodynamic 
temperature T is determined by 

T = lim 
lOOp 

. 
Pi -+ O Ps - Pi 

Unfortunately, although the value of To does not depend on the gas, it does depend on 
how accurately the values of Pi and Ps are measured. As the accuracy of the measurements 
increased, the value shifted from 273 . 1 3  to 273. 17 .  This would not be too troublesome at 
ordinary temperatures, but for investigators working at very low temperatures it was 
intolerable. At 1 .00 K an uncertainty in the origin of ± O.Ol K would be comparable to 
an error in the boiling point of water of ± 4 0c. 

6 . 5 . 3  C u rrent D ef i n it i o n  of  the  Tem peratu re Sca l e  

The current definition of the temperature scale is based on one fixed point, the triple point 
of water. The absolute temperature of that point is defined arbitrarily as 273. 16  K exactly. 
(The triple point of water is that temperature at which pure liquid water is in equilibrium 
with ice and water vapor.) This definition fixes the size of the kelvin, the " degree " on the 
thermodynamic scale. The size of the Celsius degree is defined to be equal to one kelvin 
exactly and the origin of the Celsius scale of temperature is defined as 273 . 1 5  K exactly. 



1 00 The laws of Thermodynamics 

This point is very close to the ice point ; t = +0.0002 dc. Similarly, 100 °C is very close 
to the steam point but is not exactly at the steam point. The difference is much too small 
to cause any concern. 

QU E STI O N S  

6.1  A pendulum swinging in a vacuum will continue indefinitely, but will come to rest if immersed 
in air. How do the first and second laws apply to these situations ? 

6.2 What is the thermometric property employed in ordinary mercury thermometers ? 

P R O B LE M S  

Conversion factor : 

1 watt = 1 joule/second 

6.1 An electric motor requires 1 kilowatt-hour to run for a specified period of time. In this same 
period it produces 3200 kilojoules of mechanical work. How much energy is dissipated in friction 
and in the windings of the motor ? 

6.2 A ball bearing having a mass of 10 g falls through a distance of 1 metre and comes to rest. How · 
much energy is dissipated as thermal energy? 

6.3 A bullet, mass = 30 g, leaves the muzzle of a rifle with a velocity of 900 m/s. How much energy 
is dissipated in bringing the bullet to rest ? 

6.4 One proposal in the so-called synthetic fuels program is to gasefy coal in situ by forcing steam into 
the underground coal seam, thus converting the coal into CO and H2 by the water-gas reaction : 

C + H20 -------* CO + H2 . 
To make this reaction go, 1 75.30 kJ of energy must be supplied for each mole of carbon consumed. 
This energy is obtained by setting the coal on fire in air or oxygen, then introducing steam into 
the gas stream. The reaction 

C + O2 -------* CO2 
supplies 393 .51 kJ for each mole of carbon burned. When the exit mixture is finally used as fuel, 
282.98 kJ/mol CO and 285.83 kJ/mol H2 are recovered. 
a) What fraction of the coal must be burned to CO2 to drive the water-gas reaction ? 
b) Adjust for the coal burned to drive the process (assuming there are no losses). How much 
more energy is obtained from the combustion of the CO and H2 than would have been obtained 
if the coal had been burned directly ? 

6.S a) Suppose that we use the equilibrium vapor pressure of water as a thermometric property in 
constructing a scale of temperature, t' . In terms of the Celsius temperature, t, the vapor pressure 
is (to the nearest mmHg) 

t;oC 0 25 50 75 100 

p/mmHg 5 24 93 289 760 

If the fixed points, ice point and steam point, are separated by 100° on the t' scale, what will 
be the temperatures t' corresponding to t = 0, 25, 50, 75, and 100 °C? Plot t' versus t. 
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b) The vapor pressures of benzene and water in terms of the Celsius temperature have the following 
values : 

t;oC 7.6 26. 1 60.6 80. 1 

p (C6H6)/mmHg 40 100 400 760 

p (H2O)/mmHg 8 25 1 54 356 

Plot the vapor pressure of benzene as a function of t ' ,  the temperature on the water vapor 
pressure scale. 

6.6 The length of a metal rod is given in terms of the Celsius temperature t by 

I = 10( 1  + at + bt2), 
where a and b are constants. A temperature scale, t', is defined in terms of the length of the metal 
rod, taking 1000 between the ice point and the steam point. Find the relation between t' and t. 

6.7 With the present scale of absolute temperature, T, the zero of the Celsius scale is defined as 273 . 1 5  K 
exactly. Suppose we were to define an absolute scale, T', such that the zero of the Celsius scale 
was at 300 K', exactly. If the boiling point of water on the Celsius scale is 100 °C, what would be 
the boiling point of water on the T' scale ? 
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E n e rgy a n d t h e  F i rst 
Law of T h e rmodyn a m i cs ;  
T h e rmoc h e m i st ry 

7 . 1  T H E R M O DY N A M I C  T E R M S : D E F I N IT I O N S  

In beginning the study of thermodynamics it is important to understand the precise 
thermodynamic sense of the terms that are employed. The following definitions have been 
given succinct expression by J. A. Beattie. * 

* 

System, Boundary, Surroundings. A thermodynamic system is that part of the physical universe 
the properties of which are under investigation . . . .  

The system is confined to a definite place in space by the boundary which separates it from 
the rest of the universe, the surroundings . . . .  

A system is isolated when the boundary prevents any interaction with the surroundings. 
An isolated system produces no observable effect or disturbance in its surroundings . . . .  

A system is called open when mass passes across the boundary, closed when no mass passes 
the boundary . . . .  

Properties of a System. The properties of a system are those physical attributes that are per
ceived by the senses, or are made perceptible by certain experimental methods of investigation. 
Properties fall into two classes : ( 1 )  non-measurable, as the kinds of substances composing a 
system and the states of aggregation of its parts ; and (2) measurable, as pressure and volume, to 
which a numerical value can be assigned by a direct or indirect comparison with a standard. 

State of a System. A system is in a definite state when each of its properties has a definite 
value. We must know, from an experimental study of a system or from experience with similar 
systems, what properties must be taken into consideration in order that the state of a system 
be defined with sufficient precision for the purpose at hand . . . .  

Change in State, Path, Cycle, Process. Let a system undergo a change in its state from a specified 
initial to a specified final state. 

The change in state is completely defined when the initial and the final states are specified. 

J. A. Beattie, Lectures on Elementary Chemical Thermodynamics. Printed by permission from the author. 
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The path of the change in state is defined by giving the initial state, the sequence of inter
mediate states arranged in the order traversed by the system, and the final state. 

A process is the method of operation by means of which a change in state is effected. The 
description of a process consists in stating some or all of the following : (1) the boundary ; (2) the 
change in state, the path, or the effects produced in the system during each stage of the process ; 
and (3) the effects produced in the surroundings during each stage of the process. 

Suppose that a system having undergone a change in state returns to its initial state. The 
path of this cyclical transformation is called a cycle, and the process by means of which the 
transformation is effected is called a cyclical process. 

State Variable, . . . .  A state variable is one that has a definite value when the state of a system 
is specified . . . .  

You should not be misled by the simplicity and clarity of these definitions. The 
meanings, while apparently " obvious," are precise. These definitions should be thoroughly 
understood so that when one of the terms appears, it will be immediately recognized 
as one that has a precise meaning. In the illustrations that follow, these mental questions 
should be posed : What is the system? Where is the boundary ? What is the initial state ? 
What is the final state ? What is the path of the transformation ? Asking such questions, 
and other pertinent ones, will help a great deal in clarifying the discussion and is absolutely 
indispensable before you begin to work any problem. 

A system ordinarily must be in a container so that usually the boundary is located at 
the inner surface of the container. As we have seen in Chapter 2, the state of a system is 
described by giving the values of a sufficient number of state variables ; in the case of pure 
substances, two intensive variables such as T and p are ordinarily sufficient. 

7 . 2  WO R K  A N D H EAT 

The concepts of work and of heat are of fundamental importance in thermodynamics, 
and their definitions must be thoroughly understood ; the use of the term work in thermo
dynamics is much more restricted than its use in physics generally, and the use of the term 
heat is quite different from the everyday meaning of the word. Again, the definitions are 
those given by J. A. Beattie. * 

* 
t 

Work. In thermodynamics work is defined as any quantity that flows across the boundary 
of a system during a change in its state and is completely convertible into the lifting of a weight 
in the surroundings. 

Several things should be noted in this definition of work. 

1. Work appears only at the boundary of a system. 
2. Work appears only during a change in state. 
3. Work is manifested by an effect in the surroundings. 
4. The quantity of work is equal to mgh, where m is the mass lifted, g is the acceleration 

due to gravity, h is the height through which the weight has been raised. 
5. Work is an algebraic quantity ; it is positive if the mass is lifted (h is + ), in which 

case we say that work has been produced in the surroundings or has flowed to the 
surroundings ; it is negative if the mass is lowered (h is - ), in which case we say that 
work has been destroyed in the surroundings or has flowedJrom the surroundings.t 

J. A. Beattie, op cit. 
Parts of this paragraph follow Beattie's discussion closely. By permission from the author. 
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Heat. We explain the attainment of thermal equilibrium of two systems by asserting that 
a quantity of heat Q has flowed from the system of higher temperature to the system of lower 
temperature. 

In thermodynamics heat is defined as a quantity that flows across the boundary of a system 
during a change in its state in virtue of a difference in temperature between the system and its 
surroundings and flows from a point of higher to a point of lower temperature.* 

Again several things must be emphasized. 

1. Heat appears only at the boundary of the system. 
2. Heat appears only during a change in state. 
3. Heat is manifested by an effect in the surroundings. 
4. The quantity of heat is proportional to the mass of water in the surroundings that is 

increased by one degree in temperature starting at a specified temperature under a 
specified pressure. (We must agree to use one particular thermometer.) 

5. Heat is an algebraic quantity ; it is positive if a mass of water in the surroundings is 
cooled, in which case we say that heat has flowed from the surroundings ; it is negative 
if a mass of water in the surroundings is warmed, in which case we say that heat has 
flowed to the surroundings. t 

In these definitions of work and heat, it is of utmost importance that the judgment as 
to whether or not a heat flow or a work flow has occurred in a transformation is based on 
observation of effects produced in the surroundings, not upon what happens within the 
system. The following example clarifies this point, as well as the distinction between work 
and heat. 

Consider a system consisting of 10 g of liquid water contained in an open beaker under 
constant pressure of 1 atm. Initially the water is at 25 °C, so that we describe the initial 
state by p = 1 atm, t = 25 °C. The system is now immersed in, let us say, 100 g of water at 
a high temperature, 90 °C. The system is kept in contact with this 100 g of water until the 
temperature of the 100 g has fallen to 89 °C, whereupon the system is removed. We say 
that 100 units of heat has flowed from the surroundings, since the 100 g of water in the 
surroundings dropped 1 °C in temperature. The final state of the system is described by 
p = 1 atm, t = 35 °C. 

Now consider the same system, 10 g of water, p = 1 atm, t = 25 °C, and immerse a 
stirring paddle driven by a falling mass (Fig. 7. 1) .  By properly adjusting the mass of the 
falling mass and the height h through which it falls, the experiment can be arranged so 
that after the mass falls once, the temperature of the system rises to 35 °C. Then the final 
state is p = 1 atm, t = 35 °C. In this experiment the change in state of the system is exactly 
the same as in the previous experiment. There was no heat flow, but there was a flow of 
work. A mass is lower in the surroundings. 

If we turned our backs on the experimenter while the change in state had been 
effected, but had observed the system before and after the change in state, we could deduce 
nothing whatsoever about the heat flow or work flow involved. We could conclude only 
that the temperature of the system was higher afterward than before ; as we shall see later, 
this implies that the energy of the system increased. On the other hand, if we observed 
the surroundings before and after, we would find cooler bodies of water and/or masses at 

* J. A. Beattie, op cit. 
t Parts of this paragraph follow Beattie's discussion closely. By permission from the author. 
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F i g u re 7 . 1  

lower elevations. From these observations on the surroundings, we could immediately 
deduce the quantities of heat and work that flowed in the transformation. * 

It should be clear that the fact that a system is hotter, that is, has a higher tempera
ture, after some transformation does not mean that it has more " heat " ;  it could equally 
well have more " work." The system has neither " heat " nor " work " ;  this use of these 
terms is to be avoided at all costs. This usage reflects confusion between the concepts of 
heat and temperature. 

The experiment in Fig. 7. 1 is Joule's classic experiment on " the mechanical equivalent 
of heat." This experiment together with earlier ones of Rumford were instrumental in 
demolishing the caloric theory of heat and establishing that " heat " is equivalent in a 
certain sense to ordinary mechanical energy. Even today this experiment is described in 
the words " work is converted into ' heat '." In the modern definition of the word, there is 
no " heat " involved in the Joule experiment. Today Joule's observation is described by 
saying that the destruction of work in the surroundings produces an increase in tempera
ture of the system. Or, less rigidly, work in the surroundings is converted into thermal 
energy of the system. 

The two experiments, immersion of the system in hot water and rotating a paddle 
in the same system, involved the same change in state but different heat and work effects. 
The quantities of heat and work that flow depend on the process and therefore on the 
path connecting the initial and final states. Heat and work are called pathfunctions. 

7 .3  EXPAN S I O N  WO R K  

If a system alters its volume against an opposing pressure, a work effect is produced in the 
surroundings. This expansion work appears in most practical situations. The system is a 
quantity of a gas contained in a cylinder fitted with a piston D (Fig. 7.2a). The piston is 
assumed to have no mass and to move without friction. The cylinder is immersed in a 
thermostat so that the temperature of the system is constant throughout the change in 
state. Unless a specific statement to the contrary is made, in all of these experiments with 
cylinders it is understood that the space above the piston is evacuated so that no air 
pressure is pushing down on the piston. 

In the initial state the piston D is held against a set of stops S by the pressure of the gas. 
A second set of stops Sf is provided to arrest the piston after the first set is pulled out. 
The initial state of the system is described by T, Pl ' Vl . We place a small mass M on the 
piston ; this mass must be small enough so that when the stops S are pulled out, the piston 

* The work of expansion accompanying the temperature increase is negligibly small and has been ignored to 
avoid obscuring the argument. 
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will rise and be forced against the stops S'. The final state of the system is T, P2 ' V2 (Fig. 
7.2b). The boundary is the inner walls of the cylinder and the piston ; in the change the 
boundary expands to enclose a larger volume V2 . Work is produced in this transformation, 
since a mass M in the surroundings, has been lifted a vertical distance h against the force 
of gravity Mg. The quantity of work produced is 

W = Mgh. (7. 1) 

If the area of the piston is A, then the downward pressure acting on the piston is 
MgjA = Pop , the pressure which opposes the motion of the piston. Thus Mg = PopA. 
Using this value in Eq. (7. 1 ), we obtain 

W = PopAh. 
However, the product Ah is simply the additional volume enclosed by the boundary in 
the change of state. Thus, Ah = V2 - Vi = .1 V, and we have* 

(7.2) 

The work produced in the change in state, Eq. (7.2), is represented graphically by 
the shaded area in the p-V diagram of Fig. 7.2( c). The dashed curve is the isotherm of the 
gas, on which the initial and final states have been indicated. It is evident that M can have 
any arbitrary value from zero to some definite upper limit and still permit the piston to 
rise to the stops S'. It follows that Pop can have any value in the range 0 :::;; Pop :s; P2 ' 
and so the quantity of work produced may have any value between zero and some upper 
limit. Work is afunction of the path. It must be kept in mind that Pop is arbitrary and is not 
related to the pressure of the system. 

The sign of W is determined by the sign of .1 V, since Pop = MgjA is always positive. 
In expansion, .1 V = + , and W = + ;  the mass rises. In compression, .1 V = - , W = 
the mass falls. 

* Differences between the values of a state function in the final and initial states occur so frequently in 
thermodynamics that a special short-hand notation is used . The Greek capital delta, ll, is prefixed to the 
symbol of the state function. The symbol ll V is read " delta vee " or " the increase in volume " or " the 
difference in volume. "  The symbol II always signifies a difference of two values, which is always taken in 
the order, final value minus initial value. 
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7 . 3 . 1  Two- Sta g e  Expa n s i o n  

As i t  stands, Eq. (7.2) i s  correct only if Pop i s  constant throughout the change in  state. 
It is easy to imagine more complicated ways of performing the expansion. Suppose that 
a large mass were placed on the piston during the first part of the expansion from VI 
to some intermediate volume V' ; then a smaller mass replaced the large one in the ex
pansion from Vi to V2 . In such a two-stage expansion, we apply Eq. (7.2) to each stage of 
the expansion, using different values of Pop in each stage. Then the total work produced is 
the sum of the amounts produced in each stage : 

W = Wrirst stage + W.econd stage = P�p(V' - VI) + P�iV2 - V'). 

The quantity of work produced in the two-stage expansion is represented by the shaded 
areas in Fig. 7.3 for the special case P�p = P2 '  

Comparison of Figs. 7.2(c) and 7.3 shows that for the same change in state the two
stage expansion produces more work than the single-state expansion could possibly 
produce. If the heats had been measured, we would also have found different quantities 
of heat associated with the two paths. 

7 . 3 . 2  M u lt i stag e  Expa ns ion  

In  a multistage expansion the work produced i s  the sum of  the small amounts of 
work produced in each stage. If Pop is constant as the volume increases by an infinitesimal 
amount dV, then the small quantity of work dW is given by 

dW = Pop dV. (7.3) 
The total work produced in the expansion from li1 to Vz is the integral 

J2 IV2 W = dW = Pop dV, 
I VI (7.4) 

which is the general expression for the work of expansion of any system. Once Pop is 
known as a function of the volume, the integral is evaluated by the usual methods. 

Observe that the differential dW does not integrate in the ordinary way. The integral 
of an ordinary differential dx between limits yields a finite difference, �x, 

P 

J
X2 dx = X2 - Xl = �x, Xl 
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F i g u re 7 .3  Work p roduced i n  a two-stage expans ion ,  
W = P�p ( V' - V1 ) + P�P ( V2 - V') .  
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but the integral of dW is the sum of small quantities of work produced along each element 
of the path, 

fdW = W, 

where W is the total amount of work produced. This expl<l��:t;1S_1h�us€-Of 1j:l1sj�g(LQft1!� __ � 

ordinary d. The differential dWj_�UlJliReX(U;t tiif!(!r_entia[([x i� 90r;U�xl1cLtlifff?Tential. More 
about tllaflafer:----

-- ��- .----- - --

7 .4  WO R K  O F  C O M P R ES S I O N 

The work destroyed in compression is computed using the same equation that is used to 
compute the work produced in expansion. In compression the final volume is less than 
the initial volume, so in every stage L1 V is negative ; therefore the total work destroyed is 
negative. The sign is automatically taken care of by the integration process if the volume 
of the final state is the upper limit and the volume of the initial state the lower limit in the 
integral ofEq. (7.4). However, in comparing work of compression with work of expansion, 
more than a sign change is involved ; to compress the gas we need larger masses on the 
piston than those that were lifted in the expansion. Thus more work is destroyed in the 
compression of a gas than is produced in the corresponding expansion. The single-stage 
compression of a gas illustrates this point. 

The system is the same as before-a gas, kept at a constant temperature T -but now 
the initial state is the expanded state T, P2 , V2 , while the final state is the compressed state 
T, Pi ' Vi ' The positions of the stops are arranged so that the piston rests on top of them. 
Figure 7.4(a and b) shows that if the gas is to be compressed to the final volume Vi in one 
stage, we must choose a mass large enough to produce an opposing pressure Pop which is at least as great as the final pressure Pl ' The mass may be larger than this but not smaller. 
If we choose the mass M to be equivalent to Pop = Pi ' then the work destroyed is equal to 
the area of the shaded rectangle in Fig. 7.4(c) with, of course, a negative sign : 

W = P op(Vl - V2)· 
The work destroyed in the single-stage compression is very much greater than the work 

t 
p 

(a) (b) 
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(c ) 

...... ,..., - - -

F igu re 7 .4 S ing le -stage compress ion . ( a )  I n it i a l  state . (b )  F i n a l  state. (c)  Work 
destroyed in a s i ng le -stage compress ion,  W = Pop ( V1 - V2) .  
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F i g u re 7 .5  Work destroyed i n  a two
stage compress ion,  W = P�p ( V' - V2) + 
P�P ( V1 - V') . 

produced in the single-stage expansion (Fig. 7.2c). We could destroy any greater amount 
of work in this compression by using larger masses. 

If the compression is done in two stages, compressing first with a lighter mass to an 
intermediate volume and then with the heavier mass to the final volume, less work is 
destroyed ; the work destroyed is the area of the shaded rectangles in Fig. 7 .5 .  

7.5 M AXI M U M  A N D M I N I M U M  Q U ANTITI E S  OF WO R K  

In the two-stage expansion more work was produced than in the single-stage expansion. 
It seems reasonable that if the expansion were done in many stages using a large mass in 
the beginning and making it smaller as the expansion proceeded, even more work should 
be produced. This is correct, but there is a limitation to the procedure. The masses that 
we use must not be so large as to compress the system instead of allowing it to expand. 
By doing the expansion in a progressively larger number of stages, the work produced 
can be increased up to a definite maximum value. * Correspondingly, the work destroyed 
in the two-stage compression is less than that destroyed in the single-stage compression. 
In a multistage compression, even less work is destroyed. 

The expansion work is given by 

I
v! 

W = Pop dV. 
Vi 

For the integral to have a maximum value, Pop must have the largest possible value at 
each stage of the process. But if the gas is to expand, Pop must be less than the pressure 
p of the gas. Therefore, to obtain the maximum work, at each stage we adjust the opposing 
pressure to Pop = P - dp, a value just infinitesimally less than the pressure of the gas. Then 

I
V! 

I
V! 

Wm = (p - dp) dV  = (p dV - dp dV), 
Vi Vi 

where Vi and VI are the initial and final volumes. The second term in the integral is an 
infinitesimal of higher order than the first and SO has a limit of zero. Thus for the maximum 

* This is true only if the temperature is constant along the path of the change in state. If the temperature is 
allowed to vary along the path, there is no upper limit on the work produced. 
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F i g u re 7 .6  Wmax o r  Wm i n -

I
V! 

Wm = P dV. 
Vi 

(7. 5) 

Similarly, we find the minimum work required for compression by setting the value 
of Pop at each stage just infinitesimally greater than the pressure of the gas ; Pop = P + dp . 
The argument will obviously yield Eq. (7. 5) for the minimum work required for com
pression if V; and VI are the initial and final volumes in the compression. Equation (7.5) is, 
of course, general and not restricted to gases. 

For the ideal gas, the maximum quantity of work produced in the expansion or the 
minimum destroyed in the compression is equal to the shaded area under the isotherm in 
Fig. 7.6 . For the ideal gas the maximum or minimum work in an isothermal change in 
state is easily evaluated, since p = nRT/V. Using this value for the pressure in Eq. (7.5), 
we obtain 

I
V! nRT 

I
V! dV VI Wm.x,min = -- dV = nRT - = nRT ln - . 

Vi V Vi V V; (7.6) 

Under the conditions described, n and T are constant throughout the change and so can 
be removed from under the integral sign. Note that in expansion VI > V;, so the logarithm 
of the ratio is positive ; in compression, VI < V; ,  the ratio is less than unity so the logarithm 
is negative. In this way the sign of W takes care of itself. 

7 . 6  R EV E R S I B LE A N D  I R R EV E R S I B LE T R A N S F O R M ATI O N S  

Consider the same system as before : a quantity of gas confined in a cylinder at a constant 
temperature T. We expand the gas from the state T, Pl , V1 to the state T, P2 ' V2 and then we 
compress the gas to the original state. The gas has been subjected to a cyclic transformation 
returning at the end to its initial state. Suppose that we perform this cycle by two different 
processes and calculate the net work effect l1';,y for each process. 

Process I .  Single-stage expansion with Pop = P2 ; then single-stage compression with 
Pop = Pl ' 

The work produced in the expansion is, by Eq. (7.4), 

w'xp = P2(V2 - V1), 
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while the work produced in the compression is 

Wcomb = Pl(V1 - V2)· 
The net work effect in the cycle is the sum of these two : 

Since V2 - Vi is positive, and P2 - Pi is negative, l¥cy is negative. Net work has been 
destroyed in this cycle. The system has been restored to its initial state, but the surroundings 
have not been restored ; masses are lower in the surroundings after the cycle. 

Process II. The limiting multistage expansion with Pop = p ;  then the limiting multi
stage compression with PoP = p.  

By Eq. (7.5), the work produced in expansion is 

I
V2 Wexp = p dV, 

v, 

while the work produced in compression is, by Eq. (7.5), 

The net work effect in the cycle is 

Iv, 

Tt;,omb = P d V. 
V2 

I
V2 

I
V' 

I
V2 

I
V2 

Tt;;y = P dV + p dV = p dV - p dV = o. 
v , V2 v, v,  

(The change in sign of the second integral is effected by interchanging the limits of integra
tion.) If the transformation is conducted by this second method, the system is restored to 
its initial state, and the surroundings are also restored to their initial condition, since no net 
work effect is produced. 

Suppose that a system undergoes a change in state through a specified sequence of 
intermediate states and then is restored to its original state by traversing the same sequence 
of states in reverse order. Then if the surroundings are also restored to their original state, 
the transformation in either direction is reversible. The corresponding process is a re
versible process. If the surroundings are not restored to their original state after the cycle, 
the transformation and the process are irreversible. 

Clearly, the second process just described is a reversible process, while the first is 
irreversible. There is another important characteristic of reversible and irreversible 
processes. In the irreversible process just described, a single mass is placed on the piston, 
the stops are released, and the piston shoots up and settles in the final position. As this 
occurs the internal equilibrium of the gas is completely upset, convection currents are set 
up, and the temperature fluctuates. A finite length of time is required for the gas to 
equilibrate under the new set of conditions. A similar situation prevails in the irreversible 
compression. This behavior contrasts with the reversible expansion in which at each 
stage the opposing pressure differs only infinitesimally from the equilibrium pressure in 
the system, and the volume increases only infinitesimally. In the reversible process the 
internal equilibrium of the gas is disturbed only infinitesimally and in the limit not at all. 
Therefore, at any stage in a reversible transformation, the system does not depart from 
equilibrium by more than an infinitesimal amount. 
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Obviously, we cannot actually conduct a transformation reversibly. An infinite length 
of time would be required if the volume increment in each stage were truly infinitesimal. 
Reversible processes therefore are not real processes, but ideal ones. Real processes are 
always irreversible. With patience and skill the goal of reversibility can be very closely 
approached, but not attained. Reversible processes are important because the work 
effects ,\ssociated with them represent maximum or minimum values. Thus limits are set 
on the ability of a specified transformation to produce work ; in actuality we will get less, 
but we must not expect to get more. 

In the isothermal cycle described above, the net work produced in the irreversible 
cycle was negative, that is, net work was destroyed. This is a fundamental characteristic 
of every irreversible and therefore every real isothermal cyclic transformation. If any 
system is kept at a constant temperature and subjected to a cyclic transformation by 
irreversible processes (real processes), a net amount of work is destroyed in the sur
roundings. This is in fact a statement of the second law of thermodynamics .  The greatest 
work effect will be produced in a reversible isothermal cycle, and this, as we have seen, is 
vv;,y = O. Therefore we cannot expect to get a positive amount of work in the surroundings 
from the cyclic transformation of a system kept at a constant temperature. 

Examination of the arguments presented above shows that the general conclusions 
reached do not depend on the fact that the system chosen for illustration consisted of a 
gas ; the conclusions are valid regardless of how the system is constituted. Therefore to 
calculate the expansion work produced in the transformation of any system whatsoever 
we use Eq. (7.4), and to calculate the work produced in the reversible transformation, 
we set Pop = p and use Eq. (7.5). 

By appropriate modification of the argument, the general conclusions reached could 
be shown to be correct for any kind of work : electrical work, work done against a magnetic 
field, and so on. To calculate the quantities of these other kinds of work we would not, 
of course, use the integral of pressure over volume, but rather the integral of the appro
priate force over the corresponding displacement. 

7 . 7  E N E R G Y  A N D T H E F I R ST LAW O F  T H E R M O DY N A M I CS 

The work produced in a cyclic transformation is the sum of the small quantities of work 
dW produced at each stage of the cycle. Similarly, the heat withdrawn from the surround
ings in a cyclic transformation is the sum of the small quantities of heat dQ withdrawn at 
each stage of the cycle. These sums are symbolized by the cyclic integrals of dW and dQ : 

In general, vv;,y and Qcy are not zero ; this is characteristic of path functions. 
In contrast, note that if we sum the differential of any state property of the system 

over any cycle the total difference, the cyclic integral, must be zero. Since in any cycle 
the system returns at the end to its initial state, the total difference in value of any state 
property must be zero. Conversely, if we find a differential quantity dy such that 

� dY = 0 (all cycles), (7.7) 

then dy is the differential of some property of the state of the system. This is a purely 
mathematical theorem, stated here in physical language. Using this theorem and the first 
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law of thermodynamics, we discover the existence of a property of the state of the system, 
the energy. 

The first law of thermodynamics is a statement of the following universal experience : 
If a system is subjected to any cyclic transformation, the work produced in the surroundings 
is equal to the heat withdrawn from the surroundings. In mathematical terms, the first law 
states that 

(all cycles). (7.8) 

The system suffers no net change in the cycle, but the condition of the surroundings changes. 
If masses in the surroundings are higher after the cycle than before, then some bodies in 
the surroundings must be colder. If masses are lower, then some bodies must be hotter. 

Rearranging Eq. (7.8), we have 

� (�Q - �W) = 0 (all cycles). (7.9) 

But if Eq. (7.9) is true, the mathematical theorem requires that the quantity under the 
integral sign must be the differential of some property of the state of the system. This 
property of the state is called the energy, U, of the system ; the differential is dU, defined by 

dU == �Q - �W ; (7. 10) 
then, of course, 

f dU = 0 (all cycles). (7. 1 1) 

Thus from the first law, which relates the heat and work effects observed in the sur
roundings in a cyclic transformation, we deduce the existence of a property of the state of 
the system, the energy. Equation (7. 10) is an equivalent statement of the first law. 

Equation (7. 10) shows that when small amounts of heat and work �Q and �W appear 
at the boundary, the energy of the system suffers a change dUo For a finite change in state, 
we integrate Eq. (7. 10) : 

fdU = If
�Q - If 

�W, 

!1U = Q - w, (7. 12) 

where !1U = Ufinal - Uinitial ' Note that only a difference in energy dU or !1U has been 
defined, so we can calculate the difference in energy in a change in state, but we cannot 
assign an absolute value to the energy of the system in any particular state. 

We can show that energy is conserved in any change in state. Consider an arbitrary 
transformation in a system A ;  then 

!1UA = Q - W 

where Q and W are the heat and work effects that are manifested in the immediate sur
roundings QY temperature changes of bodies and altitude changes of masses. It is possible 
to choose a boundary that encloses both system A and its immediate surroundings, and 
such that no effect resulting from the transformation in A is observable outside this 
boundary. This boundary separates a new composite system-made up of the original 
system, A, and of M, the immediate surroundings-from the rest of the universe. Since no 
heat or work effects are observed outside this composite system, it follows that the energy 



change of the composite system is zero. 

I1UA+M = ° 
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But the change in energy of the composite system is the sum of the changes in energy of the 
subsystems, A and M. Thus 

I1U A+M = I1U A + I1UM = ° or I1U A = - I1UM 

This equation states that, in any transformation, any increase in energy of system A is 
exactly balanced by an equal decrease in energy of the surroundings. 

It follows that 

U ACfinal) - U ACinitial) + UMCfinal) - UMCinitial) = 0, 
or 

U ACfinal) + UMCfinal) = U ACinitial) + UMCinitial), 

which says that the energy of the composite system is constant. 
If we imagine the universe to be composed of myriads of such composite systems, 

in each ofwhich l1U = 0, then in the aggregate it must also be that I1U = 0. Thus we have 
the famous statement of the first law of thermodynamics by Clausius : "The energy of the 
universe is a constant." 

7.8 P R O P E RTI E S  OF T H E E N E R G Y  

For a specified change in state, the increase in energy I1U of the system depends only on 
the initial and final states of the system and not upon the path connecting those states. 
Both Q and W depend upon the path, but their difference Q - W = I1U is independent 
of the path. This is equivalent to the statement that r;lQ and r;lW are inexact differentials, 
while dU  is an exact differential. 

The energy is an extensive state property of the system ; under the same conditions of 
T and p, 10 mol of the substance composing the system has ten times the energy of 1 mol. 
The energy per mole is an intensive state property of the system. 

Energy is conserved in all transformations. A perpetual motion machine of the first 
kind is a machine that by its action creates energy by some transformation of a system. 
The first law of thermodynamics asserts that it is impossible to construct such a machine ; 
not that people have not tried ! No one has ever succeeded, but there have been some 
famous frauds in this field. 

@ M AT H E M ATICAL I NT E R LU D E ;  EXACT A N D 
I N EXACT D I F F E R E NTIALS 

An exact differential integrates to a finite difference, Ii dU = U 2 - U 1 , which is inde
pendent of the path of integration. An inexact differential integrates to a total quantity, Ii r;lQ = Q, which depends on the path of integration. The cyclic integral of an exact 
differential is zero for any cycle, Eq. C7.7). The cyclic integral of an inexact differential is 
usually not zero. 

Note that the symbolism I1Q and I1W is meaningless. If I1W meant anything, it would 
mean W2 - JVi ;  but the system in either the initial state or the final state does not have 
any work W1 or W2 , nor does it have any heat Q 1 or Q2 . Work and heat appear during a 
change in state ; they are not properties of the state, but properties of the path. 
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Properties of the state of a system, such as T, p, V, U, have differentials that are exact. 
Differentials of properties of the path, such as Q and W, are inexact. For more properties 
of exact and inexact differentials see Section 9.6. 

1 . 1 0 C H A N G E S  I N  E N E R GY I N  R E LATI O N  TO C H AN G ES I N  
P R O P E RTI ES O F  T H E SYST E M  

Using the first law in the form 
I1U = Q - W, 

we can calculate I1U for the change in state from the measured values of Q and W, the 
effects in the surroundings. However, a change in state of the system implies changes in 
properties of the system, such as T and V. These properties of the system are readily 
measurable in the initial and final states, and it is useful to relate the change in energy 
of the system to, let us say, changes in its temperature and volume. It is to this problem that 
we now direct our attention. 

Choosing a system of fixed mass, we can describe the state by T and V. Then U = 
UeT, V), and the change in energy dU is related to the changes in temperature dT and in 
volume dV through the total differential expression 

dU = (��tdT + (��)TdV. (7. 1 3) 

The differential of any state property, any exact differential, can be written in the form 
of Eq. (7. 1 3). (See Appendix 1) Expressions of this sort are used so often that it is essential 
to understand their physical and mathematical meaning. Equation (7. 1 3) states that if the 
temperature of the system increases by an amount dT and the volume increases by an 
amount dV, then the total increase in energy dU is the sum of two contributions : the first 
term, (8Uj8T)v dT, is the increase in energy resulting from the temperature increase 
alone ; the second term, (8 Uj8Vh dV, is the increase in energy resulting from the volume 
increase alone. The first term is the rate of increase of energy with temperature at constant 
volume, (8Uj8T)v , multiplied by the increase in temperature dT. The second term is 
interpreted in an analogous way. Each time an expression of this kind appears, the effort 
should be made to give this interpretation to each term until it becomes a habit. The habit 
of reading a physical meaning into an equation will help enormously in clarifying the 
derivations that follow. 

Since energy is an important property of the system, the partial derivatives (8U j8T)v 
and C8Uj8Vh are also important properties of the system. These derivatives tell us the 
rate of change of energy with temperature at constant volume, or with volume at constant 
temperature. If the values of these derivatives are known, we can integrate Eq. (7. 1 3) and 
obtain the change in energy from the change of temperature and volume of the system. 
Therefore we must express these derivatives in terms of measurable quantities. 

We begin by combining Eqs. (7. 10) and (7. 1 3) to obtain 

dQ - Pop dV = (��)vdT + (��) TdV' (7. 14) 

where POP dV has replaced dW, and work other than expansion work has been ignored. 
(If other kinds of work must be included, we set dW = POP dV + d�, where dVf" repre
sents the small amounts of other kinds of work.) Next we apply Eq. (7. 14) to various 
changes in state. 
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7 . 1 1 C H A N G ES I N  STATE AT C O N STA NT VO L U M E  

If the volume of a system is constant in the change in state, then d V  = 0, and the first 
law, Eq. (7. 10), becomes 

dU = dQv , (7. 1 5) 

where the subscript indicates the restriction to constant volume. But at constant volume, 
Eq. (7. 14) becomes 

dQv = (:�t dT, (7. 1 6) 

which relates the heat withdrawn from the surroundings, dQv , to the increase in tempera
ture dT of the system at constant volume. Both dQv and dT are easily measurable ; the ratio, 
dQv/dT, of the heat withdrawn from the surroundings to the temperature increase of the 
system is Cv , the heat capacity of the system at constant volume. Thus, dividing Eq. (7. 16) 
by dT, we obtain 

C == 
dQv = (au) 

v 
dT aT v' (7. 1 7) 

Either member of Eq. (7. 1 7) is an equivalent definition of Cv ' The important point about 
Eq. (7. 17) is that it identifies the partial derivative (au/aT)v with an easily measurable 
quantity Cv ' Using Cv for the derivative in Eq. (7. 1 3), and since dV = 0, we obtain 

dU = Cv dT (infinitesimal change), (7. 1 8) 

or, integrating, we have 

(finite change). (7. 19) 

Using Eq. (7. 19) we can calculate AU exclusively from properties of the system. Integrating 
Eq. (7. 1 5), we obtain the additional relation 

(finite change). (7.20) 

Both Eqs. (7. 1 9) and (7.20) express the energy change in a transformation at constant 
volume in terms of measurable quantities. These equations apply to any system : solids, 
liquids, gases, mixtures, old razor blades, and so on. 

Note in Eq. (7.20) that AU and Qv have the same sign. According to the convention 
for Q, if heat flows from the surroundings, Qv > 0, and so AU > 0 ;  the energy of the 
system increases. If heat flows to the surroundings, both Qv and AU are negative ; the 
energy of the system decreases. Furthermore, since Cv is always positive, Eq. (7. 1 8) shows 
that if the temperature increases, dT > 0, the energy of the system increases ; conversely, 
a decrease in temperature, dT < 0, means a decrease in the energy of the system, AU < O. 
For a system maintained at a constant volume, the temperature is a direct reflection of the 
energy of the system. 

Since the energy of the system is an extensive state property, the heat capacity is 
also. The heat capacity per mole C, an intensive property, is the quantity found in tables 
of data. If the heat capacity of the system is a constant in the range of temperature of 
interest, then Eq. (7. 1 9) reduces to the special form 

(7.21)  
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This equation is quite useful, particularly if the temperature range !J.T is not very large. 
Over short ranges of temperature the heat capacity of most substances does not change 
very much. 

Although Eqs. (7. 19) and (7.20) are completely general for a constant-volume process, 
a practical difficulty arises if the system consists entirely of solids or liquids. If a liquid or a 
solid is confined in a container of fixed volume and the temperature is increased by a 
small amount, the pressure rises to a high value because of the very small compressibility of 
the liquid. Any ordinary container will be deformed and increase in volume or it will 
burst. From the experimental standpoint, constant volume processes are practical only 
for those systems which are, at least partly, gaseous. 

Ill! EXAMPLE 7.1  Calculate the !J.U and Qv for the transformation of 1 mol of helium 
at constant volume from 25 DC to 45 DC ; Cv = �R. 

At constant volume 

f
T2 

I
T2 

!J.U = Cv dT = �R dT = �R !J.T = �R(20 K)  
T, T , 

Qv = !J.U = �(8.3 14 JIK mol) (20 K) = 250 J/mol . 

7 . 1 2 M EAS U R E M E N T  O F  (iJU/OVh ; J O U L E ' S  EX P E R I M E N T  

The identification o f  the differential coefficient (oUloVh with readily measurable quanti
ties is not so easily managed. For gases it can be done, in principle at least, by an experiment 
devised by Joule. Two containers A and B are connected through a stopcock. In the 
initial state, A is filled with a gas at a pressure p, while B is evacuated. The apparatus is 
immersed in a large vat of water and is allowed to equilibrate with the water at the tempera
ture T, which is read on the thermometer (Fig. 7 .7). The water is stirred vigorously to 
hasten the attainment of thermal equilibrium. The stopcock is opened and the gas expands 
to fill the containers A and B uniformly. After allowing time for the system to come to 
thermal equilibrium with the water in the vat, the temperature of the water is read again. 
Joule observed no temperature difference in the water before and after opening the stop
cock. 

The interpretation of this experiment is as follows. To begin with, no work is pro
duced in the surroundings. The boundary, which is initially along the interior walls of 
vessel A, moves in such a way that it always encloses the entire mass of gas ; the boundary 
therefore expands against zero opposing pressure so no work is produced. This is called a 
free expansion of the gas. Setting dW = 0, we see that the first law becomes d U = dQ. 

Thermometer Stirrer 

F i g u re 1 .1  Jou le  expans ion experi ment .  
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Since the temperature of the surroundings (the water) is unchanged, it follows that dQ = O. 
Hence, dU = O. Since the system and the water are in thermal equilibrium, the temperature 
of the system is also unchanged ; dT = O. In this situation, Eq. (7. 13) becomes 

Since dV =f. 0, it follows that 

dU = (a u) dV = o. 
av T 

(!�) T = 0 . (7.22) 

If the derivative of energy with respect to volume is zero, the energy is independent of the 
volume. This means that the energy of the gas is a function only of temperature. This rule 
of behavior is loule's law, which may be expressed either by Eq. (7.22) or by U = U(T). 

Later experiments, notably the Joule-Thomson experiment, have shown that Joule's 
law is not precisely correct for real gases. In Joule's apparatus the large heat capacity 
of the vat of water and the small heat capacity of the gas reduced the magnitude of the 
effect below the limits of observation. For real gases, the derivative (a Uja v)y is a very 
small quantity, usually positive. The ideal gas obeys Joule's law exactly. 

Until we have the equations from the second law of thermodynamics, the problem of 
identifying the derivative (a Ujav)y with readily measurable quantities is a clumsy pro
cedure at best. The Joule experiment, which does not work very well with gases, is com
pletely unsuitable for liquids and solids. A fortunate circumstance intervenes to simplify 
matters for liquids and solids. Very great pressures are required to effect even a small 
change in volume of a liquid or solid kept at a constant temperature. The energy change 
accompanying an isothermal change in volume of a liquid or solid is, by integrating Eq. 
(7. 13) with dT = 0, 

�U = f:2 (��)TdV. 
The initial and final volumes Vi and V2 are so nearly equal that the derivative is constant 
over this small range of volume ; removing it from under the integral sign and integrating dV, the equation becomes 

�U = (��)T�V. (7.23) 

Even though for liquids and solids the value of the derivative is very large, the value of � V is so small that the product in Eq. (7.23) is very nearly zero. Consequently, to a good 
approximation the energy of all substances can be considered to be a function of tempera
ture only. The statement is precisely true only for the ideal gas. To avoid errors in deriva
tions the derivative will be carried along. Having identified (a UjaT)v with Cv ,  we shall, 
from now on, write the total derivative of U, Eq. (7. 1 3), in the form 

(7.24) 

7 . 1 3 C H A N G ES I N  STATE AT C O N STA N T  P R ES S U R E  

In laboratory practice most changes in state are carried out under a constant atmospheric 
pressure, which is equal to the pressure of the system. The change in state at constant 
pressure can be envisioned by confining the system to a cylinder closed by a weighted 
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(a) (b) 

F i g u re 7 .8  Change i n  state at constant 
pressu re. (a) I n it i a l  state. (b )  F i na l  state. 

piston that floats freely (Fig. 7 .8), rather than being held in some position by a set of stops. 
Since the piston floats freely, its equilibrium position is determined by the balance of the 
opposing pressure developed by the mass M and the pressure in the system. No matter 
what we do to the system, the piston will move until the condition P = POP is fulfilled. 
The pressure p in the system may be adjusted to any constant value by appropriately 
adjusting the mass M. Under ordinary laboratory conditions the mass of the column of air 
above the system floats on top of the system and maintains the pressure at the constant 
value p. 

Since Pop = p, for a change in state at constant pressure the first-law statement 
becomes 

dU = dQp - p d V  

Since p i s  constant, this integrates at once t o  yield 

(7.25) 

Rearranging, we obtain 
(7.26) 

Since P 1 = Pl = p, in Eq. (7.26), the first P can be replaced by Pl , the second by PI : 

(Uz + pz Vz) - (U1 + P1 Vi) = Qp . (7.27) 

Since the pressure and the volume of the system depend only on the state, the product P V 
depends only on the state of the system. The function U + p V, being a combination of 
state variables, is itself a state variable H. We define 

H == U + pV ; (7.28) 

H is caned the enthalpy of the system, * an extensive state property. 
Using the definition of H, we can rewrite Eq. (7.27) as Hz - H 1 = Qp , or 

f1H = Qp , (7.29) 

which shows that in a constant pressure process the heat withdrawn from the surroundings 

* It is worthwhile noting that the appearance of the product p V in the definition of enthalpy results from the 
algebraic form for the expansion work ; it has nothing to do with the presence of the p V product in the ideal 
gas law ! 
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is equal to the increase in enthalpy of the system. Ordinarily, heat effects are measured 
at constant pressure ; therefore these heat effects indicate changes in enthalpy of the 
system, not changes in its energy. To compute the change in energy in a constant pressure 
process, Eq. (7.26) is written as 

(7.30) 

Knowing Qp and the change in volume � V, we can calculate the value of �U. 
Equation (7.29) finds immediate application to the vaporization of a liquid under 

a constant pressure and at a constant temperature. The heat withdrawn from the sur
roundings is the heat of vaporization Qvap . Since the transformation is done at constant 
pressure, Qvap = �Hvap .  Similarly, the heat of fusion of a solid is the enthalpy increase in 
fusion : Qfus = �Hfus · 

For an infinitesimal change in state of a system, Eq. (7.29) takes the form 

(7.3 1 )  

Since H i s  a state function, dH i s  an exact differential ; choosing T and p as  convenient 
variables for H, we can write the total differential as 

dH = (��tdT + (��tdP. (7. 32) 

For a transformation at constant pressure, dp = 0, and Eq. (7.32) becomes dH = 
(8H/8T)p dT. Combining this with Eq. (7.3 1) yields 

,zQp = (��) p dT, 

which relates the heat withdrawn from the surroundings to the temperature increment 
of the system. The ratio, ,zQp/dT, is Cp , the heat capacity of the system at constant pressure. 
Hence, we have 

. 

(7. 33) 

which identifies the important partial derivative (8H/8T)p with the measurable quantity 
Cp o From this point on, the total differential in Eq. (7.32) will be written in the form 

dH = Cp dT + (��) /p. (7.34) 

For any constant pressure transformation, since dp = 0, Eq. (7.34) reduces to 
dH = Cp dT, 

or for a finite change in state from Tl to T2 , iT2 
M =  Cp dT. TI 

If Cp is constant in the temperature range of interest, Eq. (7.36) becomes 

�H = Cp �T. 

(7. 35) 

(7.36) 

(7. 37) 

The equations in this section are quite general and are applicable to any transforma
tion at constant pressure of any system of fixed mass, provided no phase changes or 
chemical reactions occur. 
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II\! EXAMPLE 7.2 For silver, Cpl(J/K mol) = 23.43 + 0.00628T. Calculate I'1H if 3 mol 
of silver are raised from 25 °C to the melting point, 961 °C, under 1 atm pressure. 

At constant p for 1 mol, I'1H = IT2 Cp dT = IT2 (23 .43 + 0.00628 T) dT. 
T, T, 

I'1H = 23.43(T2 - T1) + !(0.00628)(n - TD J/mo!. 
Since TJ = 273 . 1 5  K + 25 K = 298. 1 5  K and Tz = 273. 1 5  K + 96 1 K = 1 234. 1 5 K, 
T2 - Tl = 936 K. 
I'1H = 23.43(936) + !(0.00628)(12342 - 2982) = 21 930 + 4500 = 26 430 J/mo!. 
For 3 mol, I'1H = 3 mol(26 430 J/mol) = 79 290 J. 

7 . 1 4 T H E R E lATI O N  B ETWE E N  Cp A N D Cv 
For a specified change in state of a system that has a definite temperature change dT 
associated with it, the heat withdrawn from the surroundings may have different values, 
since it depends upon the path of the change in state. Therefore it is not surprising that a 
system has more than one value of heat capacity. In fact, the heat capacity of a system 
may have any value from minus infinity to plus infinity. Only two values, Cp and Cv , 
have major importance, however. Since they are not equal, it is important to find the 
relation between them. 

We attack this problem by calculating the heat withdrawn at constant pressure using 
Eq. (7. 14) in the form 

r/iQ = Cv dT + G�)/v + Pop dV. 

For a change at constant pressure with Pop = p ,  this equation becomes 

r/iQp = Cv dT + [p + (:�)J dV. 

Since Cp = r/iQpldT, we divide by  dT and obtain 

Cp = Cv + [p + G�)JG�t 
which is the required relation between Cp and CV • It is usually written in the form 

(7. 38) 

(7. 39) 

This equation is a general relation between Cp and CV • It will be shown later that the 
quantity on the right-hand side is always positive ; thus Cp is always larger than Cv for 
any substance. The excess of Cp over Cv is made up of a sum of two terms. The first term, 

p(:�)p' 

is the work produced, p dV, per unit increase in temperature in the constant pressure 
process. The second term, 
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is the energy required to pull the molecules farther apart against the attractive inter
molecular forces. 

If a gas expands, the average distance between the molecules increases. A small amount 
of energy must be supplied to the gas to pull the molecules to this greater separation against 
the attractive forces ; the energy required per unit increase in volume is given by the 
derivative (8 U /8 Vh . In a constant volume process, no work is produced and the average 
distance between the molecules remains the same. Therefore the heat capacity is small ; 
all of the heat withdrawn goes into the chaotic motion and is reflected by a temperature 
increase. In a constant pressure process, the system expands against the resisting pressure 
and produces work in the surroundings ; the heat withdrawn from the surroundings is 
divided into three portions. The first portion produces work in the surroundings ; the 
second portion provides the energy necessary to separate the molecules farther ; the third 
portion goes into increasing the energy of the chaotic motion. Only this last portion is 
reflected by a temperature increase. To produce a temperature increment of one degree, 
more heat must be withdrawn in the constant pressure process than is withdrawn in the 
constant volume process. Thus Cp is greater than Cv ' 

Another useful quantity is the heat capacity ratio, 'Y, defined by 
C 'Y == � .  (7.40) Cv 

From what has been said, it is clear that 'Y is always greater than unity. 
The heat capacity difference for the ideal gas has a particularly simple form because 

(8U /8Vh = 0 (Joule's law). Then Eq. (7.39) is 

Cp - Cv = p(�;) p' (7.41)  

If we are speaking of molar heat capacities, the volume in the derivative is  the molar 
volume ; from the equation of state, V = R T /p. Differentiating with respect to tempera
ture, keeping the pressure constant, yields (8V/8T)p = R/p . Putting this value in Eq. 
(7.41) reduces it to the simple result 

Cp - Cv = R. (7.42) 

Although Eq. (7.42) is precisely correct only for the ideal gas, it is a useful approximation 
for real gases. 

The heat capacity difference for liquids and solids is usually rather small, and except 
in work requiring great accuracy it is sufficient to take 

(7. 43) 

although there are some notable exceptions to this rule. The physical reason for the 
approximate equality of Cp and Cv is plain enough. The thermal expansion coefficients 
of liquids and solids are very small, so that the volume change on increasing the tempera
ture by one degree is very small ; correspondingly, the work produced by the expansion is 
small and little energy is required for the small increase in the spacing of the molecules. 
Almost all of the heat withdrawn from the surroundings goes into increasing the energy 
of the chaotic motion, and so is reflected in a temperature increase which is nearly as 
large as that in a constant volume process. For the reasons mentioned at the end of 
Section 7. 1 1 ,  it is impractical to measure the Cv of a liquid or solid directly ; Cp is readily 
measurable . The tabulated values of heat capacities of liquids and solids are values of Cp o 
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7 . 1 5 T H E M EAS U R E M E N T  O F  (OH/OP)T ; 
J O U LE-TH O M S O N  EXP E R I M E NT 

The identification of the partial derivative (oH/aph with quantities that are readily 
accessible to experiment is beset with the same difficulties we experienced with (aU /avh 
in Section 7. 12. These two derivatives are related. By differentiating the definition H = 
U + P V, we obtain 

dH = dU + P dV + V dp . 

Introducing the values of dH and dU from Eqs. (7.24) and (7. 34), we have 

Cp dT + ea:) T dp = Cv dT + [(��) T 
+ pJ dV + V dp . (7.44) 

Restricting this formidable equation to constant temperature, dT = 0, and dividing by 
dp, we can simplify it to 

(aH) [ (au) J (av) _. = p + - - + v  ap T av T ap T ' 
which is at best a clumsy equation. 

(7.45) 

For liquids and solids the first term on the right-hand side of Eq. (7.45) is ordinarily 
very much smaner than the second term, so that a good approximation is 

(�:)T = V (solids and liquids). (7.46) 

Since the molar volume of liquids and solids is very small, the variation of the enthalpy 
with pressure can be ignored-unless the change in pressure is enormous. 

For the ideal gas, 

(aH) = o. 
ap T 

(7.47) 

This result is most easily obtained from the definition H = U + pv. For the ideal gas, 
pV = RT, so that 

H = D + RT. (7.48) 
Since the energy of the ideal gas is a function of temperature only, by Eq. (7.48) the 
enthalpy is a function of temperature only, and is independent of pressure. The result in 
Eq. (7.47) could also be obtained from Eq. (7.45) and louIe's law. 

The derivative (oH/aph is very small for real gases, but can be measured. The louIe 
experiment, in which the gas expanded freely, failed to show a measurable difference 
in temperature between the initial and final states. Later, louIe and Thomson performed 
a different experiment, the Joule-Thomson experiment (Fig. 7.9). 

A steady flow of gas passes through an insulated pipe in the direction of the arrows ; 
at position A there is an obstruction, which may be a porous disc or a diaphragm with a 
small hole in it or, as in the original experiment, a silk handkerchief. Because of the ob
struction there is a drop in pressure, measured by the gauges M and M', in passing from 
the left to the right side. Any drop in temperature is measured by the thermometers t and 
t'. The boundary of the system moves with the gas, always enclosing the same mass. 
Consider the passage of one mole of gas through the obstruction. The volume on the left 
decreases by the molar volume Vt ;  since the gas is pushed by the gas behind it, which 
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M' 

F i g u re 7 .9  T h e  Jou le-Thomson experi ment.  

exerts a pressure Pi > the work produced is 

ltleft = r� Pl dV 
JV1 

.. 

The volume on the right increases by the molar volume V2 ; the gas coming through must 
push the gas ahead of it, which exerts an opposing pressure, P2 ' The work produced is 

rV
2 

Wright = 
Jo 

P2 dV 

The net work produced i s  the sum of  these two amounts 

W = r� Pl dV + rV
2
p2 dV = Pl ( - V1) + P2 V2 = P2 V2 - Pl V1 Jv, Jo 

Since the pipe is insulated, Q = 0, and we have the first-law statement 

D 2 - D 1 = Q - W = - (P2 J:i - Pl V1)· 
Rearranging, we have 

The enthalpy of the gas is a constant in the Joule-Thomson expansion. The measured 
decrease in temperature -AT and the measured decrease in pressure -Ap are combined 
in the ratio 

(-AT) (AT) 
- Ap H 

= Ap H
' 

The Joule-Thomson coefficient flIT is defined as the limiting value of this ratio as Ap 
approaches zero : 

JiJT = (��t· (7.49) 

The drop in temperature (Joule-Thomson effect) is easily measurable in this experiment, 
particularly if the pressure difference is large. A noisy but dramatic demonstration of this 
effect can be made by partially opening the valve on a tank of compressed nitrogen ; after 
a few minutes the valve is cold enough to form a coating of snow by condensing moisture 
from the air. (This should not be done with hydrogen or oxygen because of the explosion 
or fire hazard !) If the tank of gas is nearly full, the driving pressure is about 1 50 atm and the 
exit pressure is 1 atm. With this pressure drop, the temperature drop is quite large. 
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The relation between /lJT and the derivative (8Hj8ph is simple. The total differential 
of H, 

dH = Cp dT + (8H) dp, 8p T 
expresses the change in H in terms of the changes in T and in p. It is possible to change T 
and p in such a way that H remains unchanged if we impose the condition dH = O. Under 
this condition the relation becomes 

0 =  Cp dT + (�;) TdP' 

Dividing by dp, we obtain 

o = Cp(��t + (�;) T' 
Using the definition of /lJT and rearranging, we have 

(�;) T = - Cp/lJT . (7. 50) 

Thus, if we measure Cp and /lJT , the value of (8Hj8ph can be calculated from Eq. (7.50). 
Note that by combining Eqs. (7. 50) and (7.45), a value of (8Uj8Vh can be obtained in 
terms of measurable quantities .  

The Joule-Thomson coefficient is positive at and below room temperature for all 
gases, except hydrogen and helium, that have negative Joule-Thomson coefficients. 
These two gases will be hotter after undergoing this kind of expansion. Every gas has a 
characteristic temperature above which the Joule-Thomson coefficient is negative, the 
Joule-Thomson inversion temperature. The inversion temperature for hydrogen is about 
- 80 °C : below this temperature hydrogen will cool in a Joule-Thomson expansion. The 
inversion temperatures of most gases are very much higher than room temperature. 

The Joule-Thomson effect can be used as the basis for a refrigerating device. The 
cooled gas on the low-pressure side is passed back over the high-pressure line to reduce 
the temperature of the gas before it is expanded ; repetition of this can reduce the tempera
ture on the high-pressure side to quite low values. If the temperature is low enough, then 
on expansion the temperature falls below the boiling point of the substance and drops of 
liquid are produced. This procedure is used in the Linde method for producing liquid air. 
The ordinary household refrigerator has a high- and a low-pressure side separated by an 
expansion valve, but the cooling results from the evaporation of a liquid refrigerant on the 
low-pressure side ; the refrigerant is liquefied by compression on the high-pressure side. 

7 . 1 6 A D I A BAT I C  C H A N G ES I N  STATE 

If no heat flows during a change in state, dQ = 0, and the change in state is adiabatic. 
Experimentally we approximate this condition by wrapping the system in a layer of 
insulating material or by using a vacuum bottle to contain the system. For an adiabatic 
change in state, since dQ = 0, the first law statement is 

dU = - dW, (7. 5 1 )  
or, for a finite change in state, 

I1U = - w. (7.52) 
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Turning Eq. (7.52) around, we find that W = -f..U, which means that the work pro
duced, W, is at the expense of a decrease in energy of the system, -f.. U. A decrease in 
energy in a system is evidenced almost entirely by a decrease in temperature of the system ; 
hence, if work is produced in an adiabatic change in state, the temperature of the system 
falls .  Ifwork is destroyed in the adiabatic change, W is - , and f..U is + ; the work destroyed 
increases the energy and the temperature of the system. 

If only pressure-volume work is involved, Eq. (7. 5 1) becomes 

(7.53) 

from which it is clear that in expansion dV is + and dU is - ; the energy decreases and so 
does the terpperature. If the system is compressed adiabatically, dV is - , and dU is + ;  
the energy and the temperature both increase. 

7 . 1 6 . 1  S pec i a l  Case : Ad i a bat ic  C h a n g es i n  State 
i n  the I d ea l  G as 

Because of Joule's law we have for the ideal gas dU = Cv dT. Using this relation in Eq. 
(7. 53), we obtain 

(7.54) 

which shows immediately that dT and dV  have opposite signs. The drop in temperature 
is proportional to Pop , and for a specified increase in volume will have a maximum 
value when Pop has its maximum value ; that is, when Pop = p. Consequently, for a fixed 
change in volume, the reversible adiabatic expansion will produce the greatest drop in 
temperature ; conversely, a reversible adiabatic compression between two specified 
volumes produces the least increase in temperature. 

For a reversible adiabatic change in state of the ideal gas, Pop = p, and Eq. (7.54) 
becomes 

Cv dT = -p dV (7. 55) 

To integrate this equation, Cv and p must be expressed as functions of the variables of 
integration T and V. Since U is a function only of temperature, Cv is also a function only of 
temperature ; from the ideal gas law, p = nRTIV Equation (7. 55) becomes 

dV C dT = - nRT -v 
V 

Dividing by T to separate variables, and using Cv = Cv!n, we have 

C dT 
_ _ 

dV v
T - R

V ' 

Describing the initial state by Tb VI ' the final state by Tz , Vz , and integrating, we have 

J
T2CV 

dT = -R (2 dV
. 

T! T Jv! V 

If Cv is a constant, it can be removed from the integral. Integration yields 

Cv In(Tz) = -R In Vz . (7. 56) 
TI VI 

Since R = Cp - Cv , then RICv = (CpICv) - 1 = 'Y - 1 .  This value of RICv reduces 
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Eq. (7.56) to 
In (�) = - (y - 1 )  In (�), 

which can be written 

or 
T1 n- 1 = T2 V�- l . 

Using the ideal gas law, we can transform this equation to the equivalent forms 

rrp� - Y = npi - Y, 

(7.57) 

(7. 58) 

(7. 59) 

Equation (7.59), for example, says that any two states of an ideal gas that can be connected 
by a reversible adiabatic process fulfill the condition that p vr = constant. Equations 
(7. 57) and (7. 58) can be given analogous interpretations. Although these equations are 
rather specialized, occasional use will be made of them. 

7 . 1 7 A N OT E  A B O UT P R O B LE M  WO R KI N G  

So far we have more than fifty equations. Working a problem would be a terrible task if 
we had to search through such a bewildering array of equations in the hope of quickly 
finding the right one. Thus only the fundamental equations should be used in application 
to any problem. The conditions set in the problem immediately limit these fundamental 
equations to simple forms from which it should be clear how to calculate the " unknowns " 
in the problem. So far we have only seven fundamental equations : 

1 .  The formula for expansion work :  �W = Pop dV. 
2. The definition of energy : dU = �Q - �w. 
3. The definition of enthalpy : H = U + P V. 
4. The definition of the heat capacities : 

C = �Qv = (au) v dT aT v' 

5. The purely mathematical consequences : 

dU = Cv dT + (��) T
dV, 

c = �Qp = (aH) 
. p dT aT  p 

Of course, it is essential to understand the meaning of these equations and the meaning 
of such terms as isothermal, adiabatic, and reversible. These terms have definite mathe
matical consequences to the equations. For problems involving the ideal gas, the equation 
of state, the mathematical consequences of Joule's law, and the relation between the heat 
capacities should be known. The equations that solve each problem must be derived from 
these few fundamental equations. Other methods of attack, such as attempting to memorize 
as many equations as possible, produce only panic, paralysis, and paranoia. 

!Ii EXAMPLE 7.3 An ideal gas, Cv = �R, is expanded adiabatically against a constant 
pressure of 1 atm until it doubles in volume. If the initial temperature is 25 °C, and 
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the initial pressure is 5 atm, calculate T2 ; then calculate Q, W, I1U, and I1H per mole of 
gas for the transformation. 

Data : Initial state, T1 , Pl ' V1 . Final state, T2 , P2 ' 2 V1 . 
Moles of gas = n (not given) : POP = 1 atm. 
First law : dU = dQ - POP dV 
Conditions : Adiabatic ; therefore dQ = 0 ,  and Q = O. Ideal gas, therefore, 
dU = Cv dT. These reduce the first law to Cv dT = - Pop dV 

Since both Cv and Pop are constant, the first law integrates to 

Then 
I
T2 

I
V2 CV dT = - Pop dV 

T , V I 
or 

The first law becomes 
Pop nRTl 

P l 
Solving for Tz ,  we find 

T2 = Tl (1 -
2Pop) = 298 K[l - � (1 atm)] = 274 K. 
5Pl 5 5 atm 

Substituting for T2 , 
I1U = Cv(T2 - T1 ) = iR(274 K - 298 K) = i(8 . 3 14  J/K mol) ( - 24 K) 

= - 500 J/mol. 

Then W = -I1U = 500 J/mol. 

I1H = I
T2 Cp dT = (Cv + R)(T2 - T1 ) 
T, 

= GR + R)( - 24 K) = -1(8. 3 14  J/K mol)(24 K) 

= - 700 J/mol 
Note 1 :  Since the gas is ideal, we set Cp = Cv + R. 
Note 2: We do not need the value of n to calculate T2 • Since we were not given n, we 
can only calculate the value of W, I1U and I1H per mole of the gas. 

7 . 1 8 A P P LI CATI O N  O F  T H E F I R ST lAW O F  T H E R M O DY NA M I C S  TO 
C H E M I CA L  R EACTI O N S .  T H E H EAT OF R EACTI O N  

If a chemical reaction takes place in a system, the temperature of the system immediately 
after the reaction generally is different from the temperature immediately before the 
reaction. To restore the system to its initial temperature, heat must flow either to or from 
the surroundings . If the system is hotter after the reaction than before, heat must flow to 
the surroundings to restore the system to the initial temperature. In this event the reaction 
is exothermic ; by the convention for heat flow, the heat of the reaction is negative. If the 
system is colder after the reaction than before, heat must flow from the surroundings to 
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restore the system to the initial temperature. In this event the reaction is endothermic, 
and the heat of the reaction is positive. The heat of a reaction is the heat withdrawn from 
the surroundings in the transformation of reactants at T and p to products at the same 
T and p. 

In the laboratory the majority of chemical reactions are performed under a constant 
pressure ; therefore the heat withdrawn from the surroundings is equal to the change in 
enthalpy of the system. To avoid mixing the enthalpy change associated with the chemical 
reaction and that associated with a temperature or pressure change in the system, the 
initial and final states of the system must have the same temperature and pressure. 

For example, in the reaction 

Fe203(s) + 3 HzCg) ------+ 2 Fe(s) + 3 H20(l), 

the initial and final states are : 

Initial state 

T, p 
1 mole solid Fez03 
3 moles gaseous Hz 

Final state 

T, p 
2 moles solid Fe 
3 moles liquid HzO 

Since the state of aggregation of each substance must be specified, the letters s, 1, and g 
appear in parentheses after the formulas of the substances. Suppose that we think of the 
change in state as occurring in two distinct steps. In the first step, reactants at T and p 
are transformed adiabatically to products at T' and p. 

Step 1 .  
Fe203(s) + 3 HzCg) ------+ 2 Fe(s) + 3 H20(l). 
, I \ I 

, 

T, p T', p 
At constant pressure, I1H = Qp ; but, since this first step is adiabatic, (Qp) l = 0 and 
I1H 1 = O. In the second step, the system is placed in a heat reservoir at the initial tempera
ture T. Heat flows into or out of the reservoir as the products of the reaction come to the 
initial temperature. 

Step 2. 

T', p  T, p 
for which I1H 2 = Qp . The sum of the two steps is the overall change in state 

Fe203(S) + 3 HzCg) ------+ 2 Fe(s) + 3 H20(l) 

and the I1H for the overall reaction is the sum of the enthalpy changes in the two steps : 
I1H = I1Hl + I1H2 = 0 + Qp , 

(7.60) 

where Qp is the heat of the reaction, the increase in enthalpy of the system resulting from 
the chemical reaction. 
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The increase in enthalpy in a chemical reaction can be viewed in a different way. 
At a specified temperature and pressure, the molar enthalpy H of each substance has a 
definite value. For any reaction, we can write 

I1H = Hfina1 - Hinitial ' (7.61 )  

But the enthalpy of the initial or the final state is the sum of the enthalpies of the sub
stances present initially or finally. Therefore, for the example, 

Hfina1 = 2H(Fe, s) + 3H(H20, 1), 

Hinitial = H(Fe203 ' s) + 3H(H2 ' g), 

and Eq. (7.61)  becomes 

M = [2.H(Fe, s) + 3.H(H20, 1)] - [.H(Fe203 , s) + 3.H(H2 ' g)] . (7.62) 

It seems reasonable that measuring M could lead ultimately to the evaluation of the four 
molar enthalpies in Eq. (7.62). However, there are four " unknowns " and only one equa
tion. We could measure the heats of s�veral different reactions, but this would introduce 
more " unknowns ."  We deal with this difficulty in the next two sections. 

7 . 1 9 T H E FO R M ATI O N  R EACTI O N  

We can simplify the result in Eq. (7.62) by considering the formation reaction of a com
pound. The formation reaction of a compound has one mole of the compound and nothing 
else on the product side ; only elements in their stable states of aggregation appear on the 
reactant side. The increase in enthalpy in such a reaction is the heat of formation, or 
enthalpy of formation� of the compound, I1H f ' The following reactions are examples of 
formation reactions. 

H2(g) + t02(g) --* H2O(l) 

2 Fe(s) + !02(g) --* Fe203(S) 

tH2(g) + tBril) --* HBr(g) 

tN2(g) + 2 Hig) + tClig) --* NH4CI(s) 

If the I1H for these reactions is written in terms of the molar enthalpies of the sub
stances, we obtain, using the first two as examples, 

I1Hf(H20, I) = .H(H20, 1) - .H(H2 ' g) - t.H(02 , g) 

I1H(Fe203 , s) = .H(Fe203 , s) - 2.H(Fe, s) - !.H(02 , g) 

Solving for the molar enthalpy of the compound in each example, we have 

H(H20, I) = H(H2 , g) + tH(02 ' g) + I1HtCH20, 1) 
- - 3 - . 
H(Fe203 , s) = 2H(Fe, s) + 2H(02 , g) + MtCFe203 , s) 

(7.63) 

These equations show that the molar enthalpy of a compound is equal to the total enthalpy 
of the elements that compose the compound plus the enthalpy of formation of the com
pound. Thus we can write for any compound, 

.H(compound) = :EH(elements), + I1Hf(compound), (7.64) 
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in which LH(elements) is the total enthalpy of the elements (in their stable states of 
aggregation) in the compound. 

Next we insert the values of H(H20, 1) and H(Fe203 , s) given by Eq. (7.63) into 
Eq. (7.62) ; this yields 

i1.H = 2H(Fe, s) + 3 [H(H2 , g) + tH(02 , g) + i1.HiH20, I)J 
- [2B(Fe, s) + tH(02 , g) + LlHiFe203 , s)J - 3H(H2 , g) 

Collecting like terms, this becomes 

(7.65) 

Equation (7.65) states that the change in enthalpy of the reaction depends only on the 
heats offormation of the compounds in the reaction. The change in enthalpy is independent 
of the enthalpies of the elements in their stable states of aggregation. 

A moment's reflection on Eq. (7.64) tells us that this independence of the values of the 
enthalpies of the elements must be correct for all chemical reactions. If, in the expression 
for the i1.H of a reaction, we replace the molar enthalpy of every compound by the expres
sion in Eq. (7.64), then it is clear that the sum of the enthalpies of the elements composing 
the reactants must be equal to the sum of the enthalpies of the elements composing the 
products. The balanced chemical equation requires this. Therefore the enthalpies of the 
elements must drop out of the expression. We are left only with the proper combination 
of the enthalpies of formation of the compounds. This conclusion is correct at every 
temperature and pressure. 

The enthalpy of formation of a compound at 1 atm pressure is the standard enthalpy 
of formation, LlHi . Values of LlHi at 25 °C are tabulated in Appendix V, Table A-V, for a 
number of compounds. 

III EXAMPLE 7.4 Using the values of LlHi given in Table A-V, calculate the heat of the 
reaction 

Fe203(s) + 3 H2(g) ------+ 2 Fe(s) + 3 H20(l), 

From Table A-V we find 

LlHi(H20, 1) = - 285 .830 kJ/mol ; LlHi(Fe203 , s) = - 824.2 kJ/mol. 

Then 

i1.H = 3( - 285 .830 kJ/mol) - 1( - 824.2 kJ/mol) = ( - 857.5 + 824.2) kJ/mol 
= - 33 .3 kllmol. 

The negative sign indicates that the reaction is exothermic. Note that the stoichiometric 
coefficients in these expressions are pure numbers. The unit for i1.H is kJ/mol. This 
means per mole of reaction. Once we balance the chemical equation in a particular way, 
as above, this defines the mole of reaction . If we had balanced the equation differently, 
as, for example, 

tFe203(S) + tHz(g) ------+ Fe(s) + tH20(l) 
then this amount of reaction would be one mole of reaction and LlH would be 

LlH = � - 285 .830 kJ/mole) - t( - 824.2 kJ/mol) = - 428.7 + 412. 1 = - 16.6 kJ/mol. 
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7 . 20 C O N VE N T I O N A L  VAL U E S  O F  M O LA R  E NT H A l P I E S  

The molar enthalpy II of  any substance i s  a function o f  T and p ; II = H(T, p). Choosing 
p = 1 atm as the standard pressure, we define the standard molar enthalpy Jr of a sub
stance by 

HO = H(T, 1 atm). (7.66) 

From this it is clear that HO is a function only of temperature. The degree superscript 
on any thermodynamic quantity indicates the value of that quantity at the standard 
pressure. (Because the dependence of enthalpy on pressure is very slight-compare with 
Section 7. 1 5-we will often use standard enthalpies at pressures other than one atm ; the 
error will not be serious unless the pressure is very large, for example, 1000 atm.) 

As we showed in Section 7 . 19, the enthalpy change in any chemical reaction does not 
depend on the numerical values of the enthalpies of the elements that compose the com
pound. Because this is so we may assign any arbitrary, convenient values to the molar 
enthalpies of the elements in their stable states of aggregation at a selected temperature 
and pressure. Clearly, if we chose the required values randomly from the numbers in a 
telephone directory this could introduce a good deal of unnecessary numerical clutter into 
our work. Since the numbers do not matter, they can all be the same ; if they can all be the 
same, they all might as well be zero and eliminate the clutter entirely. 

The enthalpy of every element in its stable state of aggregation at 1 atm pressure and 
at 298 . 1 5  K is assigned the value zero. For example, at 1 atm and 298. 1 5  K the stable state 
of aggregation of bromine is the liquid state. Hence, liquid bromine, gaseous hydrogen, 
solid zinc, solid (rhombic) sulfur, and solid (graphite) carbon all have H�9 8 . 1 5 = o. 
(We will write H 29 8 as an abbreviation for H29 8 . 1 5 ') 

For elementary solids that exist in more than one crystalline form, the modification 
that is stable at 25 °C and 1 atm is assigned HO = 0 ;  for example, the zero assignment goes 
to rhombic sulfur rather than to monoclinic sulfur, and to graphite rather than to diamond. 
In cases in which more than one molecular species exists (for example, oxygen atoms, 0 ; 
diatomic oxygen, O2 ; and ozone, 03) the zero enthalpy value is assigned to the most 
stable form at 25 °C and 1 atm pressure ; for oxygen, H�9 8(02 ' g) = O. Once the value of 
the standard enthalpy of the elements at 298 . 1 5  K has been assigned, the value at any other 
temperature can be calculated. Since at constant pressure, dHo = C� dT, then 

I
T 

dHO = I
T 

c� dT, H� - H�98 = I
T 

c� dT, 
29 8 29 8 29 8 

H� = H�98 + I
T 

c� dT, (7.67) 
29 8 

which is correct for both elements and compounds ; for elements, the first term on the 
right-hand side is zero. 

Given the definition of the formation reaction, if we introduce the conventional assign
ment, HO(elements) = 0, into the expression for the heat of formation, Eq. (7.63) or Eq. 
(7.64), we find that for any compound 

HO = I1H'} . (7.68) 

The standard heat of formation I1H'} is the conventional molar enthalpy of the compound 
relative to the elements that compose it. Accordingly, if the heats of formation 11H'} of all 



1 34 Energy and the F i rst law of Thermodynamics 

the compounds in a chemical reaction are known, the heat of the reaction can be calcula
ted from equations formulated in the manner of Eq. (7.62). 

7 . 21 T H E D ET E R M I N ATI O N  O F  H EATS O F  F O R M ATI O N  

In some cases it is possible to determine the heat of formation of a compound directly 
by carrying out the formation reaction in a calorimeter and measuring the heat effect 
produced. Two important examples are 

C(graphite) + Gig) --------+ COz(g), 

HzCg) + !oig) --------+ Hz0(l), 

/';;.H'} = - 393. 5 1  kJ/mol 

/';;.H'} = - 285 .830 kJ/mol. 

These reactions can be conducted easily in a calorimeter ; the reactions go to completion, 
and conditions can easily be arranged so that only one product is formed. Because of the 
importance of these two reactions, the values have been determined quite accurately. 

The majority of formation reactions are unsuitable for calorimetric measurement ; 
these heats of formation must be determined by indirect methods. For example, 

C(graphite) + 2 Hz(g) --------+ CH4(g)· 
This reaction has three strikes against it as far as its use in calorimetry is concerned. The 
combination of graphite with hydrogen does not occur readily ; if we did manage to get 
these materials to react in a calorimeter, the product would not be pure methane, but 
an exceedingly complex mixture of hydrocarbons. Even if we succeeded in analyzing the 
product mixture, the result of such an experiment would be impossible to interpret. 

There is one method that is generally applicable if the compound burns easily to 
form definite products. The heat of formation of a compound can be calculated from the 
measured value of the heat of combustion of the compound. The combustion reaction has 
one mole of the substance to be burned on the reactant side, with as much oxygen as is 
necessary to burn the substance completely ; organic compounds containing only carbon, 
hydrogen, and oxygen are burned to gaseous carbon dioxide and liquid water. 

For example, the combustion reaction for methane is 

CH4(g) + 2 0ig) --------+ COz(g) + 2 HzO(l). 
The measured heat of combustion is /';;.H�omb = - 890. 36 kJ Imol. In terms of the enthalpies 
of the individual substances, 

/';;.H�omb = HO(COz , g) + 2HO(HzO, 1) - HO(CH4 ' g). 

Solving this equation for HO(CH4 ' g), 

HO(CH4 ' g) = HO(COz ' g) + 2HO(HzO, 1) - /';;.H�omb '  (7.69) 

The molar enthalpies of COz and HzO are known to a high accuracy ; from this knowledge 
and the measured value of the heat of combustion, the molar enthalpy of methane (the 
heat of formation) can be calculated by using Eq. (7.69). 

HO(CH4 ' g) = - 393 .51  + 2( - 285 .83) - ( - 890.36) 
= - 965. 17 + 890.36 = - 74.8 1 kllmol. 

The measurement of the heat of combustion is used to determine the heats of forma
tion of all organic compounds that contain only carbon, hydrogen, and oxygen. These 
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compounds burn completely to carbon dioxide and water in the calorimeter. The combus
tion method is used also for organic compounds containing sulfur and nitrogen ; however, 
in these cases the reaction products are not so definite. The sulfur may end up as sulfurous 
acid or sulfuric acid ; the nitrogen may end up in the elementary form or as a mixture of 
oxy-acids. In these cases considerable skill and ingenuity are required in the determination 
ofthe conditions for the reaction and in the analysis of the reaction products. The accuracy 
of the values obtained for this latter class of compounds is very much less than that ob
tained for the compounds containing only carbon, hydrogen, and oxygen. 

The problem of determining the heat offormation of any compound resolves into that 
of finding some chemical reaction involving the compound which is suitable for calori
metric measurement, then measuring the heat of this reaction. If the heats of formation 
of all of the other substances involved in this reaction are known, then the problem is 
solved. If the heat of formation of one of the other substances in the reaction is not known, 
then we must find a calorimetric reaction for that substance, and so on. 

Devising a series of reactions from which an accurate value of the heat of formation 
of a particular compound can be obtained can be a challenging problem. A calorimetric 
reaction must take place quickly (that is, be completed within a few minutes at most), with 
as few side reactions as possible and preferably none at all. Very few chemical reactions 
take place without concomitant side reactions, but their effects can be minimized by 
controlling the reaction conditions so as to favor the main reaction as much as possible. 
The final product mixture must be carefully analyzed, and the thermal effect of the side -
reactions must be subtracted from the measured value. Precision calorimetry is demanding 
work. 

7 . 22 S EQ U E N C ES O F  R EACTI O N S ; H ES S ' S  LAW 

The change in state of a system produced by a specified chemical reaction is definite. 
The corresponding enthalpy change is definite, since the enthalpy is a function of the state. 
Thus, if we transform a specified set of reactants to a specified set of products by more 
than one sequence of reactions, the total enthalpy change must be the same for every 
sequence. This rule, which is a consequence of the first law of thermodynamics, was 
originally known as Hess's law of constant heat summation. Suppose that we compare two 
different methods of synthesizing sodium chloride from sodium and chlorine. 

Method 1 .  

Na(s) + H2O(l) -----+ NaOH(s) + !H2(g), A.H = - 139.78 kJ/mol 
! H2(g) + !CI2(g) -----+ HCI(g), A.H = - 92.3 1 kJ/mol 

HCI(g) + NaOH(s) -----+ NaCI(s) + H2O(l), A.H = - 179.06 kJ/mol 

Net change : Na(s) + !CI2(g) -----+ NaCI(s), A.Hnet = - 41 1 . 1 5 kJ/mol 

Method 2. 

! HzCg) + !CI2(g) -----+ HCI(g), A.H = - 92. 3 1  kJ/mol 
Na(s) + HCI(g) -----+ NaCI(s) + !H2(g), A.H = - 3 1 8 .84 kJ/mol 

Net change : Na(s) + !CI2(g) -----+ NaCI(s), A.Hnet = - 41 1 . 1 5  kJ/mol 
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The net chemical change is obtained by adding together all the reactions in the sequence ; 
the net enthalpy change is obtained by adding together all the enthalpy changes in the 
sequence. The net enthalpy change must be the same for every sequence which has the 
same net chemical change. Any number of reactions can be added or subtracted to yield 
the desired chemical reaction ; the enthalpy changes of the reactions are added or sub
tracted algebraically in the corresponding way. 

If a certain chemical reaction is combined in a sequence with the reverse of the same 
reaction, there is no net chemical effect, and AH = 0 for the combination. It follows 
immediately that the AH of the reverse reaction is equal in magnitude but opposite in 
sign to that of the forward reaction. 

The utility of this property of sequences, which is really nothing more than the fact 
that the enthalpy change in a system is independent of the path, is illustrated by the 
sequence 

1) 
2) 

C(graphite) + tOzCg) -----+ CO(g), 

CO(g) + tOzCg) ---+ COzCg), 

The net change in the sequence is 

3) C(graphite) + OzCg) -----+ COzCg), 

Therefore AH 3 = AH 1 + AH 2 ' In this particular instance, AH 2 and AH 3 are readily 
measurable in the calorimeter, while AH 1 is not. Since the value of AH 1 can be computed 
from the other two values, there is no need to measure it. 

Similarly, by subtracting reaction (2) from reaction (1) we obtain 

4) C(graphite) + CO2(g) ---+ 2 CO(g), 

and the heat of this reaction can also be obtained from the measured values. 

* 7 . 23 H EATS O F  S O L U TI O N  A N D D I L U TI O N  

The heat of solution is the enthalpy change associated with the addition of a specified 
amount of solute to a specified amount of solvent at constant temperature and pressure. 
For convenience we shall use water as the solvent in the illustrations, but the argUment can 
be applied to any solvent with slight modification. The change in state is represented by 

X + nAq ---+ X ' nAq, AHs . 
One mole of solute X is added to n moles of water. The water is given the symbol Aq in 
this equation; it is convenient to assign a conventional enthalpy of zero to the water in 
these solution reactions. 

Consider the examples 

HCI(g) + lOAq -----+ HCI · lOAq, AHl = - 69.01 kJ/mol 
HCl(g) + 25 Aq -----+ HCI · 25 Aq, AH 2 = - 72.03 kJ Imol 
HCl(g) + 40Aq -----+ HCI · 40Aq, AH3 = - 72.79 kJ/mol 

HCI(g) + 200Aq ---+ HCI · 200Aq, AH4 = - 73.96 kJ/mol 
HCI(g) + oo Aq -----+ HCI · oo Aq, AHs = - 74.8 5  kJ/mol 

The values of AH show the general dependence of the heat of solution on the amount 
of solvent. As more and more solvent is used, the heat of solution approaches a limiting 
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value, the value in the " infinitely dilute " solution ; for HCI this limiting value is given by 
tllIs · 

If we subtract the first equation from the second in the above set, we obtain 

HCI · lOAq + 1 5 Aq � HCI · 25 Aq, L1H = tllI2 - L1Hl = - 3.02 kJ/mol. 

This value of L1H is a heat of dilution : the heat withdrawn from the surroundings when 
additional solvent is added to a solution. The heat of dilution of a solution is dependent on 
the original concentration of the solution and on the amount of solvent added. 

The heat of formation of a solution is the enthalpy associated with the reaction 
(using hydrochloric acid as an example) : 

tHig) + tCl2(g) + nAq � HCI · nAq, L1H'j ,  

where the solvent Aq i s  counted a s  having zero enthalpy. 
The heat of solution defined above is the integral heat of solution. This distinguishes 

it from the differential heat of solution, which is defined in Section 1 1 .24. 

7 . 24 H EATS O F  R EACTI O N  AT C O N STAN T  VO L U M E  

If any of the reactants or products of the calorimetric reaction are gaseous, it is necessary 
to conduct the reaction in a sealed bomb. Under this condition the system is initially 
and finally in a constant volume rather than being under a constant pressure. The measured 
heat of reaction at constant volume is equal to an energy increment, rather than to an 
enthalpy increment : 

Qv = L1U (7.70) 

The corresponding change in state is 

R(T, V, p) � P(T, V, p'), 
where R(T, V, p) represents the reactants in the initial condition T, V, p ;  and P(T, V, p') 
represents the products in the final condition T, V, p'. The temperature and volume 
remain constant, but the pressure may change from p to p' in the transformation. 

To relate the L1U in Eq. (7.70) to the corresponding tllI, we apply the defining equation 
for H to the initial and final states : 

Hfinal = Ufinal + p'V, Hinitial = Uinitial + pV. 
Subtracting the second equation from the first, we have 

L1H = L1U + (p' - p)V. (7.71 )  

The initial and final pressures in the bomb are determined by the number of moles of 
gases present initially and finally ; assuming that the gases behave ideally, we have 

, npRT p = -v ' 

where nR and np are the total number of moles of gaseous reactants and gaseous products 
in the reaction. Equation (7.71)  becomes 

L1H = L1U + (np - nRJRT, 
tllI = L1U + L1nRT. (7.72) 
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Strictly speaking, the f'l..H in Eq. (7.72) is the f'l..H for the constant-volume transformation. 
To convert it to the appropriate value for the constant-pressure transformation, we must 
add to it the enthalpy change of the process : 

peT, V, pi) � peT, V', p). 

For this change in pressure at constant temperature, the enthalpy change is very nearly 
zero (Section 7. 1 5) and exactly zero if only ideal gases are involved. Thus for practical 
purposes the f'l..H in Eq. (7.72) is equal to the f'l..H for thc constant-pressure process, 
while the f'l..U refers to the constant-volume transformation. To a good approximation, 
Eq. (7.72) can be interpreted as 

(7.73) 

It is through Eqs. (7.72) or (7.73) that measurements in the bomb calorimeter, 
Qv = f'l..U, are converted to values of Qp = f'l..H. In precision measurements it may be 
necessary to include the effect of gas imperfection or of the change in enthalpy of the 
products with pressure ; this would depend on the conditions employed in the experiment. 

III EXAMPLE 7.5 Consider the combustion of benzoic acid in the bomb calorimeter : 

C6H5COOH(s) + 125 02(g) � 7 CO2(g) + 3 H20(l). 

In this reaction, np = 7, while nR = 1l. Thus f'l..n = 7 - �5 = -!, T = 298. 1 5  K ;  
we have 

Qp = Qv - !(8 . 3 144 J/K mol)(298 . 1 5  K), Qp = Qv - 1239 J/mol. 

Note that only the number of moles of gases are counted in computing f'l..n. 

1 .25  D E P E N D E N C E  O F  T H E H EAT O F  REACTI O N  
O N  T E M P E RATU R E  

If we know the value of f'l..Ho for a reaction at a particular temperature, let us say at 25 °C, 
then we can calculate the heat of reaction at any other temperature if the heat capacities 
of all the substances taking part in the reaction are known. The f'l..Ho of any reaction is 

f'l..Ho = HO(products) - HO(reactants). 

To find the dependence of this quantity on temperature we differentiate with respect to 
temperature : 

d f'l..HO dHo dHo 
� = dT (products) - dT (reactants). 

But, by definition, dHoldT = C� . Hence, 

d f'l..Ho -----;IT = C�(products) - C�(reactants) 

(7.74) 

Note that since HO and f'l..Ho are functions only of temperature (Section 7.20), these are 
ordinary derivatives rather than partial derivatives. 
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The value of �C� is calculated from the individual heat capacities in the same way 
as �Ho is calculated from the individual values of the molar enthalpies. We multiply the 
molar heat capacity of each product by the number of moles of that product involved in 
the reaction ; the sum of these quantities for every product yields the heat capacity of the 
products. A similar procedure yields the heat capacity of the reactants. The difference in 
value of the heat capacity of products less that of reactants is �C p ' 

Writing Eq. (7.74) in differential form, we have 

d i1Ho = i1C� dT. 

Integrating between a fixed temperature To and any other temperature T, we obtain 

I
T 
d i1HO = I

T 
i1C� dT. 

To To 
The integral ofthe differential on the left is simply �Ho, which, when evaluated between the 
limits, becomes 

Rearranging, we have 

i1H'T - i1H'To = I
T 
i1C� dT. 

To 

i1H'T = i1H'To + I
T 
�C� dT. 

To 
(7.75) 

Knowing the value of the enthalpy increase at the fixed temperature To , we can calculate 
the value at any other temperature T, using Eq. (7.75). If any of the substances change 
their state of aggregation in the temperature interval, the corresponding enthalpy change 
must be included. 

If the range of temperature covered in the integration of Eq. (7.75) is short, the heat 
capacities of all the substances involved may be considered constant. If the temperature 
interval is very large, the heat capacities must be taken as functions of temperature. For 
many substances this function has the form 

Cp = a + bT + CT2 + dT3 + . . .  , (7.76) 

where a, b, c, d, . . .  are constants for a specified material. In Table 7.1 values of these 
constants are given for a number of substances in multiples of R, the gas constant. 
iii EXAMPLE 7.6 Calculate the i1Ho at 85 °C for the reaction 

Fe203(s) + 3 Hig) -+ 2 Fe(s) + 3 H20(l). 

The data are : �H�9 8 = - 33.29 kJ/mol ;  and 

Substance Fez03(s) Fe(s) H2°(l) Hz(g) 

C;/( J /K rna 1) 103.8 25. 1 75 .3 28 .8 

First compute i1C� . 
�C� = 2C�(Fe, s) + 3C�(H20, 1) - [C�(Fe203 ' s) + 3C�(H2 ' g)] 

= 2(25. 1) + 3(75.3) - [103 .8 + 3(28.8)] = 85 .9 J/K mol. 
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Tab le  7 . 1  
H eat capacity of g ases as a funct ion of temperatu re 

CplR = a + bT + cT2 + dT3 
Range : 300 K to 1 500 K 

a b/1O- 3 K- 1 c/1O- 7 K - 2 d/1O- 9 K- 3 

H2 3.4958 - 0. 1006 2.419 
O2 3 .0673 + 1 .6371 - 5 . 1 1 8  
CI2 3 .8122 1 .2200 - 4.856 
Br2 4.2385 0.4901 - 1 .789 
N2 3 .2454 0.7108 - 0.406 
CO 3 . 19 16  0.9241 - 1 .410 
HCI 3.3876 0.2176 + 1 .860 
HBr 3 .3 100 0.4805 0.796 
NO 3.5326 - 0. 186 12.8 1  - 0.547 
CO2 3 .205 + 5.083 - 17 . 13  
H2O 3.633 1 . 195 + 1 .34 
NH3 3 . 1 14 3.969 - 3.66 
H2S 3 .21 3  2.870 - 6.09 
S02 3 .093 6.967 - 45.8 1 + 1 .035 
CH4 1 .701 9 .080 - 21 .64 
C2H6 1 . 1 3 1  19 .224 - 55.60 
C2H4 1 .424 14.393 - 43.91 
C2H2 3.689 6.352 - 19.57 
C3HS 1 .21 3  28.782 - 88.23 
C3H6 1 .637 22.703 - 69. 14 
C3H4 3 . 187  15 .595 - 47.59 
C6H6 - 0.206 39.061 - 133.00 
C6HSCH3 + 0.290 47.048 - 157 .14 
CCgraphite) - 0.637 7.049 - 5 1 .99 1 .384 

Calculated from the compilations of H.  M. Spencer and J. L. Justice, J. Am. Chern. 
Soc . ,  56 : 23 1 1  ( 1 934) ; H. M. Spencer and G. N. Flanagan, J. Am. Chern. Soc . ,  
64 : 25 1 1 ( 1 942) ; H .  M .  Spencer, Ind. Eng. Chern. ,  40 : 2 1 52 ( 1 948). 

Since 85 °C = 358 K, we have 
3 "5 8 

AH3 S 8 = AH�9 8 + f 85 .9 dT 
29 8 

= - 33 .29 kJ/mol + 85 .9(358 - 298) J/mol 
= - 33 .29 kJ/mol + 85 .9(60) J/mol = - 33.29 kJ/mol + 5 1 50 J/mol 
= - 33.29 kJ/mol + 5 . 1 5  kJ/mol = - 28 . 14  kJ/mol. 

Note that care must be taken to express both terms in kilojoules or both in joules before 
adding them together ! 

• EXAMPLE 7.7 Compute the heat of reaction at 1000 °C = 1273 K for 

! H2(g) + !Clig) -- HCI(g) 
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Given flH�98 = - 92. 3 12  kl/mol and the data for Cp from Table 7. 1 :  

C�(H2)/R = 3.4958 - 0. 1006(1O - 3)T  + 2.419( 1O- 7)T2 

C�(C12)/R = 3 .8 122 + 1 .2200(10- 3)T - 4.856(1O - 7)T2 

C�(HCl)/R = 3 .3876 + 0.2176(10- 3)T  + 1 . 860(10- 7)T2 

We begin by computing !J.C�/R for the integral in Eq. (7.75). We arrange the work in 
columns. 

!J.C�/R = 3 .3876 + 0.2176(10 - 3)T  + 1 . 860(10 - 7)T2 

-H3.4958 - 0. 1006(1O- 3)T + 2.419(10- 7)T2J 
-H3.8 122 + 1 .2200(1O- 3)T - 4.856(W- 7)T2J 

!J.C� = R[ - 0.2664 - 0.3421( 10- 3)T  + 3 .079(W- 7)T2J 

J
1 2 7 3 

!J.C� dT = R [- 0.2664 I
12 7 3 

dT _ 0.3421( 10- 3) I
1 2 7 3 

T dT 
2 9 8 2 9 8 29 8 

+ 3 .079(10- 7) f

l2 7 3 
T2 dTJ 29 8 

= R[ - 0.2664(1273 - 298) - 1(0.3421)( 10- 3)(12732 - 2982) 

+ 1(3.079)(10- 7)(12733 - 298 3)J 

= R( - 259.7 - 262.0 + 209.0) = (8 .3 144 J/K mol)( - 3 12.7 K) 

= - 2.600 kJ/mol 

I
1 2 7 3 

!J.H12 7 3 = flH29 8 + !J.C� dT = - 92.3 12  kJ/mol - 2.600 kl/mol 
29 8 

= - 94.912 kl/mol. 
Note that the heat capacities of all the substances taking part in the reaction must 

be included ; the elements cannot be omitted as they were in calculating enthalpy 
differences. 

7 . 26 B O N D  E NT H A l P I E S  

I f  we  consider the atomization o f  a gaseous diatomic molecule, 

!J.H29 8 = 498 .34 kJ/mol, 

the value 498 .34 kJ is called the bond enthalpy of the oxygen molecule. 
Similarly we can write 

H20(g) -----+ 2 H(g) + O(g) !J.H29 8 = 926.98 kJ/mol 

and call 1(926.98) = 463.49 kJ/mole the average bond enthalpy of the O-H bond in 
water. So long as we deal only with molecules in which the bonds are equivalent, such as 
H20, NH3 , CH4 , the procedure is straightforward. 

On the other hand, in dealing with a molecule such as H202 in which two different 
bonds exist, some assumption must be introduced. The assumption is usually made that 
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Tab le  7 .2  
H eats of format ion  of gaseous atoms at 25 ·C 

Atom �H f/(kJ/mol) Atom W f/(kJ/mol) Atom 

0 249. 17  Br 1 1 1 .86 N 
H 217.997 I 106.762 P 
F 79.39 S 276.98 C 
CI 121 .302 Se 202.4 Si 

�HJi(kJ/mol) 

472.68 
3 16.5 
716.67 
450. 

the average OR bond in R202 is the same as that in water. The enthalpy of atomization of 
R202 is 

MI�98 = 1070.6 kJ/mol. 

If we subtract the enthalpy of two OR bonds in water we obtain : 1070.6 - 927.0 = 
143 .6 kJ/mol as the strength of the 0-0 single bond. Clearly the method does not 
warrant keeping the fraction, and we would say that the oxygen-oxygen single bond has a 
strength of about 144 kJ/mol. 

The heats of formation of the atoms must be known before we can . compute the bond 
strength. Some of these values are given in Table 7.2. 

* 7 . 26 . 1  B o n d  E n e rg i es 

If we wish to know the bond energy, assuming all species behave as ideal gases, we can use 
the relation 

!1U = MI - I1nRT. 

In the case of the oxygen molecule, !1n = 1, so that 

!1U = 498.34 kJ/mol - (1)(8 . 3 144 J/K mol)(298 . 1 5  K) (10 - 3 kJP) 
= 498 .34 kJ/mol - 2.48 kJ/mol = 495 .86 kJ/mol. 

This is the average energy that must be supplied to break one mole of bonds in the oxygen 
molecule at 25 °C. At this temperature some of the molecules will be in excited rotational 
and vibrational states ; these molecules will require somewhat less energy to break the 
bonds than will one in its ground state. At 0 K, all the molecules are in the ground state 
and thus all require the same energy to break the bond. If we correct the value of !1U to 0 K, 
we obtain the bond energy. The relation is 

29 8 
!1U29 8 = !1Uo + L !1Cv dT. 

Since Cv(O, g) = tR and Cv(02 ' g) = �R, and these values are independent oftemperature, 
this yields !1Cv = 2(tR) - �R = tR. Then 

!1f! 0 = !1U 29 8 - tR f98 
dT = 495 .86 kJ/mol - tc8 . 3 14  J/K mol)(298. 1 5  K)(10- 3 kJ/J) 

= 495 .86 kJ/mol - 1 .24 kJ/mol = 494.62 kJ/mol 

This is the bond energy of the oxygen-oxygen double bond. For any molecule for which the 
data are available the calculation is straightforward, as above. Note that the difference 
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between the bond enthalpy at 25 °C, t1HZ98 , and the bond energy, t1U 0 ,  is only 3 .72 kJ in 
almost 500 kJ. This is only 0.7 %. The differences are usually of this relative order, so that 
often we do not bother with them. 

* 7. 27 CALO R I M ET R I C  M EAS U R E M E N TS 

It is worthwhile to describe how the heat of a reaction is calculated from the quantities 
that are actually measured in a calorimetric experiment. It is not possible in a brief 
space to describe all the types of calorimeters or all of the variations and refinements of 
technique that are necessary in individual cases and in precision work. A highly idealized 
situation will be described to illustrate the methods involved. 

The situation is simplest if the calorimeter is an adiabatic calorimeter. In the laboratory, 
this device is quite elaborate ; on paper we shall simply say that the vessel containing the 
system is perfectly insulated so that no heat flows into or out of the system. Under constant 
pressure, the first law for any transformation within the calorimeter is 

t1H = Qp = 0. 
The change in state can be represented by 

K(Tl) + R(Tl) -------* K(Tz) + P(Tz) 

(7.77) 

(p = constant), 
where K symbolizes the calorimeter, R the reactants, and P the products. Since the 
system is insulated, the final temperature Tz differs from the initial temperature Tl ; both 
temperatures are measured as accurately as possible with a sensitive thermometer. 

1 )  

2) 

The change in state can be supposed to occur in two steps : 
R(Tl) -------* P(Tl), 

K(Tl) + R(Tl) -------* K(Tz) + P(Tz), 

By Eq. (7.77) the overall t1H = 0, so that t1HTl + t1Hz = 0, or t1HTl = - t1Hz . The 
second step is simply a temperature change of the calorimeter and the reaction products, 
so 

and we obtain for the heat of the reaction at Tl 

IT2 
t1HT l = - [CiK) + CiP)] dT. 

T , 
(7.78) 

If the heat capacities of the calorimeter and the products of the reaction are known, 
the heat of reaction at Tl can be calculated from the measured temperatures Tl and Tz . 

If the required heat capacities are not known, the value of t1H z can be measured as 
follows. Cool the calorimeter and the products to the initial temperature Tl . (This assumes 
that Tz is greater than Tl ') The calorimeter and the products are then taken from Tl to 
Tz by allowing an electrical current to flow in a resistor immersed in the calorimeter ; 
the change in enthalpy in this step is equal to t1H z . This can be related to the electrical 
work expended in the resistance wire, which can be measured quite accurately, being the 
product of the current, the potential difference across the resistance, and the time. 

If we include electrical work, dW.l , at constant pressure, the first law becomes 

(7.79) 



1 44 Energy and the F i rst law of Thermodynamics 

Differentiating H = U + P V under the constant pressure condition, we get dH = dU + 
p dV. Adding this equation to Eq. (7.79) yields 

dH = rliQ - rliTv.I ' 
For an adiabatic process, rliQ = 0, and Eq. (7.S0) integrates to 

I1H = - Tv.1 ' 

(7. SO) 

(7 . S I) 

Applying Eq. (7. S 1 )  to the electrical method of carrying the products and calorimeter 
from the initial to the final temperature, we have 11Hz = - w.l> and so, since I1HTI + 
I1H z = 0, we obtain 

(7.S2) 

Since work was destroyed in the surroundings, Wei ' and therefore I1H T1 ,  are negative. 
The reaction is exothermic, a result of the assumption that Tz is greater than T1 . For 
endothermic reactions the procedure is modified in an obvious way. 

An alternative scheme can be imagined for the steps in the reaction : 
3) K(T1) + R(T1) --* K(Tz) + R(Tz), I1H3 , 

4) R(Tz) --* P(Tz), I1HT2 . 

Again, the overall l1H = 0, so that I1H 3 + I1H T2 = 0, or 

I1HT2 = - I1H3 = - I
T2 

[Cp(K) + Cp(R)] dT. 
Tl 

(7.S3) 

If the heat capacities of the calorimeter and the reactants are known, the heat of reaction at 
Tz can be calculated from Eq. (7. S3). 

If we deal with a bomb calorimeter so that the volume is constant, rather than the 
pressure, the argument is unchanged. In all of the equations I1H's are simply replaced by 
I1U's, and Cp's by Cv's. 

Q U ESTI O N S  

7.1  What is the difference between energy and heat ? Between energy and work ? Between heat and 
work ? 

7.2 Some texts define work W' as positive when a weight is lowered in the surroundings ; that is, 
when the surroundings do work on the system. How can the first law be expressed in terms of 
Q and W' ? (Justify the sign in front of W'.) 

7.3 The deviation of the work performed in a real expansion of a gas from that of reversible expansion 
can be shown to be of order illt/(u) . Here (u) is the average molecular speed and the o/i is the 
speed of the piston. What piston speed is required for a 10 % deviation from the reversible work 
formula ? 

7.4 Why is the enthalpy a useful quantity ? 
7.5 For a constant pressure process, I1H = Qp . Does it follow that Qp is a state function ? Why or 

why not ? 
7.6 What is the molecular interpretation of the dependence of the thermodynamic energy on the 

volume ? 
7.7 What is the connection between Hess's law and the fact that enthalpy is a state function ? 
7.8 Why does Cp exceed Cv for an ideal gas ? Give a molecular explanation. 



7.9 Why are heat capacity integrals required for accurate t:,.HD calculations ?  
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7.10 t:,.U for most chemical reactions is in the range of 200-400 kJ/mo!. At the 10 % level, is there 
any difference between t:,.H and t:,.U?  

P R O B LE M S  

Before working these problems, read Section 7. 17. 
7.1 One mole of an ideal gas is subjected to several changes in state. Cv = 12.47 J/K mo!. What will 

be the change in temperature in each change ? 
a) 5 12 J of heat flows out ; 134 J of work are destroyed. 
b) 500 J of heat flows in ; 500 J of work are produced. 
c) No heat flows in ; 126 J of work are destroyed. 

7.2 In a given change in state, 44 J of work are destroyed and the internal energy increases by 170 J. 
If the temperature of the system rises by 10 K, what is the heat capacity of the system? 

7.3 Three moles of an ideal gas expand isothermally against a constant opposing pressure of 100 kPa 
from 20 dm3 to 60 dm3 . Compute Q, W, Mj, and t:,.H. 

7.4 a) Three moles of an ideal gas at 27 DC expand isothermally and reversibly from 20 dm3 to 
60 dm3 . Compute Q, W, t:,.U, and t:,.H. 

b) Compute Q, W, t:,.U, and t:,.H if the same gas at 27 DC is compressed isothermally and reversibly 
from 60 dm3 to 20 dm3 . 

7.5 Three moles of an ideal gas are compressed isothermally from 60 L to 20 L using a constant 
pressure of 5 atm. Calculate Q, W, t:,.U, and W. 

7.6 Develop an equation for the work produced in the isothermal, reversible expansion from VI 
to V2 of a gas with the equation of state 

p i?  = RT + (bRT - a)(�) 
7.7 One mole of a van der Waals gas at 300 K expands isothermally and reversibly from 20 dm3 to 

60 dm3 (a = 0.556 m6 Pa mol- 2 ; b = 0.064 dm3/mol). For the van der Waals gas, (i3Uli3V)y = 

alP . Calculate W, Q, t:,.U, and t:,.H for the transformation. 
7.8 One mole of the ideal gas is confined under a constant pressure, PDP = P = 200 kPa. The tem

perature is changed from 100 DC to 25 DC. Ev = tR. Calculate TV; Q, t:,.U. and t:,.H. 
7.9 One mole of an ideal gas, Cv = 20.8 J/K mol, is transformed at constant volume from 0 DC 

to 75 DC. Calculate Q, W, t:,.U, and t:,.H. 
7.10 Calculate I1H and t:,.U for the transformation of one mole of an ideal gas from 27 DC and 1 atm 

to 327 DC and 17 atm. Cp = 20.9 + 0.042 T J/K mol. 
7.11 If an ideal gas undergoes a reversible polytropic expansion, the relation p vn = C holds ; C and 

n are constants, n > 1 .  
a )  Calculate W for such an  expansion i f  one mole of  gas expands from VI to  Vz and i f  Tl = 

300 K, T2 = 200 K, and n = 2. 
b) If Cv = -iR, calculate Q, t:,.U, and t:,.H. 

7.12 At 25 DC the coefficient of thermal expansion of water is IX = 2.07 x 10- 4 K - 1 and the density is 
0.9970 glcm 3 . If the temperature of 200 g of water is raised from 25 °C to 50 DC under a constant 
pressure of 101 kPa, 
a) calculate W. 
b) Given Cpl(J/K mol) = 75.30, calculate Q, t:,.H, and t:,.U. 
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7.13 One mole of an ideal gas is compressed adiabatically in a single stage with a constant opposing 
pressure equal to 1 .00 MPa. Initially the gas is at 27 °C and 0. 1 00 MPa pressure ; the final pressure 
is 1 .00 MPa. Calculate the final temperature of the gas, Q, W, i1U, and i1H. Do this for two cases : 

Case I. Monatomic gas, Cv = !R. 
Case 2. Diatomic gas, Cv = �R. 

How would the various quantities be affected if n moles were used instead of one mole ? 
7.14 One mole of an ideal gas at 27 DC and 0. 100 MPa is compressed adiabatically and reversibly to a 

final pressure of 1 .00 MPa. Compute the fi�al temperature, Q, W, i1U, and i1H for the same two 
cases as in Problem 7 . 1 3 .  

7.15 One mole of  an  ideal gas a t  27 DC and 1 .00 MPa pressure i s  expanded adiabatically to  a final 
pressure of 0. 100 MPa against a constant opposing pressure of 0 . 100 MPa. Calculate the final 
temperature, Q, W, i1U, and i1H for the two cases, Cv = !R and Cv = �R. 

7.16 One mole of an ideal gas at 27 °C and 1 .0 MPa pressure is expanded adiabatically and reversibly 
until the pressure is 0. 100 MPa. Calculate the final temperature, Q, W, i1U, and i1H for the 
two cases, Cv = !R and Cv = �R. 

7.17 In an adiabatic expansion of one mole of an ideal gas from an initial temperature of 25 DC, the work 
produced is 1200 J. If Cv = !R, calculate the final temperature, Q, W, i1U, and i1H. 

7.18 If one mole of an ideal gas, Cv = �R, is expanded adiabatically until the temperature drops from 
20 °C to 10 DC, calculate Q, W, i1U, and i1H. 

7.19 An automobile tire contains air at 320 kPa total pressure and 20 DC. The valve stem is removed 
and the air is allowed to expand adiabatically against the constant external pressure of 100 kPa 
until the pressure is the same inside and out. The molar heat capacity of air is Cv = �R ; the air 
may be considered an ideal gas. Calculate the final temperature of the gas in the tire, Q, W, i1U, 
and i1H per mole of gas in the tire. 

7.20 A bottle at 2 1 .0 °C contains an ideal gas under a pressure of 126.4 kPa. The rubber stopper 
closing the bottle is removed. The gas expands adiabatically against the constant pressure of the 
atmosphere, 101 .9 kPa. Obviously, some gas is expelled from the bottle. When the pressure in the 
bottle is equal to 101 .9 kPa the stopper is quickly replaced. The gas, which cooled in the adiabatic 
expansion, now slowly warms up until its temperature is again 2 1 .0 DC. What is the final pressure 
in the bottle ? 
a) lE the gas is monatomic, Cv/R = l 
b) If it is diatomic, Cv/R = i 

7.21 The method described in Problem 7.20 is that of Clement-Desormes for determining y, the heat 
capacity ratio. In an experiment, a gas is confined initially under Pi = 1 5 1 .2 kPa pressure. The 
ambient pressure, P2 = 100.8 kPa, and the final pressure after temperature equilibration is P3 = 

1 16.3 kPa. Calculate y for this gas. Assume the gas is ideal. 

7.22 When one mole of an ideal gas, Cv = �R, is compressed adiabatically, the temperature rises 
from 20 °C to 50 DC. Calculate Q, W, i1U, and i1H. 

7.23 One mole of an ideal gas having Cv = �R and initially at 25 °C and 100 kPa, is compressed 
adiabatically using a constant pressure equal to the final pressure until the temperature of the 
gas reaches 325 °C. Calculate the final pressure, Q, W, i1U, and i1H for this transformation. 

7.24 One mole of an ideal gas, Cv = !R, initially at 20 DC and 1 .0 MPa pressure undergoes a two-stage 
transformation. For each stage and for the overall change calculate Q, W, i1U, and i1H. 
a) Stage I :  Isothermal, reversible expansion to double the initial volume. 
b) Stage II : Beginning at the final state of Stage I, keeping the volume constant, the temperature 

is raised to 80 °C. 
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7.25 One mole of an ideal gas, Cv = �R, is subjected to two successive changes in state. 
a) From 25 °C and 100 kPa pressure, the gas is expanded isothermally against a constant 

pressure of 20 kPa to twice the initial volume. 
b) After undergoing the change in (a) the gas is cooled at constant volume from 25 °C to - 25 0c . 

Calculate Q, W, �u, and �H for the changes in (a) and (b) and for the overall change (a) + (b). 
7.26 a) An ideal gas undergoes a single-stage expansion against a constant opposing pressure from T, 

Pl ' Vl , to T, P2 ' V2 . What is the largest mass M that can be lifted through a height h in this 
expansion ? 

b) The system in (a) is restored to its initial state by a single-stage compression. What is the 
smallest mass M' that must fall through the height h to restore the system? 

c) What is the net mass lowered through height h in the cyclic transformation in (a) and (b) ? 
d) If h = 1 0  cm, P l = 1 .0 MPa, P2 = 0.50 MPa, T = 300 K, and n = 1 mol, calculate the values 

of the masses in (a ), (b), and (c). 
7.27 One mole of an ideal gas is expanded from T, P i > Vl to T, P2 , V2 in two stages : 

First stage 
Second stage 

Opposing pressure 

P' (constant) 
P2 (constant) 

Volume change 

Vl to V' 
V' to V2 

We specify that the point pI, V' lies on the isotherm at the temperature T. 
a) Formulate the expression for the work produced in this expansion in terms of T, Pl , P2 , 

and P' . 
b) For what value of P' does the work in this two-stage expansion have a maximum value ? 
c) What is the maximum value of the work produced ? 

7.28 The heat capacity of solid lead oxide, PbO, is given by : 
Cp/(J/K mol) = 44.35  + 1 .67 x 10- 3 T. 

Calculate the change in enthalpy of PbO if it is cooled at constant pressure from 500 K to 300 K. 
7.29 From the value of Cp given in Table 7 . 1  for oxygen, calculate Q, W, �V, and �H per mole of 

oxygen for the changes in state : 
a) P = constant, 100 °C to 300 °C ; 
b) V = constant, 100 °C to 300 0c . 

7.30 The Joule-Thomson coefficient for a van der Waals gas is given by IlJT = [(2a/RT) - b]/Cp • 
Calculate the value of M for the isothermal, 300 K, compression of 1 mole of nitrogen from 
1 to 500 atm : a = 0. 136 m6 Pa mol - 2 ; b = 0.0391  dm3/mol. 

7.31 The boiling point of nitrogen is - 196 °C, and Cp = �R. The van der Waals constants and IlJT 
are given in Problem 7.30. What must the initial pressure be if nitrogen in a single-stage Joule
Thomson expansion is to drop in temperature from 25 °C to the boiling point ? (The final pressure 
is to be 1 atm.) 

7.32 Repeat the calculation in Problem 7.31 for ammonia ; b.p. = - 34 °C, Cp = 35 .6 JjK mol, 
a = 0.423 m6 Pa/moI2, b = 0.037 dm3/mol. 

7.33 It can be shown that for a van der Waals gas (au/a vh = a /V2 . One mole of a van der Waals 
gas at 20 °C expands adiabatically and reversibly from 20.0 dm3 to 60.0 dm3 ; Cv = 4.79R ; a = 

0.556 m6 Pa mol- 2, b = 64 x 1O- 6 m3/mol. Calculate Q, W, � u, and �H. 
7.34 If one mole of a van der Waals gas, for which it may be shown that (au/a vh = alP, expands 

isothermally from a volume equal to b, the liquid volume, to a volume of 20.0 L, calculate �u for 
the transformation ; a = 0. 1 36 m6 Pa mol- 2 ; b = 0.0391  dm3/mol. 
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7.35 From the data in Table A-V compute the values of ilHz98  for the following reactions. 
a) 2 03(g) ..... d Oig). 
b) HzS(g) + !Oig) --+ Hz0(l) + SOig). 
c) TiOz(s) + 2 Clig) --+ TiClil) + Dig). 
d) C(graphite) + COz(g) --+ 2 CO(g). 
e) CO(g) + 2 Hz(g) --+ CH30H(l). 
f) FeZ03(S) + 2AI(s) --+ Alz03(s) + 2 Fe(s). 
g) NaOH(s) + HCI(g) --+ NaCI(s) + Hz0(l). 
h) CaCis) + 2 Hz0(l) --+ Ca(OHMs) + CzHz(g). 
i) CaC03(s) --+ CaO(s) + COz(g). 

7.3� Assuming the gases are ideal, calculate ilUZ98  for each of the reactions in Problem 7 .35 .  
7.37 At 25 °C and 1 atm pressure, the data are : 

Substance 
ilH�ombustioJ(kJ /mol) 

Hz(g) C(graphite) C6H6(l) CzHig), 
- 285 .83 - 393 .51  - 3267.62 - 1299 .58 .  

a)  Calculate the ilHo of formation of liquid benzene. 
b) Calculate ilHo for the reaction 3 CzHz(g) --+ C6H6(l). 

7.38 For the following reactions at 25 °C 

CaCis) + 2 HzO(l) � Ca(OHMs) + CzHz(g), 
Ca(s) + tOz(g) � CaO(s), 

ilW/(kJ/mol) 
- 127.9 ; 
- 635 . 1 ; 

CaO(s) + HzO(l) � Ca(OHMs), - 65.2. 
The heat of combustion of graphite is - 393 .51  kJ/mol, and that of CzHig) is - 1299.58 kJ/moi. 
Calculate the heat of formation of CaCz(s) at 25 °C. 

7.39 A sample of sucrose, C1 2HzzO l l , weighing 0. 1265 g is burned in a bomb calorimeter. After the 
reaction is over, it is found that to produce an equal temperature increment electrically, 2082.3 
joules must be expended. 
a) Calculate the heat of combustion of sucrose. 
b) From the heat of combustion and appropriate data in Table A-V calculate the heat of forma

tion of sucrose. 
c) If the temperature increment in the experiment is 1 .743 °c, what is the heat capacity of the 

calorimeter and contents ? 
7.40 If 3.0539 g of liquid ethyl alcohol, CzHsOH, is burned completely at 25 °C in a bomb calorimeter, 

the heat evolved is 90.447 kJ. 
a) Calculate the molar LlHo of combustion for ethyl alcohol at 25 °C. 
b) If the ilHi of COz(g) and Hz0(l) are - 393 .51  kJ/mol and - 285 .83 kJ/mol, calculate the LlHi 

of ethyl alcohol. 
7.41 From the data at 25 °C : 

FeZ03(s) + 3 C(graphite) � 2 Fe(s) + 3 CO(g), LlHo = 492.6 kJ/mol ; 
FeO(s) + C(graphite) � Fe(s) + CO(g), LlHo = 155 .8 kJ/mol ;  
C(graphite + OzCg)) � COz(g), LlHO = - 393.5 1 kJ/mol ; 

CO(g) + toz(g) � COz(g), ilW = - 282.98 kJ/moi. 

Compute the standard heat of formation of FeO(s) and of FeZ03(s). 
7.42 From the data at 25 °C : 

OzCg) � 2 0(g), ilW = 498.34 kJ/mol ; 
Fe(s) � Fe(g), 

and ilHi(FeO, s) = - 272 kJ/moi. 
LlHO = 416.3  kJ/moi. 



a) Compute the !'1Ho at 25 °C for the reaction 
Fe(g) + O(g) -----+ FeO(s). 
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b) Assuming that the gases are ideal, calculate !'1 UO for this reaction. (The negative of this quantity, 
+ 933  kJ/mol, is the cohesive energy of the crystal.) 

7.43 At 25 °C, the following enthalpies of formation are given : 
Compound SOz(g) HzO(l) 

!'1Hj/(kJ/mol) - 296.8 1  - 285.83 
For the reactions at 25 °C : 

2 HzS(g) + Fe(s) -----+ FeSz(s) + 2 Hz(g), 
HzS(g) + tOz(g) -----+ HzO(l) + SOz(g) 

Calculate the heat of formation of HzS(g) and ofFeSz(s). 
7.44 At 25 °C : 

!'1W = - 1 37.0 kJ/mol ;  
!'1W = - 562.0 kJ/mol. 

Substance 
!'1Hj/(kJ/mol) 
Cp/R 

Fe(s) FeSz(s) FezOis) S(rhombic) SOz(g) 

3 .02 7.48 

For the reaction : 

- 824.2 - 296 .81  
2.72 

2 FeSz(s) + V 0z(g) -----+ FeZ03(s) + 4 S0z(g), !'1W = - 1655 kJ/moL 
Calculate !'1H'} of FeSz(s) at 300 °C. 

7.45 a) From the data in Table A-V compute the heat of vaporization of water at 25 °C. 
b) Compute the work produced in the vaporization of one mole of water at 25 °C under a con

stant pressure of 1 atm. 
c) Compute the !'1 U  of vaporization of water at 25 °C. 
d) The values of Cp/(J/K mol) are : water vapor, 33 .577 ; liquid water, 75.29 1 .  Calculate the heat 

of vaporization at 100 °C. 
7.46 At 1000 K, from the data : 

Substance 
Cp/R 

!'1W = - 123.77 kJ/mol ; 

Nz Hz NH3 
3 .502 3.466 4.217  

Calculate the heat of  formation of  NH3 at  300 K .  
7.47 For the reaction : 

C(graphite) + HzO(g) -----+ CO(g) + Hz(g), !'1H�98  = 1 3 1 .28 kJ/mol. 
The values of Cp/(J/K mol) are : graphite, 8 .53 ; HzO(g), 33 .58 ; CO(g), 29 . 1 2 ; and Hz(g), 28.82. 
Calculate the value of !'1Ho at 125 °C. 

7.48 From the data in Tables A-V and 7.1 calculate the !'1H�ooo  for the reaction 
2 C(graphite) + 0z(g) -----+ 2 CO(g). 

7.49 From the values of Cp given in Table 7. 1 ,  and from the data : 
!Hz(g) + !Brz(l) -----4 HBr(g), !'1H�9 8  = - 36.38 kJ/mol ; 

Calculate the !'1H�ooo  for the reaction : 
!'1H�98 = 30.91  kJ/mol. 

! Hz(g) + !Brz(g) -----+ HBr(g). 
7.50 Using the data in Appendix V and Table 7 . 1  calculate the !'1H�98 and !'1H�ooo for the reaction : 

CzHz(g) + !Oz(g) -----+ 2 COz(g) + HzO(g). 
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7.51 The data are : 
CH3COOH(l) + 2 0ig) ---+ 2 COig) + 2 H20(l), 

H20(l) ---+ H20(g), 
L1H�9 8  = - 871 . 5  kJ/mol ; 

L1H�7 3 . 1 5 = 40.656 kJ/mol ; 
CH3COOH(l) ---+ CH3COOH(g), W�9 1 .4 = 24.4 kJ/mo!. 

Substance CH3COOH(l) 02(g) COig) H20(l) H20(g) 
14.9 3 .53 4.46 9.055 4.038 

Calculate /',.H�9 1 .4 for the reaction : 
CH3COOH(g) + 2 02(g) ---+ 2 C02(g) + 2 H20(g). 

7.52 Given the data at 25 °C : 
Compound 
L1Hj/(kJ/mol) 
C�/(J/K mol) 

Ti02(s) CI2(g) C(graphite) CO(g) TiCI4(l) 
- 945 - 1 10.5 

F or the reaction : 
55.06 33 .91 8 .53 

Ti02(s) + 2 C(graphite) + 2CI2(g) ---+ 2 CO(g) + TiCI4(l), 

29. 12 145.2 

L1H�9 8  = - 80 kJ/mol 
a) Calculate L1Ho for this reaction at 135 .8  °C, the boiling point of TiCI4 . 
b) Calculate L1Hj for TiClil) at 25 °C. 

7.53 From the heats of solution at 25 °C : 

HCl(g) + 100 Aq ---+ HCl · 100 Aq, 
NaOH(s) + 100 Aq ---+ NaOH · 100 Aq, 

NaCl(s) + 200 Aq ---+ NaCl · 200 Aq, 

L1W = - 73.61 kJ/mol ; 
L1W = - 44.04 kJ/mol ;  
L1W = +4.23 kJ/mol ; 

and the heats of formation of HCl(g), NaOH(s), NaCl(s), and H20(l) in Table A-V calculate L1Ho 
for the reaction 

HCl · 100 Aq + NaOH · 100 Aq ---+ NaCl · 200Aq + H20(l). 
7.54 From the heats of formation at 25 °C : 

Solution H2S04 · 600Aq KOH · 200 Aq KHS04 · 800Aq K2S04 · 1000Aq 
L1W/(kJ/mol) - 890.98 - 48 1 .74 - 1 148.8 - 1412.98 

calculate the L1Ho for the reactions : 
H2S04 . 600Aq + KOH · 200Aq ---+ KHS04 · 800 Aq + H20(l). 

KHS04 · 800Aq + KOH · 200Aq ---+ K2S04 · 1000 Aq + H20(l). 
Use Table A-V for the heat of formation of H20(l). 

7.55 From the heats of formation at 25 °C : 

Solution L1W/(kJ/mol) Solution 

H2S04(l) - 8 13 .99 H2S04 · lOAq 
H2S04 · l Aq - 841 .79 H2S04 · 20Aq 
H2S04 · 2 Aq - 855.44 H2S04 · 100Aq 
H2S04 · 4Aq - 867.88 H2S04 · oo Aq 

L1W/(kJ/mol) 

- 880.53 
- 884.92 
- 887.64 
- 909.27 

Calculate the heat of solution of sulfuric acid for the various solutions and plot L1Hs against 
the mole fraction of water in each solution. 
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@'From the data at 25 °C : 
±Hz(g) + ±Oz(g) -----> OH(g), 

HzCg) + ±02(g) -----> HzO(g), 
H zCg) -----> 2 H(g), 
Oz(g) -----+ 2 0(g), 

Compute fiHo for 
a) OH(g) --> H(g) + O(g), 
b) HzO(g) -+ 2 H(g) + O(g), 
c) HzO(g) -+ H(g) + OH(g). 

fiHO = 38.95 kllmol ; 
fiW = - 241 .8 1 4  kllmol ; 
fiW = 435.994 kllmol ; 
fiW = 498.34 kllmo!. 

d) Assuming the gases are ideal, compute the values of fiUo for reactions (a), (b), and (c). 
Note: The energy change for (a) is called the bond energy of the OH radical ; one-ha]f the energy 
change in (b) is the average OH bond energy in H20.  The energy change for (c) is the bond
dissociation energy of the OH bond in HzO. 

7.57 Given the data from Table A-V and the heats of formation at 25 °C of the gaseous compounds : 

/�-- " 

Compound SiF4 SiCI4 CF4 NF 3 OF z HF 
fiHjl(kllmol) - 1614.9 - 657.0 - 925 - 125 - 22 - 271 

calculate the single bond energies : Si-F ; Si-CI ; C-F ; N-F ; O-F ; H-F. 
/ , \  

7.58 ,Given the data in Table A-V calculate the bond enthalpy of 
/ 

a) the C-H bond in CH4 ; 
b) the C-C single bond in CZH6 ; 
c) the C=C double bond in CZH4 ; 
d) the C=C triple bond in CzHz . 

7.59 Using the data in Table A-V, calculate the average bond enthalpy of the oxygen-oxygen bond in 
ozone. 

7.60 The adiabatic flame temperature is the final temperature reached by the system if one mole of the 
substance is burned adiabatically under the specified conditions. Using the values of Cp derived 
from the Cv's in Table 4.3 and data from Table A-V, calculate the adiabatic flame temperature 
of hydrogen burned in (a) oxygen, (b) air. (c) Assume that for water vapor, CplR = 4.0 + 
f(81IT) + f(8zIT) + f(83IT) where f(8IT) is the Einstein function, Eq. (4.88), and the values of 
81 , 8z , 83 are in Table 4.4. Calculate the adiabatic flame temperature in oxygen using this expression 
for Cp and compare the result with (a). 

7.61 The heat of combustion of glycogen is about 476 kllmol of carbon. Assume that the average rate 
of heat loss by an adult male is 1 50 watts. If we were to assume that all of this came from the 
oxidation of glycogen, how many units of glycogen (1 mol carbon per unit) must be oxidized per 
day to provide for this heat loss ? 

7.62 Consider a classroom that is roughly 5 m x 10 m x 3 m. Initially, t = 20 °C and p = 1 atm. 
There are 50 people in the class, each losing energy to the room at the average rate of 1 50 watts . 
Assume that the walls, ceiling, floor, and furniture are perfectly insulating and do not absorb 
any heat. How long will the physical chemistry examination last if the professor has foolishly 
agreed to dismiss the class when the air temperature in the room reaches body temperature, 
37 °C ? For air, Cp = �R. Loss of air to the outside as the temperature rises may be neglected. 

7.63 Estimate the enthalpy change for liquid water, V = 1 8 .0 cm 3/mol, if the pressure is increased by 
1 0  atm at constant temperature. Compare this with the enthalpy change produced by a 10 DC 
increase in temperature at constant pressure ; Cp = 75.3 11K mo!. 
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7.64 Calculate the final temperature of the system if 20 g of ice at - 5 °C is added to 100 g of liquid 
water at 21 °C in a Dewar flask (an insulated flask) ; for the transformation, HzO(s) ---> HzO(l) ; 
/1W = 6009 J/mol. 

CiHzO, s)/(J/K mol) = 37.7, CiHzO, l)/(J/K mol) = 75.3 .  
7.65 From the equipartition principle and the first law, calculate y for an ideal gas that is (a) monatomic, 

(b) diatomic, and (c) nonlinear triatomic ; (d) compare the values predicted by the equipartition 
principle with the values in Table 4.3 for (a) Ar, (b) Nz and 12 , (c) H20 ;  (e) what is the limiting 
value of y, assuming equipartition, as the number of atoms in the molecule becomes very large ? 

7.66 Using Eq. (7.45) and Joule's law show for the ideal gas that (8H/8ph = O. 
7.67 From the ideal gas law and Eq. (7. 57), derive Eqs. (7.58) and (7.59). 
7.68 By applying Eq. (7.44) to a constant volume transformation, show that 

Cp - Cv = [V - (8H/8phJ(8p/8T)v . 



I nt rod u ct i o n  to t h e  
S eco n d  Law of 
T h ermodyn a m i cs 

8 . 1  G E N E R A L  R E M A R KS 

In Chapter 6 we mentioned the fact that all real changes have a direction which we 
consider natural. The transformation in the opposite sense would be unnatural ; it would 
be unreal. In nature, rivers run from the mountains to the sea, never in the opposite way. 
A tree blossoms, bears fruit, and later sheds its leaves. The thought of dry leaves rising, 
attaching themselves to the tree, and later shrinking into buds is grotesque. An isolated 
metal rod initially hot at one end and cold at the other comes to a uniform temperature ; 
such a metal rod initially at a uniform temperature never develops a hot and a cold end 
spontaneously. 

Yet the first law of thermodynamics tells us nothing of this preference of one direction 
over the opposite one. The first law requires only that the energy of the universe remain 
the same before and after the change takes place. In the changes described above, the 
energy of the universe is not one whit altered ; the transformation may go in either 
direction and satisfy the first law. 

It would be helpful if a system possessed one or more properties that always change 
in one direction when the system undergoes a natural change, and change in the opposite 
direction if we imagine the system to undergo an "unnatural change." Fortunately, there 
exists such a property of a system, the entropy, as well as several others derived from it. 
To prepare a foundation for the mathematical definition of the entropy, we must divert 
our attention briefly to the characteristics of cyclic transformations. Having done that, 
we will return to chemical systems and the chemical implications of the second law. 

8 . 2  T H E  C A R N OT CYC L E  

In 1 824 a French engineer, Sadi Carnot, investigated the principles governing the trans
formation of thermal energy, " heat," into mechanical energy, work. He based his dis
cussion on a cyclical transformation of a system that is now called the Carnot cycle. The 
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Carnot cycle consists of four reversible steps, and therefore is a reversible cycle. A system 
is subjected consecutively to the reversible changes in state : 

Step 1 .  Isothermal expansion. 

Step 3. Isothermal compression. 

Step 2. Adiabatic expansion. 

Step 4. Adiabatic compression. 

Since the mass of the system is fixed, the state can be described by any two of the three 
variables T, p, V. A system of this sort that produces only heat and work effects in the 
surroundings is called a heat engine. A heat reservoir is a system that has the same tempera
ture everywhere within it ; this temperature is unaffected by the transfer of any desired 
quantity of heat into or out of the reservoir. 

Imagine that the material composing the system, the " working " substance, is confined 
in a cylinder fitted with a piston. In Step 1, the cylinder is immersed in a heat reservoir at a 
temperature Tl l and is expanded isothermally from the initial volume Vi to a volume Vz . 
The cylinder is now taken out of the reservoir, insulated; and in Step 2 is expanded adia
batically from Vz to V3 ; in this step the temperature of the system drops from Ti to a lower 
temperature Tz . The insulation is removed and the cylinder is placed in a heat reservoir 
at Tz . In Step 3 the system is compressed isothermally from V3 to V4 . The cylinder is 
removed from the reservoir and insulated again. In Step 4 the system is compressed 
adiabatically from V4 to Vi ' the original volume. In this adiabatic compression, the 
temperature rises from Tz to Tl l the original temperature. Thus, as it must be in a cycle, 
the system is restored to its initial state. 

The initial and final states and the application of the first law to each step in the 
Carnot cycle are described in Table 8 . 1 .  For the cycle, f!U = 0 = Qcy - vv.,y , or 

�y = Qcy · 
Summing the first law statements for the four steps yields 

�y = ft1 + Wz + W3 + W4 , 

Qcy = Qi  + Qz · 
Combining Eqs. (8 . 1) and (8 .3), we have 

�y = Qi + Qz · 

(8 . 1 )  

(8.2) 

(8.3) 

(8.4) 

(Note that the subscripts on the Q's have been chosen to correspond with those on the 
T's.) If lIY.,y is positive, then work has been produced at the expense of the thermal energy 
of the surroundings. The system suffers no net change in the cycle. 

Table  8 . 1  

Step Initial state Final state First-law statement 

1 Tl , Pl " Vl Tl , P2 ' V2 flUl = Ql - Wl 
2 Ti l P2 ' V2 T2 , P3 , V3 flU2 = - W2 
3 T2 , P3 ' V3 T2 , P4 , V4 flU3 = Q2 - W3 
4 T2 , P4 , V4 Tl , Pl , Vi flU4 = - W4 
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8 . 3  T H E S ECO N D  LAW O F  T H E R M O DY NA M I CS 

The important thing about Eq. (8 .4) is that Wcy is the sum of two terms, each associated 
with a different temperature. We might imagine a complicated cyclic process involving 
many heat reservoirs at different temperatures ; for such a case 

Wcy = Q1 + Q2 + Q3 + Q4 + . .  
" 

where Q1 is the heat withdrawn from the reservoir at T1 , Q2 is the heat withdrawn from 
the reservoir at T2 , and so on. Some of the Q's will have positive signs, some will have 
negative signs ; the net work effect in the cycle is the algebraic sum of all the values of Q. 

It is possible to devise a cyclic process so that Wcy is positive ; tha( is , such that after 
the cycle, masses are truly higher in the surroundings. It can be done in complicated ways 
using reservoirs at many different temperatures, or it can be done using only two reservoirs 
at different temperatures, as in the Carnot cycle. However, experience has shown that it is 
not possible to build such an engine using only one heat reservoir (compare with Section 
7.6). Thus, if 

Wcy = Q1 ' 
where Q1 is the heat withdrawn from a single heat reservoir at a uniform temperature, 
then Wcy must be negative or, at best, zero ; that is, 

Wcy ::; o. 
This experience is embodied in the second law of thermodynamics. It is impossible for a 
system operating in a cycle and connected to a single heat reservoir to produce a positive 
amount of work in the surroundings. This statement is equivalent to that proposed by 
Kelvin in about 1 8 50. 

8 . 4  C HA RACT E R I ST I C S  O F  A R EV E R S I B LE CYC L E  

According t o  the second law, the simplest cyclic process capable of producing a positive 
amount of work in the surroundings must involve at least two heat reservoirs at different 
temperatures. The Carnot engine operates in such a cycle ; because of its simplicity it has 
come to be the prototype of cyclic heat engines. An important property of the Carnot 
cycle is the fact that it is reversible. In a cyclic transformation, reversibility requires, after 
the complete cycle has been traversed once in the forward sense and once in the opposite 
sense, that the surroundings be restored to their original condition. This means that the 
reservoirs and masses must be restored to their initial condition, which can only be 
accomplished if reversing the cycle reverses the sign of W and of Q1 and Q2 ' individually. 
The magnitudes of W and of the individual values of Q are not changed by running a 
reversible engine backwards ; only the signs are changed. Hence for a reversible engine we 
have : 

Forward cycle : 
Reverse cycle : 

Wcy , Q1 , Q2 , 
- Wcy , - Qi > - Q2 ' 

Wcy = Q1 + Q2 ; 
- Wcy = - Q1 + ( - Q2)' 

8 . 5  A P E R P ET U A L - M OTI O N  M AC H I N E  O F  T H E S E CO N D  K I N D  

The Carnot engine with its two heat reservoirs is usually represented schematically by a 
drawing such as that in Fig. 8 . 1 .  The work W produced in the surroundings by the rever
sible engine Er is indicated by the arrow directed away from the system. The quantities 
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F i g u re 8 . 1  Schematic representation  
of  the Carnot eng ine .  

F ig u re 8 .2  An i mposs ib le  eng ine .  

of heat Q l  and Qz withdrawn from the reservoirs are indicated by arrows directed toward 
the system. In all of the discussions that follow, we choose Tl as the higher temperature. 

The second law has the immediate consequence that Ql  and Qz cannot have the 
same algebraic sign. We prove this by making the contrary assumption. Assume that 
both Q l  and Qz are positive ; then W, being the sum of Ql and Qz , is also positive. If Qz 
is positive, then heat flows out of the reservoir at Tz as indicated by the arrow in Fig. 8 . l .  
Suppose that we  restore this quantity o f  heat Qz t o  the reservoir at Tz by  connecting the 
two reservoirs with a metal rod, so that heat may flow directly from the high-temperature 
reservoir to the low-temperature reservoir (Fig. 8 .2). By making the rod in the proper 
shape and size, matters can be arranged so that in the time needed for the engine to 
traverse one cycle in which it extracts Qz from the reservoir, an equal quantity of heat Qz 
flows to the reservoir through the rod. Therefore after a cycle the reservoir at Tz is re
stored to its initial state ; thus the engine and the reservoir at Tz form a composite cyclic 
engine, enclosed by the light line in Fig. 8 .2 . This composite cyclic engine is connected to a 
single heat reservoir at Tl and produces a positive quantity of work. The second law asserts 
that such an engine is an impossibility. Our assumption that Ql and Qz are both positive 
has led to a contradiction ofthe second law. If we assume that Ql and Qz are both negative, 
then W is negative. We reverse the engine ; then Q l  and Qz and W are all positive, and the 
proof goes as before. We conclude that Ql and Qz must differ in sign ; otherwise we could 
build this impossible engine. 

Suppose that we install the impossible engine shown in Fig. 8 .2 in the living room. 
The room itself can serve as the heat reservoir. We set the machine in motion. (Note that 
we do not have to plug it in !) The machine is now extracting heat from the room and 
producing mechanical work. Anyone with an ounce of frugality would use this work to 
run an electrical generator. As we gaily pen a note to the local power company stating 
that we no longer need their services, we note that the room is getting chilly. Air condition
ing ! Very nice in the summer, but definitely a nuisance in the winter. In winter we can put 
the machine outdoors. The heat is then extracted from the atmosphere ; that engine will 
run for a long time before the atmosphere cools by so much as one degree ; meanwhile we 
aren't paying any light bills . The delightful thing about this engine is that of course the 
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atmosphere will never go permanently cold on us. As we use the stored electrical energy, 
it is returned to the universe mainly in the form of " heat." Unfortunately, this wonderful 
machine is not available on the market. The truth ofthe matter is that experience has shown 
that it is not possible to build such a machine. It is a perpetual-motion machine of the 
second kind. 

8 . 6  T H E E F f i C I E N CY O F  H EAT E N G I N ES 

Experience shows that if a heat engine operates between two temperature reservoirs so 
that a positive amount of work is produced, then Ql ' the heat withdrawn from the high
temperature reservoir, is positive, and Qz , the heat withdrawn from the low-temperature 
reservoir, is negative. The negative value of Qz means that the heat flows to the low
temperature reservoir. In producing work the engine extracts an amount of heat Q l  
from the high-temperature reservoir and rejects an amount - Qz t o  the low-temperature 
reservoir. The arrow between reservoir Tz and the engine in Figs. 8 . 1 and 8.2 thus seems 
deceptive. However, we will retain the direction of the arrow and keep in mind that in 
every case one of the Q's is negative. This preserves our original sign convention for Q : 
positive when it flows from the surroundings, and the signs will care for themselves with
out our juggling them back and forth. 

The efficiency, t, of a heat engine is defined as the ratio of the work produced to the 
quantity of heat extracted from the high-temperature reservoir : 

W 
t = - . 

Ql  
(8 . 5) 

But, since W = Ql  + Qz , 

= 1 + �: .  (8 .6) 

Since Q l  and Qz differ in sign, the second term in Eq. (8 .6) is negative ; consequently, the 
efficiency is less than unity. The efficiency is the fraction of the heat withdrawn from the 
high-temperature reservoir that is converted into work in the cyclic process. 

8 . 7  A N OT H E R  I M P O S S I B LE E N G I N E  

We consider two engines Er and E' both operating in a cycle between the same two heat 
reservoirs. Is it possible that the efficiencies of these two engines are different ? The engines 
may be designed differently and may use different working substances. Let Er be a rever
sible engine, and E' any engine at all, reversible or not. The reservoirs are at Tl and Tz ; 
Tl > Tz . For the engine Er we may write 

W = Ql  + Qz , 

- w = - Ql + ( - Qz), 
For the engine E' 

W' = m + Q� , 

(forward cycle) ; 

(reverse cycle). 

(forward cycle). 

Suppose that we run engine Er in its reverse cycle and couple it to engine E' running in its 
forward cycle. This gives us a composite cyclic engine that produces heat and work effects 
that are simply the sum of the individual effects of the appropriate cycles : 

(8 .7) 
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By making the engine Er the proper size, matters are arranged so that the composite 
engine produces no work effect in the surroundings ; that is, we adjust Er until 
- w + W' = 0, or 

W = W'. (8 .8) 

Equation (8.7) can then be rearranged to the form 

Ql - Q� = - (Qz - Q�). (8.9) 

We now examine these heat effects in the reservoirs under the assumption that the 
efficiency of E' is greater than that of Er , that is, 

£ ' 
> f . 

By the definition of the efficiency, this implies that 

W' W 
Q� > Ql ' 

Since by Eq. (8 . 8), W = W', the inequality becomes 

1 1 
Q� > Ql ' 

which is equivalent to Q l > m, or 

Q� - Q l < 0, (a negative quantity). 

The heat withdrawn from the reservoir at Tl is m by E' running forward, and - Q l by 
Er running in reverse. The total heat withdrawn from Tl is the sum of these two, Q 'l - Q l ' 
and this, by our argument, has a negative value. If the heat withdrawn from the reservoir 
is negative, then the heat actually flows to that reservoir. Thus this engine pours heat into 
the reservoir at Tl . The heat withdrawn from the reservoir at Tz is Q� - Qz . Our argu
ment' together with Eq. (8 .9), would show that this quantity of heat is positive. Heat is 
extracted from the reservoir at Tz . The various quantities are tabulated in Table 8 .2. 
The quantities for the composite engine are the sums of the quantities for the separate 
engines, the sum of the preceding two columns in Table 8.2 . 

The right-hand column shows that the composite engine takes a negative quantity of 
heat, Q� - Q l ' out of the reservoir at Tl . Consequently, the engine puts a positive quantity 

Tab le  8 .2  

Er Er E' Composite engine 
forward reverse forward Er(reverse) + E'(forward) 

Work 
produced W -w W 0 

Heat out 
of T1 Q 1 - Ql Q� Q� - Ql = -

Heat out 
of T2 Q2 - Q2 Q; Q; - Q2 = + 

First law W = Ql + Q2 - W = - Ql - Q2 W = Q� + Qi o = (Q� - Ql ) + (Q; - Q2) 
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of heat into the high-temperature reservoir and extracts an equal quantity of heat from 
the low-temperature reservoir. The remarkable aspect of this engine is that it produces 
no work, nor does it require work to operate it. 

Again in our imagination we install this engine in the living room. We pour a bucket 
of hot water into one end and a bucket of cold water into the other end, then set the machine 
in motion. It commences to pump heat from the cold end to the hot end. Before long the 
water in the hot end is boiling while that in the cold end is freezing. If the designer has been 
provident enough to make the cold end in the shape of an insulated box, we can keep the 
beer in that end and boil the coffee on the hot end. Any thrifty homemaker would be 
delighted with this gadget. What a kitchen appliance : a combination stove-refrigerator ! 
And again, no bill from the power company. Experience shows that it is not possible to 
build this engine ; this is another example of perpetual motion of the second kind. 

The argument that led to this impossible engine was based only on the first law l:lnd 
an assumption. The assumption that the efficiency of E' is greater than Er is in error. 
We therefore conclude that the efficiency of any engine E' must be less than or equal to the 
efficiency of a reversible engine En both engines operating between the same two tempera-
ture reservoirs : 

(8. 10) 

The relation in Eq. (8 . 1 0) is another important consequence of the second law. The 
engine E' is any engine whatsoever ; the engine Er is any reversible engine. Consider two 
reversible engines, with efficiencies f. 1 and f. 2 . Since the second one is reversible, the 
efficiency of the first must be less than or equal to that of the second, by Eq. (8 . 1 0) : 

(8 . 1 1) 

But the first engine is reversible ; therefore by Eq. (8 . 10) the efficiency of the second must 
be less than or equal to that of the first : 

(8 . 1 2) 

The only way that both (8 . 1 1) and (8 . 12) can be satisfied simultaneously is if 
(8. 13)  

Equation (8 . 1 3), a consequence of the second law, means that al l reversible engines 
operating between the same two temperature reservoirs have the same efficiency. 

According to Eq. (8. 1 3) the efficiency does not depend on the engine, so it cannot 
depend on the design of the engine or on the working substance used in the engine. Only 
the reservoirs are left ; the only specifications placed on the reservoirs were the tempera
tures. Hence, the efficiency is a function only of the temperatures of the reservoirs : 

f. = J(T1 , T2). (8. 14) 

Since from Eq. (8 .6) f. = 1 + Q2/Q1 , the ratio Q2/Q 1 must be a function only of the 
temperatures :  

�: = g(T1 ' T2)· (8 . 1 5) 

From the concept of reversibility it follows that an irreversible engine will produce 
heat and work effects in the surroundings that are different from those produced by a 
reversible engine. Therefore the efficiency of the irreversible engine is different from that 
of a reversible one ; the efficiency cannot be greater, so it must be less. 
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8 . S  T H E T H E R M O DY N A M I C  T E M P E RATU R E  SCALE 

For a reversible engine, both the efficiency and the ratio Q2/Ql can be calculated directly 
from the measurable quantities of work and heat flowing to the surroundings. Therefore 
we have measurable properties that depend on temperatures only and are independent 
of the properties of any special kind of substance. Consequently, it is possible to establish 
a scale of temperature independent of the properties of any individual substance. This 
overcomes the difficulty associated with empirical scales of temperature described in 
Section 6.5. This scale is the absolute, or the thermodynamic, temperature scale. 

We operate a reversible heat engine in the following way. The low-temperature 
reservoir is at some fixed low temperature to . The to is the temperature on any empirical 
scale. The heat withdrawn from this reservoir is Qo . If we run the engine with the high
temperature reservoir at t, an amount of heat Q will flow from this reservoir and a positive 
amount of work will be produced. Keeping to and Qo constant, we increase the temperature 
of the other reservoir to some higher temperature t'. Experimentally we find that more 
heat Q' is withdrawn from the reservoir at t'. Thus the heat withdrawn from the high
temperature reservoir increases with increase in temperature. For this reason we choose 
the heat withdrawn from the high-temperature reservoir as the thermometric property. 
We can define the thermodynamic temperature () by 

Q = a(), (8 . 1 6) 
where a is a constant and Q is the heat withdrawn from the reservoir. Writing Eq. (8. 1 5) 
in the notation for, this situation, it becomes Qo/Q = get, to). From this it is clear that if Qo 
and to are constant, then Q is a function of t only. In Eq. (8. 1 6) we have arbitrarily chosen 
Q as a simple and reasonable function of the absolute temperature. 

The work produced in the cycle is W = Q + Qo , which, using Eq. (8. 1 6), becomes 

W = a() + Qo . (8. 1 7) 
Now if the high-temperature reservoir is cooled until it reaches ()o , the temperature of 
the cold reservoir, then the cycle becomes an isothermal cycle, and no work can be 
produced. Since it is a reversible cycle, W = 0, and so 0 = a()o + Qo ; hence, Qo = - a()o · 
Then Eq. (8. 1 7) becomes 

For the efficiency we obtain 

() - ()o f = -()-. 

(8. 1 8) 

(8. 1 9) 

Since there is nothing special about the temperature of the cold reservoir, except that 
() > ()o , Eqs. (8. 1 8) and (8. 1 9) apply to any reversible heat engine operating between any 
two thermodynamic temperatures () and ()o . Equation (8 . 1 8) shows that the work produced 
in a reversible heat engine is directly proportional to the difference in temperatures on 
the thermodynamic scale, while the efficiency is equal to the ratio of the difference in 
temperature to the temperature of the hot reservoir. The Carnot formula, Eq. (8 . 1 9), 
which relates the efficiency of a reversible engine to the temperatures of the reservoirs is 
probably the most celebrated formula in all of thermodynamics. 

Lord Kelvin was the first to define the thermodynamic temperature scale, named in 
his honor, from the properties of reversible engines. If we choose the same size of the degree 
for both the Kelvin scale and the ideal gas scale, and adjust the proportionality constant 
a in Eq. (8 . 16) to conform to the ordinary definition of one mole of an ideal gas, then the 
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ideal gas scale and the Kelvin scale become numerically identical. However, the Kelvin 
scale is the fundamental one. From now on we will use T for the thermodynamic tempera
ture, 0 = T, except where the use of 0 can supply needed emphasis. 

Once one value of the thermodynamic temperature has been assigned a positive value, 
all other temperatures must be positive ; otherwise in some circumstances the Q's for the 
two reservoirs would have the same sign, resulting, as we have seen, in perpetual motion. 

8 . 9  R ET R O S P E CTI O N  

From the characteristics of a particularly simple kind of heat engine, the Carnot engine, 
and from universal experience that certain kinds of engine cannot be constructed, we 
concluded that all reversible heat engines operating between the same two heat reservoirs 
have the same efficiency, which depends only on the temperatures of the reservoirs. 
Thus it was possible to establish the thermodynamic scale of temperature, which is 
independent of the properties of any individual substance, and to relate the efficiency of 
the engine to the temperatures on this scale : 

where 01 = T1 is the temperature of the hot reservoir. 
The second law has been stated in the sense that it is impossible for an engine operating 

in a cycle and connected to a reservoir at only one temperature to produce a positive 
amount of work in the surroundings. This is equivalent to the Kelvin-Planck statement 
of the second law. The possibility of another kind of engine is also denied. It is impossible 
for an engine operating in a cycle to have as its only effect the transfer of a quantity of heat 
from a reservoir of low temperature to a reservoir at a higher temperature. This is the 
content of the Clausius statement of the second law. Both engines are perpetual motion 
machines of the second kind. If it were possible to build one of them, the other could be 
built. (The proof of equivalence is left as an exercise, Problem 8 . 1 .) The Kelvin-Planck 
statement and the Clausius statement of the second law of thermodynamics are, of course, 
completely equivalent. 

In this study of thermodynamic engines, our goal has been .to arrive at the definition 
of some state property the variation of which in a given change in state would yield a clue 
as to whether the change in state was a real or natural change. We are at the brink of that 
definition, but we will first look at the Carnot cycle using an ideal gas as the working 
substance and also describe the operation of the Carnot refrigerator. 

8 . 1 0 CAR N OT CYC L E  WITH AN I D EA L  GAS 

I f  an ideal gas i s  used as  the working substance in  a Carnot engine, the application of  the 
first law to each of the steps in the cycle can be written as in Table 8 .3 .  The values of W1 
and W3 ,  which are quantities of work produced in an isothermal reversible expansion of an 
ideal gas, are obtained from Eq. (7.6). The values of flU are computed by integrating the 
equation dU = Cv dT. The total work produced in the cycle is the sum of the individual 
quantities. 

(V2) ITZ (V4) IT! W = RT1 ln V, - Cv dT + RT2 In . - - Cv dT. 
1 T! V3 Tz 

The two integrals sum to zero, as can be shown by interchanging the limits and thus 
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Tab le  8 .3  

Step General case Ideal gas 

fT2 2 I'1U z = - Wz Cv dT = - Wz Ti 
3 I'1U3 = Q2 - W3 0 = Qz - RTz ln (V4/V3) 

4 I'1U 4 = - W4 fTi Cv dT = - W4 T2 
changing the sign of either of them. Hence 

W = RTi in (�) - R Tz in (�). (8 .20) 

where the sign of the second term has been changed by inverting the argument of the 
logarithm. 

Equation (8.20) can be simplified if we realize that the volumes Vz and V3 are connected 
by an adiabatic reversible transformation ; the same is true for V4 and Vi ' By Eq. (7.57), 

By dividing the first equation by the second, we obtain 

or 

Putting this result in Eq. (8 .20), we obtain 

W = R(Ti - Tz) In (�) . 
From the equation for the first step in the cycle, we have 

and the efficiency is given by 

Qi = RTi In (�). 
E = 

W = Ti - Tz = l _ Tz . 
Q i Ti Ti 

(8 .21) 

(8.22) 

Equation (8 .2 1) shows that the total work produced depends on the difference in 
temperature between the two reservoirs [compare to Eq. (8 . 1 8)] and the volume ratio 
Vz/Vi (the compression ratio). The efficiency is a function only of the two temperatures 
[compare to Eq. (8. 1 9)] . It is apparent from Eq. (8 .22) that if the efficiency is to be unity, 
either the cold reservoir must be at Tz = 0 or the hot reservoir must have Ti equal to 
infinity. Neither situation is physically realizable. 

8 . 1 1 T H E CAR N OT R E F R I G E RATO R 

If a reversible heat engine operates so as to produce a positive amount of work in the 
surroundings, then a positive amount of heat is extracted from the hot reservoir and heat 
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Cycle Q l 

Forward + 

Reverse -

Q2 

-

+ 

W 

+ 

-
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is rejected to the cold reservoir. Suppose we call this the forward cycle of the engine. If the 
engine is reversed, the signs of all the quantities of heat and work are reversed. Work is 
destroyed, W < 0 ;  heat is withdrawn from the cold reservoir and rejected to the hot 
reservoir. In this reverse cycle, by destroying work, heat is pumped from a cold reservoir 
to a hot reservoir ; the machine is a refrigerator. Note that the refrigerator is quite dif
ferent from our impossible engine, which pumped heat from a cold end to a hot end of 
the machine. The impossible engine did not destroy work in the process, as a proper 
refrigerator would. The signs of the quantities of work and heat in the two modes of 
operation are shown in Table 8.4 (Tl is the higher temperature). 

The coefficient of performance, '1, of a refrigerator is the ratio of the heat extracted from 
the low-temperature reservoir to the work destroyed : 

(8.23) 

since W = Ql + Q2 ' Also, since (Q2/Qd = - (T2/Td, we obtain 

T2 '1 = ----
-Tl - T2 

(8 .24) 

The coefficient of performance is the heat extracted from the cold box for each unit of 
work expended. From Eq. (8.24) it is apparent that as T2 , the temperature inside the cold 
box, becomes smaller, the coefficient of performance drops off very rapidly ; this happens 
because the numerator in Eq. (8.24) decreases and the denominator increases. The 
amount of work that must be expended to maintain a cold temperature against a specified 
heat leak into the box goes up very rapidly as the temperature of the box goes down. 

8 . 1 2 T H E H EAT P U M P  

Suppose we run the Carnot engine in reverse, as a refrigerator, but instead of having the 
interior of the refrigerator serve as the cold reservoir we use the outdoors as the cold 
reservoir and the interior of the house as the hot reservoir. Then the refrigerator pumps 
heat, Q2 , from outdoors and rejects heat, - Ql, into the house. The coefficient of per
formance of the heat pump, '1hp ' is the amount of heat pumped into the high temperature 
reservoir, - Ql ' per unit of work destroyed, - W. 

- Ql Ql Q l '1hp == _ W = W = Ql + Q2 
(8.25) 

. (8.26) 
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This remarkable formula is best illustrated by an example. Suppose that the exterior 
temperature is 5 DC and the interior is 20 DC. Then if - W = 1 kJ the quantity of heat 
pumped into the house is 

Tl 293 K - Ql = Tl _ T2 
( - W) = 1 5  K (1 kJ) = 20 kJ. 

This means that if we compare a house using electric resistance heating to one using a 
heat pump, the expenditure of 1 kJ in resistance heating yields 1 kJ of heat to the house, 
while the expenditure of 1 kJ in a heat pump yields 20 kJ of heat to the house. The advan
tage of the heat pump over resistance heating is apparent even though the coefficients of 
performance of real machines are substantially below the theoretical maximum given by 
the second law. With the given temperatures, the coefficients of performance of real 
machines range from 2 to 3 (still good multiplication factors). However, when the exterior 
temperature drops below 5 DC the heat pump runs into trouble. Under the usual heating 
demand, it is difficult to supply cold air at a sufficient rate to keep the cold coil at the 
ambient temperature. The coil temperature drops and the performance ratio decreases, 
as shown by Eq. (8.26). 

If we try to assess the relative economy of a heat pump versus burning fossil fuel 
directly, we must bear in mind that, if the electrical energy to run the heat pump comes 
from fossil fuel, the power plant is subject to the Carnot limitation. The overall efficiency 
of a modern steam power plant is about 35 percent. Thus, just to break even on fossil fuel 
consumption, the heat pump coefficient of performance must be at least 1/0.35 = 2.9. 

8 . 1 3 D E FI N IT I O N  O F  E NT R O PY 

Just as the first law led to the definition of the energy, so also the second law leads to a 
definition of a state property of the system, the entropy. It is characteristic of a state 
property that the sum of the changes of that property in a cycle is zero. For example, the 
sum of changes in energy of a system in a cycle is given by f dU = O. We now ask whether 
the second law defines some new property whose changes sum to zero in a cycle. 

We begin by comparing two expressions for the efficiency of a simple reversible heat 
engine that operates between the two reservoirs at the thermodynamic temperatures 81 
and () 2 . We have seen that 

E = 1 + �: and 

Subtracting these two expressions yields the result 

Q2 + 82 = 0 Ql 81 ' 

which can be rearranged to the form 

Ql + Q2 = O. (8.27) 81 82 
The left-hand side of Eq. (8.27) is simply the sum over the cycle of the quantity Q/8. It 
could be written as the cyclic integral of the differential quantity riQ/8 : 

f ri; = 0 (reversible cycles). (8.28) 
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Since the sum over the cycle of the quantity (liQ/e is zero, this quantity is the differential 
of some property of state ; this property is called the entropy of the system and is given the 
symbol S. The defining equation for the entropy is then 

dS == 
(liQrev , T (8.29) 

where the subscript " rev" has been used to indicate the restriction to reversible cycles. 
The symbol e for the thermodynamic temperature has been replaced by the more usual 
symbol T. Note that while (liQrev is not the differential of a state property, (liQrev/T is ; (liQreviT is an exact differential. 

8 . 1 4 G E N E R A L  P R O O F  

We have shown that (liQreviT has a cyclic integral equal to zero only for cycles that involve 
only two temperatures. The result can be generalized to any cycle. 

Consider a Carnot engine. Then in a cycle 

and we have shown for the Carnot engine that 

i (liQ = 0 j T . 

(8.30) 

(8.3 1 )  

(By the definition of  the Carnot cycle, the Q i s  a reversible Q.) Consider another engine 
E' . Then in a cycle, by the first law, 

but let us assume that for this engine, 

W' = f (liQ' ; 

i (liQ' j y > O. 

(8.32) 

(8.33) 

This second engine may execute as complicated a cycle as we please ; i t  may have many 
temperature reservoirs ; it may use any working substance. 

The two engines are coupled together to make a composite cyclic engine. The work 
produced by the composite engine in its cycle is vv.: = W + W', which, by Eqs. (8.30) and 
(8.32), is equal to 

where (liQc = (liQ + (liQ'. 
If we add Eqs. (8 .3 1) and (8.33), we obtain 

i «(liQ + (liQ') 0 j T > , 

(8.34) 

(8 .35) 

We now adjust the direction of operation and the size of the Carnot engine so that the 
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composite engine produces no work ; the work required to operate E' is supplied by the 
Carnot engine, or vice versa. Then, vv,: = 0, and Eq. (8.34) becomes 

(8.36) 

Under what condition will the relations Eqs. (8 . 35) and (8.36) be compatible ? 
Because each of the cyclic integrals can be considered as a sum of terms, we write 

Eqs. (8 .36) and (8.35) in the forms 

(8 .37) 
and 

Ql + Q2 + Q3 + Q4 + . . .  > o. Tl T2 T3 T4 
(8 .38) 

The sum on the left-hand side of Eq. (8 .37) consists of a number of terms, some positive 
and some negative. But the positive ones just balance the negative ones, and the sum is 
zero. We have to find numbers (temperatures) such that by dividing each term in Eq. (8 .37) 
by a proper number we can obtain a sum in which the positive terms predominate, and 
thus fulfill the requirement of the inequality (8.38) . We can make the positive terms 
predominate if we divide the positive terms in Eq. (8 .37) by small numbers and the negative 
terms by larger numbers. However, this means that we are associating positive values of 
Q with low temperatures and negative values with high temperatures. This implies that 
heat is extracted from reservoirs at low temperatures and rejected to reservoirs at higher 
temperatures in the operation of the composite engine. The composite engine is conse
quently an impossible engine, and our assumption, Eq. (8 .33), must be incorrect. It follows 
that for any engine E', 

We distinguish two cases : 

Case I. The engine E' is reversible . 

l dQ' 'I T  � o. 

We have excluded the possibility expressed by (8 .33). If we assume that for E' f dQ ' - < 0 
T ' 

(8 .39) 

then we can reverse this engine, which changes all the signs but not the magnitudes of the 
Q's .  Then we have f dQ ' 

- > 0 
T ' 

and the proof is the same as before. This forces us to the conclusion that for any system f d�ev = 0 (all reversible cycles). 

Therefore every system has a state property S, the entropy, such that 

dS = dQrev 
T 

. 

The study of the properties of the entropy will be undertaken in the next chapter. 

(8 .40) 

(8.41) 
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Case II. The engine E' is not reversible . 
For any engine we have only the possibilities expressed by (8.39). We have shown that 

the equality holds for the reversible engine. Since the heat and work effects associated with 
an irreversible cycle are different from those associated with a reversible cycle, this implies 
that the value of f IlQ/T for an irreversible cycle is different from the value, zero, associated 
with the reversible cycle. We have shown that for any engine the value cannot be greater 
than zero ; consequently, it must be less than zero. Therefore for irreversible cycles we must 
have 

(all irreversible cycles). (8.42) 

8 . 1 5 T H E C LA U S I U S  I N E Q U ALITY 

Consider the following cycle : A system is transformed irreversibly from state 1 to state 2, 
then restored reversibly from state 2 to state 1. The cyclic integral is 

l llQ = (2 IlQirr + II IlQrev < 0, J T J 1 T 2 T 
and it is less than zero, by (8 .42), since it is an irreversible cycle. Using the definition of 
dS, this relation becomes 

I2 1lQirr + II dS < 0. 
1 T 2 

The limits can be interchanged on the second integral (but not on the first !) by changing 
the sign. Thus we have 

or, by rearranging, we have 

(2 IlQirr _ f2 dS < 0, 
J 1 T 1 

(2 dS > (2 IlQirr . J 1 J 1 T 
If the change in state from state 1 to state 2 is an infinitesimal one, we have 

dS > IlQirr T ' 

(8.43) 

(8 .44) 

This is the Clausius inequality, which is a fundamental requirement for a real transfor
mation. The inequality (8 .44) enables us to decide whether or not some proposed trans
formation will occur in nature. We will not ordinarily use (8 .44) just as it stands but will 
manipulate it to express the inequality in terms of properties of the state of a system, rather 
than in terms of a path property such as IlQirr ' 

The Clausius inequality can be applied directly to changes in an isolated system. For 
any change in state in an isolated system, IlQirr = 0. The inequality then becomes 

dS > 0. (8.45) 
The requirement for a real transformation in an isolated system is that dS be positive ; 
the entropy must increase. Any natural change occurring within an isolated system is 
attended by an increase in entropy of the system. The entropy of an isolated system 
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continues to increase so long as changes occur within it. When the changes cease, the 
system is in equilibrium and the entropy has reached a maximum value. Therefore the 
condition of equilibrium in an isolated system is that the entropy have a maximum value. 

These, then, are also fundamental properties of the entropy : (1)  the entropy of an 
isolated system is increased by any natural change which occurs within it ; and (2) the 
entropy of an isolated system has a maximum value at equilibrium. Changes in a non
isolated system produce effects in the system and in the immediate surroundings. The 
system and its immediate surroundings constitute a composite isolated system in which 
the entropy increases as natural changes occur within it. Thus in the universe the entropy 
increases continually as natural changes occur within it. 

Clausius expressed the two laws of thermodynamics in the famous aphorism : " The 
energy of the universe is constant ; the entropy strives to reach a maximum." 

8 . 1 6  C O N C L U S I O N  

B y  what may seem a rather long route, the existence of a property of a system-the 
entropy-has been demonstrated. The existence of this property is a consequence of the 
second law of thermodynamics. The zeroth law defined the temperature of a system ; the 
first law, the energy ; and the second law, the entropy. Our interest in the second law stems 
from the fact that this law has something to say about the natural direction of a trans
formation. It denies the possibility of constructing a machine that causes heat to flow from 
a cold to a hot reservoir without any other effect. In the same way, the second law can 
identify the natural direction of a chemical reaction. In some situations the second law 
declares that neither direction of the chemical reaction is natural ; the reaction must then 
be at equilibrium. The application of the second law to chemical reactions is the most 
fruitful approach to the subject of chemical equilibrium. Fortunately, this application is 
easy and is done without interminable combinations of cyclic engines. 

Q U ESTIO N S  

S.l Using the considerations of Section 7.6, how can the Kelvin statement Vf;.y ::;; 0 of Section 8 .3  
be amplified to (a) WCY = 0 in a reversible cycle and (b) Wcy < 0 in an irreversible cycle ? 

8.2 Would the Carnot engine efficiency be increased more by (a) increasing Tl at fixed Tz or (b) 
decreasing Tz at fixed Tl ? Explain. 

S.3 How can S ¢lQreviT vanish when integrated around a cycle while the cyclical integral of IIQrev 
remains finite ? 

8.4 Verify Eq. (8.43) [with Eq. (8.41)J by (a) evaluating S r/lQirriT for the irreversible Joule expansion 
of an ideal gas from volume Vl to volume Vz (Fig. 7.7) ; and (b) evaluating S I1Qrev/T for the iso
thermal reversible expansion of the gas between the same volumes. 

P R O B L E M S  

Conversion factors : 

1 watt = 1 joule per second (1 W = 1 J/s) 
1 horsepower = 746 watts ( 1  hp = 746 W) 

8.1 a) Consider the impossible engine that is connected to only one heat reservoir and produces net 
work in the surroundings. Couple this impossible engine to an ordinary Carnot engine in such 
a way that the composite engine is the " stove-refrigerator." 
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b) Couple the " stove-refrigerator " to an ordinary Carnot engine in such a way that the composite 
engine produces work in an isothermal cycle. 

S.2 What is the maximum possible efficiency of a heat engine that has a hot reservoir of water boiling 
under pressure at 125 DC and a cold reservoir at 25 °C? 

8.3  The Chalk Point, Maryland, generating station is a modern steam generating plant supplying 
electrical power to the Washington, D.C., and surrounding Maryland areas. Units One and Two 
have a gross generating capacity of 710 MW. The steam pressure is 3600 Ibs/in2 = 25 MPa and 
the superheater outlet temperature is 540 DC (1000 DF). The condensate temperature is at 30 DC 
(86 oF). 
a) What is the Carnot efficiency of the engine ? 
b) If the efficiency of the boiler is 9 1 .2 % ; the overall efficiency of the turbine, which includes the 

Carnot efficiency and its mechanical efficiency, is 46.7 % ;  and the efficiency of the generator is 
98.4 %, what is the overall efficiency of the unit ? (Note : Another 5 % of the total must be 
subtracted to account for other plant losses.) 

c) One of the coal burning units produces 355 MW. How many metric tons (1 metric ton = 1 Mg) 
of coal/hr are required to fuel this unit at its peak output if the heat of combustion of the coal is 
29.0 MJjkg? 

d) How much heat per minute is rejected to the 30 DC reservoir in the operation of the unit in (c) ? 
e) If 250,000 gallons/minute of water pass through the condenser, what is the temperature rise of 

the water ? Cp = 4. 1 8  J/K g ; 1 gallon = 3 .79 litres ; density = 1 .0  kg/L. 
(Data courtesy of William Herrmann, the Potomac Electric Power Company.) 

8.4 a) Liquid helium boils at about 4 K, and liquid hydrogen boils at about 20 K. What is the 
efficiency of a reversible engine operating between heat reservoirs at these temperatures ?  

b) If we wanted the same efficiency as in (a) for an engine with a cold reservoir at ordinary 
temperature, 300 K, what must the temperature of the hot reservoir be ? 

S.5 The solar energy fiux is about 4 J /cm2 min. In a nonfocusing collector the temperature can reach a 
value of about 90 DC. If we operate a heat engine using the collector as the heat source and a low 
temperature reservoir at 25 DC, calculate the area of collector needed if the heat engine is to produce 
1 horsepower. Assume that the engine operates at maximum efficiency. 

8.6 A refrigerator IS operated by a t-hp motor. If the interior of the box is to be maintained at - 20 DC 
against a maximum exterior temperature of 35 DC, what is the maximum heat leak (in watts) 
into the box that can be tolerated if the motor runs continuously? Assume that the coefficient of 
performance is 75 % of the value for a reversible engine. 

S.7 Suppose an electrical motor supplies the work to operate a Carnot refrigerator. If the heat leak 
into the box is 1200 J/s and the interior of the box is to be maintained at - 10 DC while the exterior 
is at 30 °C, what size motor (in horsepower) must be used if the motor runs continuously ? Assume 
that the efficiencies involved have their largest possible values. 

8.8 Suppose an electrical motor supplies the work to operate a Carnot refrigerator. The interior of 
the refrigerator is at 0 DC. Liquid water is taken in at 0 DC and converted to ice at 0 DC. To convert 
1 g of ice to 1 g liquid, A.Hfus = 334 J/g are required. If the temperature outside the box is 20 DC, 
what mass of ice can be produced in one minute by a t-hp motor running continuously ? Assume 
that the refrigerator is perfectly insulated and that the efficiencies involved have their largest 
possible values. 

8.9 Under 1 atm pressure, helium boils at 4.216  K. The heat of vaporization is 84 J/mo!. What size 
motor (in horsepower) is needed to run a refrigerator that must condense 2 mol of gaseous 
helium at 4.216  K to liquid at 4.216  K in one minute ? Assume that the ambient temperature is 
300 K and that the coefficient of performance of the refrigerator is 50 % of the maximum possible. 

S.lO A 0. 1 horsepower motor is used to run a Carnot refrigerator. If the motor runs continuously, 
what will be the temperature reached inside the box if the heat leak into the box is 500 J/s and the 
outside temperature is 20 DC? Assume that the machine performs with maximum efficiency. 
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8.11  If a heat pump is to provide a temperature of 2 1 °C inside the house from an exterior reservoir 
at 1 °C, calculate the maximum value for the coefficient of performance. If the cold end of the 
heat pump is made as a solar collector, what must the area of the collector be if the 1 °C tempera
ture is maintained while pumping 2 kJ/s into the house as heat ? Assume that the solar fiux is 
40 kJ m- 2 min - 1 . 

8.12 If a fossil fuel power plant operating between 540 °C and 50 °C provides the electrical power to 
run a heat pump that works between 25 °C and 5 °C, what is the amount of heat pumped into the 
house per unit amount of heat extracted from the power plant boiler ? 
a) Assume that the efficiencies are equal to the theoretical maximum values. 
b) Assume that the power plant efficiency is 70 % of maximum and that the coefficient of per

formance of the heat pump is 10 % of maximum. 
c) If a furnace can use 80 % of the energy in fossil fuel to heat the house, would it be more 

economical in terms of overall fossil fuel consumption to use a heat pump or a furnace ? Do 
the calculations for cases (a) and (b). 

8.13 A 23 600 BTU/hr air-conditioning unit has an energy efficiency ratio (EER) of 7 .5 .  The EER is 
defined as the number of BTU /hr extracted from the room divided by the power consumption 
of the unit in watts (1 BTU = 1 .055 kJ). 
a) What is the actual coefficient of performance of this refrigerator ? 
b) If the outside temperature is 32 °C and the inside temperature is 22 DC, what percent of the 

theoretical maximum value is the coefficient of performance ? 
8.14 The standard temperatures for evaluating the performance of heat pumps for high temperatures 

are 70 of for the inside temperature and 47 of for the outside temperature. For low-temperature 
heating the standard temperatures are 70 of and 17 of. Calculate the theoretical coefficient of 
pe�formance for the heat pump under both these conditions. The values achieved by commercial 
machines range from 1 .0[sic] to 2.4 for low-temperature heating and from 1 . 7  to 3 .2 for high
temperature heating. 

8.15 The standard conditions for evaluating air conditioners are 80 OF interior temperature and 95 OF 
exterior temperature. Calculate the theoretical coefficient of performance under these conditions. 
What value of EER does this coefficient of performance translate to ? (EER is defined in Problem 
8 . 1 3 . ) Note: The EER values for commercial machines range from fl. ? : , .0 12.80. 

8.16 a) Suppose we choose the efficiency of a reversible engine as the thermometric property for a 
thermodynamic temperature scale. Let the cold reservoir have a fixed temperature. Measure 
the efficiency of the engine with the hot reservoir at the ice point, 0 degrees, and with the hot 
reservoir at the steam point, 100 degrees. What is the relation between temperatures, t, on 
this scale and the usual thermodynamic temperatures T ?  

b )  Suppose the hot reservoir has a fixed temperature and we define the temperature scale by 
measuring efficiency with the cold reservoir at the steam point and at the ice point. Find 
the relation between t and T for this case. (Choose 100 degrees between the ice point and the 
steam point.) 

8.17 Consider the following cycle using 1 mol of an ideal gas, initially at 25 °C and 1 atm pressure. 
Step 1. Isothermal expansion against zero pressure to double the volume (Joule expansion). 
Step 2. Isothermal, reversible compression from t atm to 1 atm. 
a) Calculate the value of � (liQ/T ; note that the sign conforms with Eq. (8 .42). 
b) Calculate I1S for step 2. 
c) Realizing that for the cycle, I1Scycle = 0, find I1S for step 1 .  
d )  Show that I1S for step 1 i s  not equal t o  the Q for step 1 divided by T. 
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9 . 1  T H E  P R O P E RTI ES O F  E N T R O PY 

Each year the question, " What is entropy? "  echoes plaintively in physical chemistry 
classrooms. The questioner rarely regards the answer given as a satisfactory one. The 
question springs from a strange feeling most people have that entropy is something they 
can see or feel or put in a bottle, if only they could squint at the system from the proper 
angle. The difficulty arises for two reasons. First, it must be admitted that entropy is a 
more impalpable thing than a quantity of heat or work. Second, the question itself is 
vague (unintentionally, of course). Sleepless nights can be saved if, at least for the present, 
we simply ignore the vague question, "What is entropy ? "  and consider precise questions 
and statements about entropy. How does the entropy change with temperature under 
constant pressure ? How does the entropy change with volume at constant temperature ? 
If we know how the entropy behaves in various circumstances, we will know a great deal 
about what it " is ." Later, the entropy will be related to " randomness " in a spatial or 
energy distribution of the constituent particles. However, this relation to " randomness " 
depends on the assumption of a structural model for a system, while the purely thermo
dynamic definition is independent of any structural model and, in fact, does not require 
such a model. The entropy is defined by the differential equation 

dS = rIlQrev 
T ' (9. 1 )  

from which i t  follows that the entropy i s  a single-valued, extensive state property of  the 
system. The differential dS is an exact differential. For a finite change in state from state 
1 to state 2, we have from Eq. (9. 1 ) 

/),.S = S2 - S1 = f
2 rIlQrev . (9.2) 
1 . T 
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Since the values of S 2 and S 1 depend only on the states 1 and 2, it does not matter in the 
least whether the change in state is effected by a reversible process or an irreversible 
process ; I1S is the same regardless. However, if we use Eq. (9.2) to calculate I1S, we must 
use the heat withdrawn along any reversible path connecting the two states. 

· 9 . 2  C O N D ITI O N S  O F  T H E R M A L  A N D M EC H A N I CA L  
STA B I L ITY O F  A SYST E M  

Before beginning a detailed discussion o f  the properties of the entropy, two facts must 
be established. The first is that the heat capacity at constant volume Cv is always positive 
for a pure substance in a single state of aggregation ; the second is that the coefficient of 
compressibility K is always positive for such a substance. Although each of these state
ments is capable of elegant mathematical proof from the second law, a simple physical 
argument will be convincing enough for our purposes. 

Suppo�e that for the system specified, Cv is negative and that the system is kept at 
constant volume. If a warm draft strikes the system, an amount of heat, 4Qv = + ,  flows 
from the surroundings ; by definition, 4Qv = Cv dT. Since 4Qv is positive, and by sup
position Cv is negative, dT would have to be negative to fulfill this relation. Thus the flow 
of heat into this system lowers its temperature, which causes more heat to flow in, and the 
system cools even more. Ultimately, the system would get very cold for no reason but 
that an accidental draft struck it .  By the same argument, an accidental cold draft would 
result in the system getting extremely hot. It would be too distressing to have objects in a 
room glowing red hot and freezing up just because of drafts. Therefore Cv must be positive 
to ensure the thermal stability of a system against chance variations in external 
temperature. 

The coefficient of compressibility has been defined, Eq. (5.4), as 

K 
= - � (�:)T; (9.3) 

thus at constant temperature dp = - (dV/VK). Suppose that at constant temperature 
the system is accidentally pushed in a little bit, dV is then negative. If K is negative, dp 
must be negative to fulfill the relation. The pressure in the system goes down, which allows 
the external pressure to push the system in a little more, which lowers the pressure further. 
The system would collapse. If the volume of the system were accidentally increased, the 
system would explode. We conclude that K must be positive if the system is to be mechan
ically stable against accidental variations in its volume. 

9 . 3  E NT R O PY C HA N G ES I N  I SOTH E R M A L  T R A N S FO R M ATI O N S  

For any isothermal change in state, T, being constant, can be removed from the integral 
in Eq. (9.2), which then reduces immediately to 

I1S Qrev = y ' (9 .4) 

The entropy change for the transformation can be calculated by evaluating the quantities 
of heat required to conduct the change in state reversibly. 
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Reservoir 
at Tb 

F i g u re 9 . 1  Revers ib le  vaporizat ion o f  a l i qu id .  

Equation (9.4) is used to calculate the entropy change associated with a change in 
state of aggregation at the equilibrium temperature. Consider a liquid in equilibrium 
with its vapor under a pressure of 1 atm. The temperature is the equilibrium temperature, 
the normal boiling point of the liquid. Imagine that the system is confined in a cylinder 
by a floating piston carrying a mass equivalent to the 1 atm pressure (Fig. 9 . 1 a) . The 
cylinder is immersed in a temperature reservoir at the equilibrium temperature T" . If the 
temperature of the reservoir is raised infinitesimally, a small quantity of heat flows from 
the reservoir to the system, some liquid vaporizes, and the mass M rises (Fig. 9 . 1b) .  If the 
temperature of the reservoir is lowered infinitesimally, the same quantity of heat flows 
back to the reservoir. The vapor formed originally condenses, and the mass falls to its 
original position. Both the system and the reservoir are restored to their initial condition 
in this small cycle, and the transformation is reversible ; the quantity of heat required is a 
Qrev . The pressure is constant, so that Qp = I1H ;  hence for the vaporization of a liquid at 
the boiling point, Eq. (9 .4) becomes 

I1S = I1Hvap 
yap T" 

By the same argument, the entropy of fusion at the melting point is given by 

I1S = I1Hfus fus T. '  m 

(9.5) 

(9.6) 

where I1Hfus is the heat of fusion at the melting point Tm . For any change of phase at the 
equilibrium temperature 7;" the entropy of transition is given by 

I1S = I1H 
T ' 

e 

where I1H is the heat of transition at 7;, .  

9 . 3 . 1  Trouto n 's R u l e  

(9 .7) 

For many liquids, the entropy of vaporization at the normal boiling point has approxi
mately the same value : 

I1Svap � 90 J/K mol. (9. 8) 
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Equation (9.8) is Trouton's rule. It follows immediately that for liquids which obey this 
rule, 

�Hvap � (90 J/K mol)1/, (9 .9) 
which is useful for obtaining an approximate value of the heat of vaporization of a liquid 
from a knowledge of its boiling point. 

Trouton's rule fails for associated liquids such as water, alcohols, and amines. It also 
fails for substances with boiling points of 1 50 K or below. Hildebrand's rule, which we 
describe later, includes these low-boiling substances, but not associated liquids. 

There is no equally general rule for entropies of fusion at the melting point. For most 
substances the entropy of fusion is much less than the entropy of vaporization, lying 
usually in the range from R to 4 R. If the particles composing the substances are atoms, 
such as in the metals, the entropy of fusion is about equal to R. If the molecule composing 
the substance is quite large (a long chain hydrocarbon, for example) the entropy of fusion 
may be as high as 15 R.  

9 .4  M AT H E M ATICAL I NT E R L U D E .  M O R E  P R O P E RT I E S  O F  
EXACT D I F F E R E NTIALS . T H E CYC L I C  R U LE 

The total differential of a function of two variables f(x, y) is written in the form 

of of df = ax dx + oy dy. (9. 10) 

Since the differential coefficients (of lax) and (of loy) are functions of x and y, we may 
write 

and Eq. (9. 10) becomes 

of M(x, y) = ax ' 
of N(x, y) = oy ' 

df = M(x, y) dx + N(x, y) dy. 

(9. 1 1) 

(9. 12) 
If we form second derivatives of the function f (x, y), there are several possibilities : (of/ox) 
can be differentiated with respect to either x or y, and the same is true of (of lay). We get 

Of these four, only three are distinct. It can be shown that for a function of several variables, 
the order of differentiation with respect to two variables such as x and y does not matter 
and the mixed derivatives are equal ; that is, 

(9. 13 ) 

Differentiating the first of Eqs. (9. 1 1) with respect to y , and the second with respect to x, 
we obtain 



These two equations in the light of Eq. (9. 1 3) yield 

oM oN 
oy ox ' 
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(9. 14) 

The derivatives in Eq. (9. 1 4) are sometimes called " cross-derivatives " because of their 
relation to the total differential, Eq. (9. 12) :  

df = M dx + N dy. 
(In all the above equations, the subscript on the derivatives denoting constancy of x or 
y has been dropped to simplify the writing.) 

I!!I EXAMPLE 9.1 If we write the first law equation as dU = p1Qrev - P dV, and then, 
using Eq. (9. 1), set dQrev = T dS, the first law becomes 

dU = T dS - p dV. 
Applying the cross-derivative rule in  Eq. (9. 14), we obtain 

(9. 1 5) 

Equation (9. 1 5) is one of an important group of equations called the Maxwell 
relations ; its meaning will be discussed later along with that of the other members of 
the group. The equality of the cross-derivatives is used frequently in later arguments. 

The rule in Eq. (9. 14) follows from the fact that the differential expression 
M dx + N dy is the total differential of some function f(x, y) ; that is, M dx + N dy is an 
exact differential expression. The converse is also true. For example, suppose that we have 
an expression of the form 

R(x, y) dx + Q(x, y) dy. (9. 16) 
This is an exact differential expression if and only if 

oR oQ 
oy ox ' (9 . 17) 

If Eq. (9 . 17) is satisfied, then there exists some function of x and y, g(x, y), for which 

dg = R dx + Q dy. 
If Eq. (9. 1 7) is not satisfied, then no such function g(x, y) exists, and the differential ex
pression (9 . 16) is an inexact differential. 

9 .4 . 1  The Cyc l i c  R u le 

Another useful relation between partial derivatives is the cyclic rule. The total differential 
of a function z(x, y) is written 

(9. 1 8) 
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We now restrict Eq. (9. 1 8) to those variations of x and y that leave the value of z 
unchanged ; dz = 0 : 

Dividing by (oY)z , we have 

0 = (;:)Y(�;)z + (�;t· 
Multiplying by the reciprocal of the second term, (oy/oz)x , we obtain 

0 = (;:)y(:;t(:�)x + l . 
A slight rearrangement brings this to 

(9. 1 9) 

which is the cyclic rule. The variables x, y, z in the numerators are related to y, z, x in the 
denominators and to the subscripts z, x, y by a cyclic permutation. If any three variables 
are connected by a functional relationship, then the three partial derivatives satisfy a 
relation of the type of Eq. (9. 19). Since in many thermodynamic situations, the variables 
of state are functions of two other variables, Eq. (9. 19) has frequent application .  The 
lovely part of an equation such as Eq. (9 . 1 9) is that we do not have to memorize it. Write 
the three variables down in any order, x, y, z, then underneath them write the variables 
again in any order so that the vertical columns do not match ; there are only two 
possibilities : 

xyz, xyz, 
yzx, zxy. 

The first row yields the numerators of the derivatives, the second row the denominators ; 
the subscripts are easily obtained, since in any derivative the same symbol does not occur 
twice. From the diagrams we write (ox) (OY) (oz) _ - 1 oy z oz x ox y and 

The first expression is Eq. (9. 1 9) ;  the second is the reciprocal of Eq. (9. 19). Since the 
reciprocal of - 1 is also - 1 ,  it is almost impossible to write this equation incorrectly. 

9 .4 .2  An A p p i i cat i o n  of the  Cyc l i c  R u le 

Suppose that the three variables are pressure, temperature, and volume. We write the 
cyclic rule using the variables p, T, V :  

From the definitions of the coefficient of thermal expansion and the coefficient of 
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compressibility, we have 

(��t = Va and 

Using the definitions of a and K, the cyclic rule becomes 

so that 

- - ( - VK) = - 1 ,  ( op ) 1 
oT/ v  Vex 

a 
K 

(9.20) 

With the cross-derivative rule and the cyclic relation at our disposal, we are ready 
to manipulate the equations of thermodynamics into useful forms. 

EXE R CI S ES 

1 .  For each of the following functions, calculate of jox, of joy, and verify that the mixed 
second derivatives are equal. (a) x2 + y2 ; (b) xy ; (c) X2y3 + 2x3y2 - 5xs + xy4 ; 
(d) xjy ; (e) sin xy2 . 

2. Test each of the expressions to decide which are exact differentials. (a) 2dx - 3dy ; 
(b) y dx + x dy ; (c) y dx - x dy ; (d) 3x2y dx + x3 dy ; (e) y2 dx + x2 dy. 

3. If z = xy3, calculate (oyjox)z . (a) Directly, by solving for y in terms of z and x, then 
differentiating ; (b) by using the cyclic rule. 

9 . 5  E N T R O PY C H A N G ES I N  R E LATI O N  TO C H AN G ES 
I N  T H E STATE VA R IA B L E S  

The defining equation for the entropy, 

dS = r/iQrev 
T ' (9.21) 

relates the change in entropy to an effect, r/iQrev , in the surroundings. It would be useful to 
transform this equation so as to relate the change in entropy to changes in value of state 
properties of the system. This is quite easily done. 

If only pressure-volume work is done, then in a reversible transformation, we have 
Pop = p, the pressure of the system, so that the first law becomes 

r/iQrev = dU + P dV. (9.22) 
Dividing Eq. (9.22) by T and using the definition of dS, we obtain 

dS = � dU + � dV, (9.23) 

which relates the change in entropy dS to changes in energy and volume, dU and dV, 
and to the pressure and temperature of the system. Equation (9 .23), a combination of the 
first and second laws ofthermodynamics, is the fundamental equation of thermodynamics ;  
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all our discussions of the equilibrium properties of a system will begin from this equation 
or equations directly related to it. 

For the present, it is sufficient to state that both of the differential coefficients IjT 
and pjT are always positive. According to Eq. (9.23) there are two independent ways of 
varying the entropy of a system : by varying the energy or the volume. Note carefully that 
if the volume is constant (dV = 0), an increase in energy (dU is + ) implies an increase 
in entropy. Also, if the energy is constant (dU = 0), an increase in volume (dV is + ) 
implies an increase in entropy. This behavior is a fundamental characteristic of the 
entropy. At constant volume, the entropy goes up as the energy goes up. At constant 
energy, the entropy goes up as the volume goes up. 

In the laboratory we do not ordinarily exercise control of the energy of the system 
directly. Since we can conveniently control the temperature and volume, or the 
temperature and pressure, it is useful to transform Eq. (9.23) to the more convenient sets 
of variables, T and V, or T and p. 

9 . 6  E N TR O PY AS A F U N CTI O N  O F  T E M P E RATU R E  A N D VO L U M E  

Considering the entropy as a function of T and V, we have S = SeT, V) ; the total differ
ential is written as 

dS = (::t dT + (:�)T dV. (9.24) 

Equation (9.23) can be brought into the form of Eq. (9.24) if we express dU in terms of 
dT and dV. In these variables, 

dU = CvdT + (:�) T dV. (9.25) 

Using this value of dU in Eq. (9. 12), we have 

dS = Cv dT '+ � [p + (au) ] dV. T . T av T (9.26) 

Since Eq. (9.26) expresses the change in entropy in terms of changes in T and V, it must be 
identical with Eq. (9.24), which does the same thing. In view of this identity, we may write 

(9.27) 

and 

(9.28) 

Since Cv!T is always positive (Section 9.2), Eq. (9.27) expresses the important fact 
that at constant volume the entropy increases with increase in temperature. Note that 
the dependence of entropy on temperature is simple, the differential coefficient being the 
appropriate heat capacity divided by the temperature. For a finite change in temperature 
at constant volume 

(9.29) 
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III EXAMPLE 9.2 One mole of argon is heated at a constant volume from 300 K to 
500 K ;  CV = !R. Compute the change in entropy for this change in state. 5500 �R 500 K 

I1.S = 300 2T dT = !R In 300 K = 0.766R = 0.766(8 . 3 14  J/K mol) = 6.37 J/K mol. 

Note that if 2 mol were used, Cv would be doubled and so the entropy change would be 
doubled. 

In contrast to the simplicity of the temperature dependence, the volume dependence 
at constant temperature given by Eq. (9.28) is quite complicated. Remember that the 
volume dependence at constant energy, Eq. (9.23), was very simple. We can obtain a 
simpler expression for the isothermal volume dependence of the entropy by the following 
device. We differentiate Eq. (9 .27) with respect to volume, keeping temperature constant ; 
this yields 

1 acv 
T av 

In the right-hand side we  have replaced Cv  by  (aU/aT)v . Similarly, we  differentiate 
Eq. (9.28) with respect to temperature keeping volume constant, to obtain 

a;2!v = � [(:�t + a��v ] - ;2 [p + (;�)J . 
However, since S is a function of T and V (dS is an exact differential) the mixed second 
derivatives must be equal ; hence we have 

or 

a2s a2s 
av aT aT av ' 

� (a��T) = � (:� t + � (a��v) - ;2 [p + (:�)J . 
Now the same consideration applies to U ;  the mixed second derivatives are equal. This 
reduces the preceding equation to 

p + (:�) T = T(:�t · (9.30) 

Comparing Eqs. (9 .30) and (9.28) we obtain 

(9. 3 1 )  

Equation (9.3 1 )  i s  a relatively simple expression for the isothermal volume dependence 
of the entropy in terms of a derivative, (ap/aT)v , which is readily measurable for any 
system. From Eq. (9 .20), the cyclic rule, we have (ap/aT)v = rx/I(. Using this result, we 
obtain 

rx 
I( (9 . 32) 

Since I( is positive, the sign of this derivative depends on the sign of rx ;  for the vast majority 
of substances the volume increases with temperature so that rx is positive. According to 
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Eq. (9 .32) then, for the majority of substances the entropy will increase with increase in 
volume. Water between 0 DC and 4 DC has a negative value of IX and so is an exception to 
the rule. 

The equations written in this section are applicable to any substance. Thus for any 
substance we can write the total differential of the entropy in terms of T and V in the form 

Cv IX dS = T dT + K dV. (9.33) 

Except for gases, the dependence of entropy on volume at constant temperature is 
negligibly small in most practical situations. 

9 . 7  E NT R O PY AS A F U N CTI O N  O F  T E M P E RATU R E  A N D  P R ES S U R E  

If the entropy is considered as a function of temperature and pressure, S = S(T, p), the 
total differential is written 

dS = (::)p dT + (��) T dp. (9.34) 

To bring Eq. (9.23) into this form, we introduce the relation between energy and enthalpy 
in the form U = H - p V ;  differentiating yields 

dU = dH - p dV - V dp. 
Using this value for dU in Eq. (9.23), we hav� 

1 V dS = T dH - T dp, (9. 35) 

which is another version of the fundamental equation (9.23) ; it relates dS to changes in 
enthalpy and pressure. We can express dH in terms of dT and dp, as we have seen before : 

dH = Cp dT + (��)T dp. (9.36) 

Using this value of dH in Eq. (9. 35), we obtain 

dS = Cp dT + � [(aH) - V] dp. T T ap T (9.37) 

Since Eqs. (9.34) and (9.37) both express dS in terms of dT and dp, they must be identical. 
Comparison of the two equations shows that 

and 

(
as
) = Cp (9.38) aT p T ' 

(9.39) 

For any substance, the ratio Cp/T is always positive. Therefore, Eq. (9.38) states 
that at constant pressure the entropy always increases with temperature. Here again, 
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the dependence of entropy on temperature is simple, the derivative being the ratio of the 
appropriate heat capacity to the temperature. 

In Eq. (9.39) we have a rather messy expression for the pressure dependence of the 
entropy at constant temperature. To simplify matters, we again form the mixed second 
derivatives and set them equal. Differentiation of Eq. (9.38) with respect to pressure at 
constant temperature yields 

iPS _ � (OCp) _ -.!.. o2B 
op oT - T op T 

- T op oT ' 

To obtain right-hand equality we have set Cp = (oBloT)p . Similarly, differentiation of 
Eq. (9.39) with respect to temperature yields 

o��p = � [o��p - (��)J - ;2 [(��) T 
- V 1 

Setting the mixed derivatives equal yields 

1 o2B 1 o2B 1 (OV) 1 [(OB) ] 
T op oT = T oT op - T aT p - T2 op T -

V . 

Since the mixed second derivatives of B are also equal this equation reduces to (OB) _ V = _ T(oV) . op T oT p 
Combining this result with Eq. (9.39) we have 

(�:t = - (��t = 
-

Va. 

(9.40) 

(9.41 )  

To obtain the right-hand equality the definition of a has been used. In Eq. (9 .41 )  we have 
an expression for the isothermal pressure dependence of the entropy in terms of the 
quantities V and a which are easily measurable for any system. The entropy can be written 
in terms of the temperature and pressure in the form 

C dS = i dT - Va dp. (9.42) 

9 . 7 . 1  C h a n g e  i n  Entro py of a L i q u i d  with  P ress u re 

For solids, a :=:::! 10- 4 K- 1 or less, while for liquids a :=:::! 10- 3 K- 1 or less. Suppose a 
liquid has a molar volume of 100 cm3/mol = 10- 4 m3/mol. What is the entropy change 
if the pressure is increased by 1 atm = 105 Pa at constant temperature ? 

Since the temperature is constant, we set dT = 0 in Eq. (9.42), and obtain 
dS = - Va dp. Since V and a are constants, they can be removed from the integral ; thus, 

�S = - I
P2 Va dp = - Va �p = - (10- 4 m3/mol)(10- 3 K- 1)(105 Pa) 
P i 

= - 0.01 J/K mol. 

To produce a decrease in entropy of 1 JjK a pressure of at least 100 atm must be applied 
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to the liquid. Since the variation of entropy of a liquid or a solid with pressure is so small, 
we will usually ignore it completely. If the pressure on a gas were increased from 1 atm 
to 2 atm, the corresponding change in entropy would be I1S = - 5.76 J/K mol ; the 
decrease is large simply because the volume has decreased greatly. We cannot ignore the 
entropy change of a gas accompanying a change in pressure. 

9 . 8  T H E T E M P E RATU R E  D E P E N D E N C E  O F  T H E E N T R O PY 

Attention has been directed to the simplicity of the dependence of entropy on temperature 
both at constant volume and constant pressure. This simplicity results from the funda
mental definition of the entropy. If the state of the system is described in terms of the 
temperature and any other independent variable x, then the heat capacity of the system in 
a reversible transformation at constant x is by definition Cx = (flQreJx/dT. Combining 
this equation with the definition of dS, we obtain at constant x 

or (9.43) 

Thus, under any constraint, the dependence of the entropy on temperature is simple ; the 
differential coefficient is always the appropriate heat capacity divided by the temperature. 
In the majority of practical applications, x is either V or p. Thus we may take as equivalent 
definitions of the heat capacities 

or 

l\1li EXAMPLE 9.3 One mole of solid gold is raised from 25 °C to 100 °C at constant 
pressure. Cp/(J/K mol) = 23.7 + 0.005 19T. Calculate I1S for the transformation. 

I1S = ---.E dT = dT fT2 C f37 3 . 1 5 (23 .7 + 0.005 19T) 
T, T 2 '1 8 . 1 5  T 

= 23.7 - + 0.005 19  dT f3 7 3 . 1 5 dT f37 3 . 1 5 

29 8 . 1 5 T 29 8 . 1 5 

(9.44) 

373. 1 5  = 23.7 In 298. 1 5  + 0.005 19(373. 1 5  - 298. 1 5) = 5.3 1 8  + 0.389 = 5 .71 J/K mol. 

9 . 9  E N T R O PY C H AN G ES I N  T H E I D EA L  GAS 

The relations derived in  the preceding sections are applicable to  any system. They have 
a particularly simple form when applied to the ideal gas, which is the result of the fact 
that in the ideal gas the energy and the temperature are equivalent variables : dU = Cv dT. 
Using this value of dU in Eq. (9. 23), we obtain 

dS = Cv dT + � dV. T T (9.45) 

The same result could be obtained by using Joule's law, (oU/oVh = 0, in Eq. (9.26). To 
use Eq. (9.45), all of the quantities must be expressed as functions of the two variables T 
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and V. Hence, we replace the pressure by p = nRTIV ;  and the equation becomes 

dS = Cv dT + nR dV. T V 
By comparing Eq. (9.46) with (9.24), we see that 

nR 
V 

(9.46) 

(9.47) 

This derivative is always positive ; in an isothermal transformation, the entropy of the 
ideal gas increases with increase in volume. The rate of increase is less at large volumes, 
since V appears in the denominator. 

For a finite change in state, we integrate Eq. (9.46) to 

!::.S = I
T
2 Cv dT + nR 

(2 dV . 
Tl T JVl V 

If Cv is a constant, this integrates directly to 

�S = Cv In GD + nR In (�) . (9.48) 

The entropy of the ideal gas is expressed as a function of T and p by using the property 
of the ideal gas, dH = Cp dT, in Eq. (9.35) which reduces to 

Cp V dS = - dT - - dp. T T 
To express everything in terms of T and p, we use V = nRTlp, so that 

Cp nR 
dS = - dT - - dp. T p 

Comparing Eq. (9.49) to Eq. (9.34), we have 

nR 
p 

(9.49) 

(9. 50) 

which shows that the entropy decreases with isothermal increase in pressure, a result 
that would be expected from the volume dependence of the entropy. For a finite change 
in state, Eq. (9.49) integrates to 

!::.S = Cp In GD - nR In (�:), (9.5 1 )  

where Cp has been taken as  a constant in  the integration. 

!iii EXAMPLE 9.4 One mole of an ideal gas, Cp = �R, initially at 20 °C and 1 atm 
pressure, is transformed to 50 °C and 8 atm pressure. Calculate !::.S. Using Eq. (9. 5 1), 
with Tl = 293 . 1 5  K and T2 = 323. 1 5  K, we have 

!::.S = �R In ���::� � - R In � ::: = �R(0.0974) - 2.079R 

= - 1 . 836R = - 1 .836(8 . 3 14  J/K mol) = - 15.26 J/K mol. 
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Note that in this example, as well as in the earlier ones, it is essential to express the 
temperature in kelvins .  Note also that in the second part of the problem where only a 
pressure ratio is involved, we may use any unit of pressure so long as it is related to the 
pascal by a multiplicative constant. In forming the ratio, the conversion factor will 
disappear, and thus need not have been introduced in the first place. 

9 . 9 . 1  Sta n d a rd State for  the  E ntropy of  a n  I d ea l  G as 

For a change in state at constant temperature, Eq. (9.50) can be written 

R dS = - - dp. p 
Suppose that we integrate this equation from p = 1 atm to any pressure p. Then 

S - So = -R In (-p_) , 
1 atm 

(9.52) 

where So is the value of the molar entropy under 1 atm pressure ; it is the standard entropy 
at the temperature in question. 

To calculate a numerical value of the logarithm on the right-hand side of Eq. (9.52), 
it is essential that the pressure be expressed in atmospheres. Then the ratio (P/1 atm) will 
be a pure number, and the operation of taking the logarithm is possible. (Note that it is 
not possible to take the logarithm of five oranges.) It is customary to abbreviate Eq. (9.52) 
to the simple form 

S - So = -R In p. (9.53) 
It must be clearly understood that in Eq. (9.53) the value of p is a pure number, the number 
obtained by dividing the pressure in atm by 1 atm. 

.. 
5 

S ° r---�r----+-----r----�----+- P 

(a) (b) 
F i g u re 9 .2  ( a )  Entropy of the idea l  gas as a fu nct ion of p ressu re .  (b )  Entropy of the 
idea l  gas versus I n  p. 
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The quantity S - SO is the molar entropy at the pressure p relative to that at 1 atm 
pressure. A plot of S - So for the ideal gas is shown as a function of pressure in Fig. 9 .2(a). 
The rate of decrease of the entropy with pressure is rapid at low pressures and becomes 
less rapid at higher pressures. There is an evident advantage in using a plot of S - So 
against In p in this situation (Fig. 9.2b). The plot is linear and a wider range of pressures 
can be represented on a scale of reasonable length. 

9 . 1 0 T H E T H I R D  LAW O F  T H E R M O DY N A M I CS 

Consider the constant-pressure transformation of a solid from the absolute zero of 
temperature to some temperature T below its melting point : 

Solid (0 K, p) -+ Solid (T, p). 
The entropy change is given by Eq. (9.38), 

( C ST = So + Jo 
; dT. (9. 54) 

Since Cp is positive, the integral in Eq. (9.54) is positive ; thus the entropy can only increase 
with temperature. Thus at 0 K the entropy has its smallest possible algebraic value So ; the 
entropy at any higher temperature is greater than So . In 19 1 3, M. Planck suggested that 
the value of So is zero for every pure, perfectly crystalline substance. This is the third law 
of thermodynamics : The entropy of a pure, perfectly crystalline substance is zero at the 
absolute zero of temperature. 

When we apply the third law of thermodynamics to Eq. (9.54), it reduces to 

ST = f: ? dT, (9. 55) 

where ST is called the third-law entropy, or simply the entropy, of the solid at temperature 
T and pressure p. If the pressure is 1 atm, then the entropy is also a standard entropy 
S� . Table 9 . 1  is a selection of entropy values for a number of different types of substances. 

Since a change in the state of aggregation (melting or vaporization) involves an 
increase in entropy, this contribution must be included in the computation'o� the entropy 
of a liquid or of a gas. For the standard entropy of a liquid above the melting'point of the 
substance, we have \ 

S� = (Tm C�(s) dT + LlH�us + f
T C�(1) dT. Jo T Tm Tm T (9.56) 

Similarly, for a gas above the boiling point of the substance 

s
o _ iTm C�(s) dT LlH�us fTb C�(1) dT LlH�ap fT C�(g) dT T - -- + -- + -- + -- + -- . 

o T Tm T m T T" Tb T (9.57) 

If the solid undergoes any transition between one crystalline modification and another, 
the entropy of transition at the equilibrium temperature must be included also. To 
calculate the entropy, the heat capacity of the substance in its various states of aggrega
tion must be measured accurately over the range of temperature from absolute zero to 
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F i g u re 9 .3 P lot of  Cp versus 1 09 1 0  T. 

the temperature of interest. The values of the heats of transition and the transition tem
peratures must also be measured. All of these measurements can be made calorimetrically. 

Measurements of the heat capacity of some solids have been made at temperatures 
as low as a few hundredths of a degree above the absolute zero. However, this is unusual. 
Ordinarily, measurements of heat capacity are made down to a low temperature T, 
which frequently lies in the range from 10 to 1 5  K. At such low temperatures, the heat 
capacity of solids follows the Debye " T-cubed " law accurately ; that is 

(9. 58) 

where a is a constant for each substance. At these temperatures Cp and Cv are indistin
guishable, so the Debye law is used to evaluate the integral of CiT over the interval 
from 0 K to the lowest temperature of measurement T. The constant a is determined 
from the value of Ci = Cv) measured at T'. From the Debye law, a = (Cph,jTt3 . 

In the range of temperature above T', the integral 

IT Cp dT = IT 
Cpd(ln T) = 2.303 IT 

Cpd(lOg l O T) 
T' T T' T '  

is evaluated graphically by plotting either CiT versus T, or Cp versus logl o T. The area 
under the curve is the value of the integral. Figure 9 .3 shows the plot of Cp versus 10g l O T 
for a solid from 12 K to 298 K. The total area under the curve when multiplied by 2.303 
yields a value of S�9 8  = 32.6 J/K mol. 

In conclusion, we should note that the first statement of the third law of thermo
dynamics was made by Nernst in 1906, the Nernst heat theorem, which states that in any 
chemical reaction involving only pure, crystalline solids the change in entropy is zero at 
O K. This form is less restrictive than the statement of Planck. 

The third law of thermodynamics lacks the generality of the other laws, since it 
applies only to a special class of substances, namely pure, crystalline substances, and not 
to all substances. In spite of this restriction the third law is extremely useful. The reasons 
for exceptions to the law can be better understood after we have discussed the statistical 
interpretation of the entropy ; the entire matter of exceptions to the third law will be 
deferred until then. 

The following general comments may be made about the entropy values that appear 
in Table 9. 1 .  
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Tab le  9 . 1  

Standard entrop ies a t  298 . 1 5 K 

Substance S398 . 1 S/R Substance S398 . 1 S/R 

Solids Liquids 
Single unit, simple Hg 9. 129 
C (diamond) 0.286 Brz 1 8 .3068 
Si 2.262 HzO 8 .413 1 
Sn (white) 6 . 156  TiCl4 30.35  
Pb 7.79 CH30H 15 .2 
Cu 3 .987 CzHsOH 19 .3 
Fe 3.28 
Al 3 .410 Gases 
Ca 5 .00 Monatomic 
Na 6 . 170 He 15 . 1 591  
K 7.779 Ne 17 .5856 
Single unit, complex Ar 18 .6101 
1z 1 3 .968 Kr 19 .72 1 3  
P4 19 .77 Xe 20.395 1 
Ss(rhombic) 30.842 Diatomic 
C (graphite) 0.690 Hz 15 .7041 
Two unit, simple HF 20.8872 
SnO 6.876 HCI 22.4653 
PbS 1 1 .0 HBr 23.8844 
HgO(red) 8.449 HI 24.8340 
AgCI 1 1 .57 Clz 26.8 167 
FeO(wustite) 6 .91 Oz 24.6604 
MgO 3 .241 Nz 23.0325 
CaO 4.58 NO 25.336 
NaCI 8 .68 CO 23.7607 
KCI 9.93 Triatomic 
KBr 1 1 .53 HzO 22.6984 
KI 12.79 03 28.72 
Two unit, complex NOz 28.86 
FeSz(pyrite) 6 .37 NzO 26.43 
NH4CI 1 1 .4 COz 25.6996 
CaC03(calcite) 1 1 .2 Tetratomic 
NaN03 14.01 S03 30.87 
KCI03 17.2 NH3 23 . 173 
Three units, simple P4 33 .66 
SiOz(lX-quartz) 4.987 PCl3 37.49 
CUzO 1 1 .20 CzHz 24. 15  
AgzO 14.6 Pentatomic 
NazO 9.03 CH4 22.389 
Five units, simple SiH4 24.60 
FeZ03  10. 5 1  SiF4 33 .995 

Calculated from values in NBS Technical Notes 270-3 through 270-8.  U.S .  Govern-
ment Printing Office, 1 968-8 1 ; and in No. 28 CODATA Recommended Values for 
Thermodynamics 1 977. (April 1 978) International Council of Scientific Unions. 
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1 .  Entropies of gases are larger than those of liquids, which are larger than those of 
solids. This is a consequence of Eq. (9. 57). 

2. The entropy of gases increases logarithmically with the mass ; this is illustrated by 
the monatomic gases, or the series of diatomics, HF, HCI, HBr, HI. 

3. Comparing gases having the same mass-Ne, HF, HzO-we see the effect of the 
rotational heat capacity. Two degrees of rotational freedom add 3 .302R = 27.45 J/K 
mol in passing from Ne to HF ; one additional rotation in HzO compared to HF adds 
1 . 8 1 1R = 1 5 .06 J/K mol. Similarly, HzO and NH3 have nearly the same entropy. 
(Both have 3 rotational degrees of freedom.) For molecules with the same mass and 
the same heat capacities but different shapes, the more symmetrical molecule has the 
lower entropy ; clear-cut examples are few, but compare N z to CO and NH3 to CH4 . 

4. In the case of solids consisting structurally of a single simple unit, the heat capacity 
is exclusively vibrational. A tightly bound solid (high cohesive energy) has high charac
teristic frequencies (in the sense of Section * 4. 13 ), hence a lower heat capacity and a 
low entropy ; for example, diamond has very high cohesive energy, very low entropy ; 
silicon has lower cohesive energy (also lower vibrational frequencies due to higher 
mass), hence a higher entropy. 

5. Solids made up of two, three, . . .  , simple units have entropies that are roughly two, 
three, . . .  , times greater than those composed of one simple unit. The entropy per 
particle is roughly the same throughout. 

6. Where there is a single complex unit, van der Waals forces (very low cohesive forces) 
bind the solid. The entropy is correspondingly high. Note that the masses are quite 
large in the examples given in the table. 

7. Where complex units occur in the crystal, the entropy is correspondingly greater 
since the heat capacity is greater due to the additional degrees of freedom associated 
with these units. 

9 . 1 1 E N TR O PY C H A N G ES i N  C H E M I CA L  R EACTI O N S  

The standard entropy change in a chemical reaction is computed from tabulated data in 
much the same way as the standard change in enthalpy. However, there is one important 
difference : The standard entropy of elements is not assigned a conventional value of zero . 
The characteristic value of the entropy of each element at 25 °C and 1 atm pressure is 
known from the third law. As an example, in the reaction 

FeZ03(s) + 3 Hz(g) -----+ 2 Fe(s) + 3 HzO(l), 

the standard entropy change is given by 

I1S0 = S(final) - S&nitial) ' 
Then 

I1S0 = 2S0(Fe, s) + 3S0(HzO, 1) - SO(FeZ03 , s) - 3S0(H2 ' g) 

From the values in Table 9 . 1 ,  we find for this reaction at 25 °C 

I1S0 = R[2(3.28) + 3(8 .4 1 3 1 )  - 10. 5 1  - 3(15 .7041 )J 

= - 25.82R = - 25.82(8 . 3 14  J/K mol) = - 214.7 J/K mol. 

(9 .59) 

(9.60) 



E ntropy and  P roba b i l ity 1 89 

Since the entropy of gases is much larger than the entropy of condensed phases, there 
is a large decrease in entropy in this reaction ; a gas, hydrogen, is consumed to form 
condensed materials. Conversely, in reactions in which a gas is formed at the expense of 
condensed materials, the entropy will increase markedly. 

Cu20(s) + C(s) ---+ 2 Cu(s) + CO(g) �S29 8 = + 158 J/K mol. 

From the value of �so for a reaction at any particular temperature To , the value at 
any other temperature is easily obtained by applying Eq. (9.38) : 

�so = S°(products) - SO(reactants). 

Differentiating this equation with respect to temperature at constant pressure, we have (0 �SO) = (OS0(productS») _ (OSO(reactants») 
aT p aT  p aT  p 

C�(products) C�(reactants) �C� = 
T - T 

= T (9 . 61) 

Writing Eq. (9.61) in differential form and integrating between the reference tempera
ture To and any other temperature T, we obtain 

( d(�SO) = r
T �C� dT ;  JTo J To T 

A SO A SO iT �C� d Ll T = Ll To + -- T, 
To T 

(9.62) 

which is applicable to any chemical reaction so long as none of the reactants or products 
undergoes a change in its state of aggregation in the temperature interval To to T. 

9 . 1 2 E N T R O PY A N D P R O BA B I L ITY 

The entropy of a system in a definite state can be related to what is called the probability 
of that state of the system. To make this relation, or even to define what is meant by the 
probability of the state, it is necessary to have some structural model of the system. In 
contrast, the definition of the entropy from the second law does not require a structural 
model ; the definition does not depend in the least on whether we imagine that the system 
is composed of atoms and molecules or that it is built with waste paper and baseball bats. 
For simplicity we will suppose that the system is composed of a very large number of 
small particles, or molecules. 

Imagine the following situation. A large room is sealed and completely evacuated. 
In one corner of the room there is a small box that confines a gas under atmospheric 
pressure. The sides of the box are now taken away so that the molecules of gas are free 
to move into the room. Mter a period of time we observe that the gas is distributed uni
formly throughout the room. At the time the box was opened each gas molecule had a 
definite position and velocity, if we take a classical view of the matter. At some instant 
after the gas has filled the room, the position and velocity of each molecule have values 
that are related in a complicated way to the values of the positions and velocities of all 

, the molecules at the instant the box was opened. At the later time, imagine that each 
velocity component of every molecule is exactly reversed. Then the molecules will just 
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reverse their original motion, and after a period of time the gas will collect itself in the 
corner of the room where it was originally sealed in the box. 

The strange thing is that there is no reason to suppose that the one particular motion, 
which led to the uniform filling of the room, is any more probable than the same motion 
reversed, which leads to the collection of the gas in one corner of the room. If this is so, 
why is it that we never observe the air in a room collecting in one particular portion of 
the room? The fact that we never observe some motions of a system, which are inherently 
just as probable as those we do observe, is called the Boltzmann paradox. 

This paradox is resolved in the following way. It is true that any exactly specified 
motion of the molecules has the same probability as any other exactly specified motion. 
But it is also true that of all the possible exactly specified motions of a group of molecules, 
the total number of these motions that lead to the uniform filling of the available space is 
enormously greater than the number of these motions that lead to the occupation of only 
a small part of the available space. And so, although each individual motion of the system 
has the same probability, the probability of observing the available space filled uniformly 
is proportional to the total number of motions that would result in this observation ; 
consequently, the probability of observing the uniform filling is overwhelmingly large 
compared with the probability of any other observation. 

It is difficult to imagine the detailed motion of even one particle, much less that of 
many particles. Fortunately, for the calculation we do not have to deal with the motions 
of the particles, but only with the number of ways of distributing the particles in a given 
volume. A simple illustration suffices to show how the probability of the uniform distri
bution compares with that of the nonuniform one. 

Suppose we have a set of four cells each of which can contain one ball. The set of four 
cells is then divided in half; each half has two cells, as in Fig. 9 .4(a). We place two balls in 
the cells ; the arrangements in Fig. 9.4(b) are possible (0 indicates an empty cell, ® 
indicates an occupied cell). Of these six arrangements, four correspond to uniform filling ; 
that is, one ball in each half of the box. The probability of uniform filling is therefore 
� = �, while the probability of finding both balls on one side of the box is i = 1. The 
probability of any particular arrangement is l But four particular arrangements lead to 
uniform filling ; only two particular arrangements lead to nonuniform filling. 

Suppose that there are eight cells and two balls ; then the total number of arrangements 
is 28. Of the 28 arrangements, 16 of them correspond to one ball in each half of the box. 
The probability of the uniform distribution is therefore �� = 4. It is easy to show that, as 
the number of cells increases without limit, the probability of finding one ball in one half 
of the box and the other in the other half of the box approaches the value !. 

(a) 

1 ® ® lo o l l ® 0 1 ® o l l ® o l o ® l l o ® l ® o \ \ o ® \o ® 1 I 0 0 \ ® ® 1  
(b) 

F i g u re 9.4 
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At this point it seems reasonable to ask what all this has to do with entropy. The 
entropy of a system in a specified state can be defined in terms of the number of possible 
arrangements of the particles composing the system that are consonant with the state of 
the system. Each such possible arrangement is called a complexion ofthe system. Following 
Boltzmann, we define the entropy by the equation 

S = k ln n, (9.63) 

where k is the Boltzmann constant, k = Rj N A ,  and n is the number of complexions of 
the system that are consonant with the specified state of the system. Since the pro bability 
of a specified state of a system is proportional to the number of complexions which make 
up that state, it is clear from Eq. (9.63) that the entropy depends on the logarithm of the 
probability of the state. 

Suppose we calculate the entropy for two situations in the foregoing example. 

Situation 1.  The two balls are confined to the left half of the box. There is only one 
arrangement (complexion) that produces this situation ; hence, n = 1, and 

Sl = k In ( 1) = 0. 

The entropy of this state is zero. 

Situation 2.  The two balls may be anywhere in the box. As we have seen, there are six 
complexions corresponding to this situation ;  hence, n = 6, and 

S2 = k in (6). 
The entropy increase associated with the expansion of the system from 2 cells to 

4 cells is then 
I1S = S2 - Sl = k in 6 

= !k In 6 
for 2 balls 
for 1 ball. 

This result is readily generalized to apply to a box having N cells. How many arrange
ments are possible for two balls in N cells ? There are N choices for the placement of the 
first ball ; for each choice of cell for the first ball there are N - 1 choices for the second 
ball. The total number of arrangements of 2 balls in N cells is apparently N(N - 1) . 
However, since we cannot distinguish between ball 1 in position x, ball 2 in position y, 

and the arrangement ball 1 in y, ball 2 in x, this number must be divided by 2 to obtain 
the number of distinct arrangements ;  hence, 

" _ N(N - 1) 
� ' 1 - 2 . 

The entropy of this system is, by Eq. (9.63), 

Sl = k In [!N(N - 1)] . 

If we increase the number of cells available to N', then O2 = !N'(N' - 1), and 

S2 = k In [!N'(N' - 1)] . 

The increase in entropy associated with increasing the number of cells from N to N' is [N'(N' - 1)J I1S = S2 - Sl = k In N(N _ 1) . .  
(9.64) 
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If N' = 4 and N = 2, this yields the result obtained originally for the expansion from 2 
to 4 cells. 

A more instructive application of Eq. (9 .64) is obtained if we suppose that both N 
and N' are very large, so large that N - 1 can be replaced by N and N' - 1 by N'. Then 
Eq. (9.64) becomes 

(N') 2 (N') LlS = k ln 
N , 

= 2k ln 
N ' (9.65) 

If we ask to what physical situation this random placing of balls in cells might be 
applied, the ideal gas comes to mind. In the ideal gas the position of a molecule at any 
time is a result of pure chance. The proximity of the other molecules does not affect the 
chance of the molecule being where it is. If we apply Eq. (9.65) to an ideal gas, the balls 
become molecules and the number of cells is proportional to the volume occupied by 
the gas ; thus, N'/N = V'/V, and Eq. (9.65) becomes 

LlS (two molecules) = 2k In (�), LlS (one molecule) = k In (�) . 
Since N A k = R, the gas constant, for one mole, we have 

LlS (one mole) = R In (�), (9.66) 

which is identical to the second term of Eq. (9.48), the expression for the increase in 
entropy accompanying the isothermal expansion of one mole of an ideal gas from volume 
V to volume V'. 

From the standpoint of this structural and statistical definition of entropy, iso
thermal expansion of a gas increases the entropy because there are more ways of arranging 
a given number of molecules in a large volume than in a small volume. Since the prob
ability of a given state is proportional to the number of ways of arranging the molecules 
in that state, the gas confined in a large volume is in a more probable state than if it is 
confined in a small volume. If we assume that the equilibrium state of the gas is the state 
of highest probability, then it is understandable why the gas in a room never collects in a 
small corner. The gas achieves its most probable state by occupying as much volume as is 
available to it. The equilibrium state has the maximum probability consistent with the 
constraints on the system and so has a maximum entropy. 

9 . 1 3 G E N E R A L  F O R M  F O R  O M E G A  

To calculate the number o f  arrangements o f  three particles in  N cells, we  proceed in 
the same way as before. There are N choices for placing the first particle, N - 1 choices 
for the second, and N - 2 choices for the third. This would seem to make a total of 
N(N - l) (N - 2) arrangements ;  but again we cannot distinguish between arrangements 
that are only permutations of the three particles between the cells x, y, z. There are 3 !  such 
permutations : xyz, xzy, yxz, yzx, zxy, zyx. Hence, for three particles in N cells the number 
of complexions is 

f"\ 
= 

N(N - l)(N - 2) 
� �  

3 !  
. (9.67) 
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Again if the number of cells N is much larger than the number of particles, this reduces 
for three particles to 

From this approximate form we can immediately jump to the conclusion that for Na 
particles, if N is much larger than Na , then, approximately, 

NNa n = -, . Na · 
(9.68) 

On the other hand, if we need the exact form for n, Eq. (9.67) can be generalized for 
N a particles to 

N(N - l)(N - 2)(N - 3) . . .  (N - Na + 1) n =  , . Na · 
If we multiply this last equation by (N - Na) ! in both numerator and denominator, it 
reduces to 

n =  N ! 
Na !(N - Na) ! 

(9.69) 

The entropy attending the expansion from N to N' cells is easily calculated using 
Eq. (9.68). For N cells, 

S = k[ln NNa - In (N !)] , 
while for N' cells, 

S' = k[ln N'Na - In (Na !)] . 
The value of I1S is 

S = S' - S = Na k In (�). 
As before, we take the ratio N'I N = V'IV ; then if N a = N A ,  the equation becomes 

I1S = R In (�). 
which is identical to Eq. (9.66). 

9 . 1 4 T H E E N E R G Y  D I ST R I B UTI O N  

It is rather easy to make the translation in concept from arrangements of balls in cells to 
the physical arrangement of molecules in small elements of volume. By arranging molecules 
in the elements of volume we obtain a space distribution of the molecules. The problem 
in the space distribution was simplified considerably by the implicit assumption that there 
is at most one molecule in a given volume element. 

The problem of translating arrangements of balls in cells to an energy distribution is 
only slightly more difficult. We assume that any molecule can have an energy value 
between zero and infinity. We partition this entire range of energy into small compart
ments of width dE ; the compartments are labeled, beginning with the one of lowest energy, 
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by £1 ' £2 ' 3 , · · · , as in Fig. 9 .5 .  The energy distribution is described by specifying the 
number of molecules nl having energies lying in the first compartment, the number n2 in 
the second compartment, and so on. 

Consider a collection of N molecules for which the energy distribution is described 
by the numbers n1 , n2 ' n3 , n4 , ns , . . . . In how many ways can this particular distribution 
be achieved ? We begin by supposing that there are three molecules in £1 ; there are N 
ways of choosing the first molecule, (N - 1) of choosing the second, and (N - 2) ways 
of choosing the third. Thus there appear to be N(N - 1)(N - 2) ways of selecting three 
molecules from N molecules. However, the order of choice does not matter ; the same 
distribution is obtained with molecules 1, 2, and 3 whether they are chosen in the order 
123, 1 32; 2 1 3, 23 1 ,  3 12, or 321 .  We must divide the total number of ways of choosing by 3 !  to 
get the number of distinguishable ways of choosing ; 

N(N - 1)(N - 2) 
3 !  

Suppose that there are two molecules in the second compartment ; these must be chosen 
from the N - 3 molecules remaining ; the first may be chosen in N - 3 ways, the second 
in N - 4 ways. Again the order does not matter, so we divide by 2 ! . The two molecules 
in the second compartment can be chosen in 

(N - 3)(N - 4) 
2 ! 

different ways. The total number of ways of choosing three molecules in the first compart
ment and two molecules in the second compartment is the product of these expressions : 

N(N - l)(N - 2)(N - 3)(N - 4) 
3 ! 2 !  

We then find how many ways there are of choosing the number of molecules in com
partment three from the remaining N - 5 molecules, and so on. Repetition of this 
procedure yields the final result for 0, the total number of ways of placing nl molecules 
in compartment 1, n2 molecules in compartment 2, . . .  : 

0 =  N ! 
. n1! n2 ! n3 ! n4 ! . . .  

(9.70) 

The value of 0, the number of complexions for a particular distribution, given by 
Eq. (9.70) seems rather forbidding. However, we do not need to do very much with it to 
get the information we need. As usual, the entropy resulting from the distribution of 
molecules over a range of energies is related to the number of complexions by S = k in O. 
If n is very large, the entropy will be large. It is clear from Eq. (9.70) that the smaller the 
populations of the compartments, n1 , n2 , n3 ' . . .  , the larger will be the value of O. For 
example, if every compartment either was empty or contained only 1 molecule, all the 
factors in the denominator would be either O ! or 1 ! ; the denominator would then be unity 
and 0 = N ! .  This would be the largest possible value of 0, and would correspond to the 
largest possible value of the entropy. Note that in this situation the molecules are spread 
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out very widely over the energy range ; thus a broad energy distribution means a high 
entropy. 

In contrast, consider the situation where all the molecules but one are crowded into 
the first level ; then 

N ! 
n = (N - i) !  1 !  o! o !  = N. 

If N is large, then N is very much smaller than N ! ;  the entropy in this case is very much 
smaller than that for the broad distribution. 

To achieve a high entropy, the molecules will therefore try to spread out into as broad 
an energy distribution as possible, just as gas molecules fill as much space as is available. 
The spatial distribution is limited by the walls of the container. The energy distribution 
is subject to an analogous limitation. In a specified state, a system has a fixed value of its 
total energy ; from the distribution this value is 

U = nlf l  + n2 f2 + n3 f3 + n4 4 + . . . . 
It is clear that the system may not have many molecules in the high-energy compartments ;  
if it did, the distribution would yield a value of energy above the fixed value in the particular 
state. This restriction limits the number of complexions of a system quite severely. The 
value of n nonetheless reaches a maximum consistent with the restriction that the energy 
must sum to the fixed value U. The molecules spread themselves over as broad a range of 
energy as is consistent with the fixed total energy of the system. 

If the energy of the system is increased, the distribution can be broader ; the number 
of complexions and the entropy of the system goes up. This is a statistical interpretation 
of the fact illustrated by the fundamental equation (9. 12) : 

1 p dS = T dU + T dV, 

from which we obtain the differential coefficient 

1 
T · 

We noted in Section 9 .5  that this coefficient was always positive. For the present we simply 
note the agreement in the sign of this coefficient with the statistical argument that increase 
in energy increases the number of complexions and the entropy. 

The two fundamental ways of varying the entropy of a system expressed by the 
fundamental equation are interpreted as the two ways .of achieving a broader distribution. 
By increasing the volume, the spatial distribution broadens ; by increasing the energy, 
the energy distribution broadens. The broader distribution is the more probable one, 
since it can be made up in a greater number of ways. 

It is easy now to understand why the entropies of liquids and solids are nearly un
changed by a change in pressure. The volume of condensed materials is altered so little 
by a change in pressure that the breadth of the spatial distribution remains about the 
same. The entropy therefore remains at very nearly the same value. 

We can also understand the phenomena in the adiabatic reversible expansion of a 
gas ; in such an expansion, r/lQrev = 0, so that dS = o. Since the volume goes up, the 
distribution over space broadens, and this part of the entropy increases. If the total entropy 
change is to be zero, the distribution over energies must get narrower ; this corresponds 
to a decrease in energy that is reflected in a decrease in the temperature of the gas. The 
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work produced in such an adiabatic expansion of a gas is produced at the expense of the 
decrease in energy of the system. 

In Chapter 4 the Maxwell distribution of kinetic energies in a gas was discussed in 
detail. There we found that the average energy was given by �R T. Thus an increase in 
temperature corresponds to an increase in the energy of the gas ; it should also correspond 
to a broadening of the energy distribution. This broadening of the energy distribution 
with increase in temperature was emphasized at that time. 

From what has been said, it seems reasonable to expect the direction of natural 
changes to correspond to the direction that increases the probability of the system. Thus 
in natural transformations we might expect the entropy of the system to increase. This is 
not quite true. In a natural change both the system and the surroundings are involved. 
Therefore, in any natural change, the universe must reach a state of higher probability 
and thus of higher entropy. In a natural transformation, the entropy of the system may 
decrease if there is an increase in entropy in the surroundings that more than compensates 
for the decrease in the system. The entropy change in a transformation is a powerful clue 
to the natural direction of the transformation. 

9 . 1 5 E N T R O PY O F  M IXI N G  A N D EXC E PTI O N S  TO T H E 
T H I R D  lAW O F  T H E R M O DY N A M I CS 

The third law of thermodynamics is applicable only to those substances that attain a 
completely ordered configuration at the absolute zero of temperature. In a pure crystal, 
for example, the atoms are located in an exact pattern of lattice sites. If we calculate the 
number of complexions of N atoms arranged on N sites, we find that although there are 
N !  ways of arranging the atoms, since the atoms are identical, these arrangements differ 
only in the order of choosing the atoms. Since the arrangements are not distinguishable, 
we must divide by N !, and we obtain Q = 1 for the perfectly ordered crystal. The entropy 
is therefore 

S = k In ( 1) = o. 
Suppose that we arrange different kinds of atoms A and B on the N sites of the crystal. 

If Na is the number of A atoms, and Nb is the number of B atoms, then Na + Nb = N, 
the total number of sites. In how many distinguishable ways can we select N a sites for the 
A atoms and Nb sites for the B atoms ? This number is given by Eq. (9.70) : 

Q =  N t  
Na ! Nb ! 

The entropy of the mixed crystal is given by 

N !  S = k ln , " Na · Nb · 

(9.71) 

(9.72) 

To evaluate this expression we take advantage of the Stirling approximation : When N 
is very large, then 

In N !  = N In N - N. (9.73) 
The expression for the entropy becomes 

S = k(N ln N - N - Na In Na + Na - Nb In Nb + Nb)' 
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Since N = N a + N b , this becomes 
S = - k(Na In Na + Nb In Nb - N In N). 

But, Na = xaN, and Nb = XbN, where Xa is the mole fraction of A and Xb is the mole 
fraction of B. The expression for the entropy reduces to 

(9.74) 
Since the terms in the parentheses in Eq. (9.74) are negative (the logarithm of a fraction 
is negative), the entropy of the mixed crystal is positive. If we imagine the mixed crystal 
to be formed from a pure crystal of A and a pure crystal of B, then for the mixing process 

pure A + pure B ----+ mixed crystal. 

The entropy change is 

L\Smix = S (mixed crystal) - S (pure A) - S (pure B). 
The entropies of the pure crystals are zero, so the L\S of mixing is simply 

L\Smix = - Nk(xa In Xa + Xb In Xb), 
and is a positive quantity. 

(9.75) 

Since any impure crystal has at least the entropy of mixing at the absolute zero, its 
entropy cannot be zero ; such a substance does not follow the third law ofthermodynamics. 
Some substances that are chemically pure do not fulfill the requirement that the crystal 
be perfectly ordered at the absolute zero of temperature. Carbon monoxide, CO, and 
nitric oxide, NO, are classic examples. In the crystals of CO and NO, some molecules are 
oriented differently than others. In a perfect crystal of CO, all the molecules should be 
lined up with the oxygen pointing north and the carbon pointing south, for example. In 
the actual crystal, the two ends of the molecule are oriented randomly ; it is as if two kinds 
of carbon monoxide were mixed, half and half. The molar entropy of mixing would be 

L\S = - N A kC! In ! + ! In !) = N A k In 2 
= R In 2 = O.693R = 5.76 J/K mol. 

The actual value for the residual entropy of crystalline carbon monoxide is O.55R = 
4.6 JIK mol ; the mixing is apparently not quite half and half. In the case of NO, the 
residual entropy is 0.33R = 2.8 J/K mol, which is about one-half of 5.76 JIK mol ; this 
has been explained by the observation that the molecules in the crystal of NO are dimers, 
(NO)2 . Thus one mole of NO contains only !N A double molecules ; this reduces the 
residual entropy by a factor of two. 

In ice, a residual entropy remains at the absolute zero because of randomness in the 
hydrogen bonding of the water molecules in the crystal. The magnitude of residual 
entropy has been computed and is in agreement with that observed. 

It has been found that crystalline hydrogen has a residual entropy of O.750R = 
6.23 J IK mol at the absolute zero of temperature. This entropy is not the result of disorder 
in the crystal, but of a distribution over several quantum states. Ordinary hydrogen is a 
mixture of ortho- and para-hydrogen, which have different values of the total nuclear spin 
angular momentum. As a consequence of this difference, the rotational energy of ortho
hydrogen at low temperatures does not approach zero as does that of para-hydrogen, 
but achieves a finite value. Ortho-hydrogen can be in any one of nine states, all having 
the same energy, while para-hydrogen exists in a single state. As a result of the mixing of 
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the two kinds of hydrogen and the distribution of the ortho-hydrogen in nine different 
energy states, the system has a randomness and therefore a residual entropy. Pure para
hydrogen, since it exists in a single state at low temperature, would have no residual 
entropy and would follow the third law. Pure ortho-hydrogen would be distributed over 
nine states at absolute zero and would have a residual entropy. 

From what has been said it is clear that glassy or amorphous substances will have a 
random arrangement of constituent particles and so will possess a residual entropy at 
absolute zero. The third law is therefore restricted to pure crystalline substances. A final 
restriction should be made in the application of the third law : The substance must be in a 
single quantum state. This last requirement would take care of the difficulty that arises 
in the case of hydrogen. 

Q U ESTI O N S  

9.1 Under what special circumstances does LlS = LlHIT? 
9.2 Green's theorem in the plane (see any calculus book) states that § f [ a2f a2f J df = dx dy -- - -- . 

A ax ay ay ax 
In words, the integral of the differential of a function f(x, y) around a cyclical path equals the 
integral, over the enclosed area A, of the difference of the mixed derivatives shown. Use this theorem 
to argue that Eq. (9. 13) holds when f is a thermodynamic state function. 

9.3 The negative value of ex for water between 0 °C and 4 °C is attributed to the breakdown of some 
hydrogen-bonded structure on passing from the solid to the liquid. How does this idea enable us 
to rationalize the variation of S with V for water in this temperature range ? 

9.4 Explain the direction of the differences of the standard entropies for the members of each of the 
pairs (a) C (diamond) and C (graphite) ; (b) Ar and Fz ;  (c) NH3 and PCI3 . 

9.S Why is the third law useful ? 
9.6 Compare and contrast the entropy changes for (a) reversible isothermal and (b) reversible adiabatic 

compressions of an ideal gas. Discuss in terms of distributions in space and energy. 

P R O B LE M S  

9.1 The temperature of 1 mol of an ideal gas is increased from 100 K to 300 K ;  CV = �R. 
a) Calculate LlS if the volume is constant. 
b) Calculate LlS if the pressure is constant. 
c) What would LlS be if 3 mol were used instead of 1 mol ? 

9.2 One mole of gaseous hydrogen is heated at constant pressure from 300 K to 1 500 K. 
a) Calculate the entropy change for this transformation using the heat capacity data in Table 7 . 1 .  
b )  The standard third-law entropy of  hydrogen a t  300 K i s  1 30.592 J/K mol. What i s  the entropy 

of hydrogen at 1 500 K ?  
9.3 A monatomic solid has a heat capacity, Cp = 3 . 1  R .  Calculate the increase in entropy o f  one mole 

of this solid if the temperature is increased from 300 K to 500 K at constant pressure. 
9.4 For aluminum, CP/(J/K mol) = 20.67 + 12 .38 x 1O- 3T. 

a) What is LlS if one mole of aluminum is heated from 25 °C to 200 °C? 
b) If S�9 8 = 28.35 J/K mol, what is the entropy of aluminum at 200 °C ? 

9.S Given the heat capacity of aluminum in Problem 9 .4, calculate the mean heat capacity of aluminum 
in the range 300 K to 400 K. 
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9.6 At its boiling point, 35 °C, the heat of vaporization of MoF 6 is 25. 1 kJ/mol. Calculate ,1S�ap . 
9.7 a) At its transition temperature, 95.4 °C, the heat of transition from rhombic to monoclinic 

sulfur is 0 .38 kJ /mol. Calculate the entropy of transition. 
b) At its melting point, 1 19 °C, the heat of fusion of monoclinic sulfur is 1 .23 kJ/mol. Calculate 

the entropy of fusion. 
c) The values given in (a) and (b) are for one mole of S, that is, for 32 g ;  however, in crystalline 

and liquid sulfur the molecule is S8 ' Convert the values in parts (a) and (b) to those appropriate 
to S8 ' (The converted values are more representative of the usual magnitudes of entropies 
of fusion and transition.) 

9.8 a) What is the entropy change if one mole of water is warmed from 0 °C to 100 °C under constant 
pressure ; Cp = 75.29 1 JjK mol. 

b) The melting point is 0 °C and the heat of fusion is 6.0095 kJ/mol. The boiling point is 100 °C 
and the heat of vaporization is 40.6563 kJ/mol. Calculate ,1S for the transformation 

Ice (0 °C, 1 atm) ..... steam (100 °C, 1 atm). 
9.9 At 25 °C and 1 atm, the entropy of liquid water is 69.950 J/K mol. Calculate the entropy of water 

vapor at 200 °C and 0.5 atm. The data are : Cp(l)/(J/K mol) = 75.29 1 ; Cig)/(JjK mol) = 33 .577 ; . 
MI�ap = 40.6563 kJ /mol at the boiling point, 100 °C. Water vapor may be assumed to be an ideal 
gas. 

9.10 The standard entropy of lead at 25 °C is 82 9 8 = 64.80 J/K mol. The heat capacity of solid lead is : 
Cis)/(J/K mol) = 22. 1 3  + O.0l 172T + 0.96 x 105 T- 2 • The melting point is 327.4 °C and the 
heat of fusion is 4770 J/mol. The heat capacity of liquid lead is Cp(l)/(JjK mol) = 32. 5 1  -
0.00301 T. 
a) Calculate the standard entropy of liquid lead at 500 °C . . 
b) Calculate the ,1H in changing solid lead from 25 °C to liquid lead at 500 °C. 

9.11 From the data for graphite : 82 9 8 = 5 .74 JjK mol, and Cp/(JjK mol) = - 5.293 + 58 .609 x 
1O- 3T - 432.24 x 1O- 7 T2 + 1 1 . 5 10 X 1O- 9 T3, calculate the molar entropy of graphite at 
1500 K. 

9.12 Between O °C and 100 °C liquid mercury has Cp/(J/K mol) = 30.093 - 4.944 x 10- 3 T. If one 
mole OJ mercury is raised from 0 °C to 100 °C at constant pressure, calculate MI and f).S. 

9.13 One mole of an ideal gas is expanded isothermally to twice its initial volume. 
a) Calculate ,1S. 
b) What would ,1S be if 5 mol were used instead of 1 mol ? 

9.14 One mole of carbon monoxide is transformed from 25 °C and 5 atm to 125 °C and 2 atm. If 
Cp/R = 3 . 1 9 16  + 0.9241 x 1O- 3 T - 1 .410 x 1O- 7 T2, calculate ,1S. Assume the gas is ideal. 

9.15 One mole of an ideal gas, Cv = �R, is transformed from 0 °C and 2 atm to - 40 °C and 0.4 atm. 
Calculate ,1S for this change in state. 

9.16 One mole of an ideal gas, initially at 25 °C and 1 atm is transformed to 40 °C and 0.5 atm. In 
the transformation 300 J of work are produced in the surroundings. If Cv = �R, calculate Q, 
,1U, MI, and ,1S. 

9.17 One mole of a van der Waals gas at 27 °C expands isothermally and reversibly from 0.020 m3 
to 0.060 m3 . For the van der Waals gas, (oU/oV)r = a/V2 ; a = 0.556 Pa m6/moI2 ; b = 
64 X 10- 6 m3/mol. Calculate Q, W, ,1U, MI, and ,1S for the transformation. 

9.18 Consider one mole of an ideal gas, Cv = �R, in the initial state : 300 K, 1 atm. For each trans
formation, (a) through (g), calculate Q, W, ,1U, ,1H, and ,1S ; compare f).S to Q/T. 
a) At constant volume, the gas is heated to 400 K. 
b) At constant pressure, 1 atm, the gas is heated to 400 K. 
c) The gas is expanded isothermally and reversibly until the pressure drops to t atm. 
d) The gas is expanded isothermally against a constant external pressure equal to t atm until 

the gas pressure reaches t atm. 

/ 
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e) The gas is expanded isothermally against zero opposing pressure (Joule expansion) until 
the pressure of the gas is ! atm. 

f) The gas is expanded adiabatically against a constant pressure of! atm until the final pressure 
is ! atm. 

g) The gas is expanded adiabatically and reversibly until the final pressure is ! atm. 
9.19 For metallic zinc the values of Cp as a function of temperature are given. Calculate SD for zinc 

at 100 K. 

T/K Cp/(J/K mol) T/K Cp/(J/K mol) T/K Cp/(J/K mol) 

1 0.000720 10 0. 1636 50 1 1 . 175 
2 0.001828 1 5  0.720 60 13 . 598 
3 0.00379 1 20 1 .699 70 1 5 .426 
4 0.00720 25 3 .205 80 16 .866 
6 0.01895 30 4.966 90 1 8 . 108 
8 0.0628 40 8 . 1 7 1  100 19 . 1 54 

9.20 Fit the data between 0 and 4 K  in Problem 9 . 19  to the curve : Cp = yT + aT3 . The first term is 
a contribution of the electron gas in the metal to the heat capacity. Hint: To find the constants 
y and a, rearrange to : Cp/T = y + aT2 , and either plot Cp/T versus T2 or do a least squares fit. 
(See Appendix I, Section A-I-7.) 

9.21 Silica, Si02 , has a heat capacity given by 
Cp(ex-quartz, s)/(J/K mol) = 46.94 + 34. 3 1  x 1O- 3 T - 1 1 .30 x 105 T - 2 . 

The coefficient of thermal expansion is 0.3530 x 10- 4 K - 1 . The molar volume is 22.6 cm3/mo!. 
If the initial state is 25 DC and 1 atm and the final state is 225 DC and 1000 atm, calculate I1S for 
one mole of silica. 

9.22 For liquid water at 25 DC, ex = 2.07 x 10- 4 K - 1 ; the density may be taken as 1 .00 g/cm3 . One 
mole of liquid water is compressed isothermally, 25 DC, from 1 atm to 1000 atm. Calculate I1S, 

a) supposing that water is incompressible ; that is , K = O. 
b) supposing that K = 4.53 x 10 - 5 atm - 1 . 

9.23 For copper, at 25 DC, ex = 0.492 x 10- 4 K - 1 and K = 0.78 X 10- 6 atm - 1 ; the density is 
8.92 g/cm3 . Calculate I1S for the isothermal compression of one mole of copper from 1 atm to 
1000 atm for the same two conditions as in Problem 9.22. 

9.24 In the limit, T = 0 K, it is known empirically that the value of the coefficient of thermal expansion 
of solids approaches zero as a limit. Show that, as a consequence, the entropy is independent of 
pressure at 0 K so that no specification of pressure is necessary in the third-law statement. 

9.25 Consider the expression : 
C 

dS = � dT - Vex dp 
T 

Suppose that water has 17 =  1 8 cm3/mol, Cp = 75.3 J/K mol and ex = 2.07 x 1 O -4 K- 1 . Com
pute the decrease in temperature that occurs if water at 25 DC and 1000 atm pressure is brought 
reversibly and adiabatically to 1 atm pressure. Assume K = O. 

9.26 Show that (oex/op)y = - (OK/OT)p ' 
9.27 In an insulated flask (Dewar flask) 20 g of ice at - 5 °C are added to 30 g of water at + 25 DC. 

If the heat capacities are Cp(H20, 1) = 4. 1 8  J/K g, and Cp(H20, s) = 2.09 J/K g, what is the final 
state of the system? (The pressure is constant.) I1Hfusion = 334 J/g. Calculate I1S and I1H for the 
transformation. 
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9.28 How many grams of water at 25 °C must be added to a Dewar flask containing 20 g of ice at 
- 5 °C to satisfy the conditions in (a) through (d) ? Compute the entropy change in each case. 
a) The final temperature is - 2 DC ; all the water freezes. 
b) The final temperature is 0 DC ; half the water freezes. 
c) The final temperature is 0 DC ; half the ice melts. 
d) The final temperature is 10 DC ; all the ice melts. 
Predict the sign of !':is in each case before doing the calculation. '(Use the data in Problem 9 .27.) 

9.29 Twenty grams of steam at 120 DC and 300 g of liquid water at 25 °C are brought together in an 
insulated flask. The pressure remains at 1 atm throughout. If Cp(HzO, 1) = 4. 1 8  J/K g, 
CvCHzO, g) = 1 .86 J/K g, and !':iHvap = 2257 Jig at 100°C, 

. 

a) what is the final temperature of the system and which phase or phases are present ? 
b) Calculate !':is for the transformation. 

9.30 An ingot of copper with a mass of 1 kg and an average heat capacity of 0.39 J/K g is at a tem
perature of 500 °C. 
a) If the ingot is quenched in water, what mass of water at 25 DC must be used so that the final 

state of the system consists of liquid water, steam, and solid copper at 100 DC, half the water 
having been converted to steam. The heat capacity of water is 4. 18  J/K g and the heat of 
vaporization is 2257 Jig. 

b) What is !':is in this transformation ? 
9.31 Sketch the possible indistinguishable arrangements of 

a) two balls in six cells ; 
b) four balls in six cells. 
c) What is the probability of the uniform distribution in each case ? 

9.32 Suppose that three indistinguishable molecules are distributed among three energy levels. The 
energies of the levels are : 0, 1 ,  2 units. 
a) How many complexions are possible if there is no restriction on the energy of the three 

molecules ? 
b) How many complexions are possible if the total energy of the three molecules is fixed at one 

unit ? 
c) Find the number of complexions if the total energy is two units, and calculate the increase in 

entropy accompanying the energy increase from one to two units. 
9.33 Suppose we have N distinguishable balls that are to be distributed in Nc cells. 

a) How many complexions are there if we do not care whether there is more than one ball in the 
cell ? 

b) How many complexions correspond to distributions with no more than one ball per cell ? 
c) Using the results in (a) and (b), calculate the probability that in a group of 23 people no two 

will have the same birthday. 
9.34 Pure ortho-hydrogen can exist in any of nine quantum states at absolute zero. Calculate the en

tropy of this mixture of nine "kinds " of ortho-hydrogen ; each has a mole fraction of l 
9.35 The entropy of a binary mixture relative to its pure components is given by Eq. (9.74). Since 

Xa + Xb = 1, write the entropy of the mixture in terms of Xa or Xb only, and show that the entropy 
is a maximum when Xa = Xb = t. Calculate Smix values for Xa = 0, 0.2, 0.4, 0.5, 0 .6 ,  0.8, and 1 .  
Plot Smix as a function of Xa ' 





10 
S po nta n e i ty a n d 
Eq u i l i b r i u m  

1 0 . 1  T H E G E N E R A L  C O N D ITI O N S  F O R E Q U I LI B R I U M 
A N D F O R S P O NTAN E I TY 

Our aim now is to find out what characteristics distinguish irreversible (real) transform
ations from reversible (ideal) transformations. We begin by asking what relation exists 
between the entropy change in a transformation and the irreversible heat flow that 
accompanies it. At every stage of a reversible transformation, the system departs from 
equilibrium only infinitesimally. The system is transformed, yet remains effectively at 
equilibrium throughout a reversible change in state. The condition for reversibility is 
therefore a condition of equilibrium ; from the defining equation for dS, the condition of 
reversibility is that 

TdS = dQrev . (10. 1 ) 
Therefore Eq. ( 10. 1) i s  the condition of equilibrium. 

The condition placed on an irreversible change in state is the Clausius inequality, 
(8.44), which we write in the form 

TdS > dQ. ( 10.2) 
Irreversible changes are real changes or natural changes or spontaneous changes. We 
shall refer to changes in the natural direction as spontaneous changes, and the inequality 
(10.2) as the condition of spontaneity. The two relations Eq. ( 10. 1 )  and (10.2) can be 
combined into 

TdS 2 dQ, 
where it is understood that the equality sign implies a reversible value of dQ. 

(10.3) 
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By using the first law in the form I-Q = dU + I-w, the relation in (10.3) can be written 

TdS :?: dU + I-w, 
or 

- dU - I-W + TdS :?: O. ( 10.4) 
The work includes all kinds ; I-W = PopdV + I-Wa . This value for I-W brings relation 
( l0.4) to the form 

- dU - PopdV - I-Wa + TdS :?: O. (10.5) 
Both relations ( l0.4) and ( 10.5) express the condition of equilibrium (= ) and of spontaneity 
( >  ) for a transformation in terms of changes in properties of the system dU, dV, dS, and the 
amount of work I-W or I-Wa associated with the transformation. 

1 0 . 2  C O N D I TI O N S  F O R E Q U I LI B R I U M  A N D 
S P O N TA N E ITY U N D E R  C O N ST R A I NTS 

Under the combinations of  restraints usually imposed in the laboratory, relations ( 10.4) 
and (10 .5) can be expressed in simple and convenient terms. We consider each set of 
constraints separately. 

1 0 . 2 . 1  Tra nsfo rmat i o n s  i n  a n  Iso l ated System 

For an isolated system, dU = 0, I-W = O, I-Q = 0; thus relation ( lOA) becomes directly 

dS :?: O. (10.6) 
This requirement for an isolated system was discussed in detail in Section 8 . 14, where it 
was shown that in an isolated system the entropy can only increase and reaches a maximum 
at equilibrium. 

From relation ( 10.6) it follows that an isolated system at equilibrium must have the 
same temperature in all its parts. Assume that an isolated system is subdivided into two 
parts, rx and /3. If a positive quantity of heat, iQrev , passes reversibly from region rx to 
region /3, we have 

and 

The total change in entropy is 

dS p = I-Qrev . 
Tp 

dS = dS� + dSp = (:p - �)I-Qrev . 
If this flow of heat is to occur spontaneously, then by relation (10.6) dS > O. Since I-Qrev 
is positive, this means that 

1 1 - - - > 0  Tp Tx 
or I;. > Tp . 

It follows that heat flows spontaneously from the region of higher temperature, rx, to that 
of lower temperature, /3. Furthermore, at equilibrium dS = O. This requires that 

T� = Tp 
This is the condition of thermal equilibrium ; a system in equilibrium must have the same 
temperature in all its parts. 
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1 0 . 2 . 2  Tra nsfo rmat i o n s  at Consta nt Tem peratu re 

If a system undergoes an isothermal change in state, then TdS = d(TS), and the relation 
( 10.4) can be written 

-dU + d(TS) ;:::: rdW, 
- d(U - TS) ;:::: rdW. (10.7) 

The combination of variables U - TS appears so frequently that it is given a special 
symbol, A. By definition, 

A == U - TS. (10.8) 
Being a combination of other functions of the state, A is a function of the state of the system ; 
A is called the Helmholtz energy of the system.* The relation (10.7) reduces to the form 

- dA ;:::: rdW, ( 10.9) 
or, by integrating, 

(10. 10) 
The significance of A is given by relation (10 . 10) ; the work produced in an isothermal 
transformation is less than or equal to the decrease in the Helmholtz energy. The equality 
sign applies to the reversible transformation, so the maximum work obtainable in an 
isothermal change in state is equal to the decrease in the Helmholtz energy. This maximum 
work includes aU the kinds of work produced in the transformation. 

1 0 . 2 . 3  Transformat i o n s  at Consta nt Tem pe ratu re 
a n d  U nd e r  Consta nt P ressu re 

The system is confined under a constant pressure, Pop = p, the equilibrium pressure of the 
system. Since p is a constant, p dV = d(p V). The temperature is constant so that T dS = 
d(TS). The relation (10.5) becomes 

- [dU + d(PV) - d(TS)] ;:::: rdl¥",  
- d(U + pV - TS) ;:::: rdl¥" .  ( 10. 1 1) 

The combination of variables U + P V - TS occurs frequently and is given a special 
symbol, G. By definition, 

G == U + pV  - TS = H - TS = A + pv. (10. 12) 
Being a composite of properties of the state of a system, G is a property of the state ; G is 
called the Gibbs energy of the system. More commonly, G is called the free energy of the 
system.t 

* 

t 

Using Eq. (10. 12), relation (10. 1 1) becomes 
-dG 2 rdl¥", (10. 1 3) 

In the past, A has been known by a number of names : work function, maximum work function, Helmholtz 
function, Helmholtz free energy, and simply free energy. The IUPAC agreement is to use the symbol A 
and call it the Helmholtz energy. 
In the past, G has been known as : Gibbs function, Gibbs free energy, and simply free energy. The IUPAC 
agreement is to use G for the symbol and Gibbs energy as the name. In using tables of thermodynamic data, 
you should be aware that many of them will use the symbol F for the Gibbs energy. Unfortunately, in the 
past F has also been used as a symbol for A. In using any table of data it is best to make sure just what 
the symbols stand for. 
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or, by integrating, 

- fiG ;::: Wa . 
Fixing our attention on the equality sign in ( 10. 14), we have 

- fiG = Wa, rev , 

(10. 14) 

(10. 1 5) 
which reveals an important property of the Gibbs energy ; the decrease in Gibbs energy 
( - fiG) associated with a change in state at constant T and p is equal to the maximum work 
Wa, rev over and above expansion work, which is obtainable in the transformation. By 
(10. 14), in any real transformation the work obtained over and above expansion work is 
less than the decrease in Gibbs energy that accompanies the change in state at constant 
T and p. 

If the work Wa is to show up in the laboratory, the transformation must be conducted 
in a device that enables the work to be produced ; the most usual chemical example of such 
a device is the electrochemical cell. If granulated zinc is dropped into a solution of copper 
sulfate, metallic copper precipitates and the zinc dissolves according to the reaction 

Zn + Cu2 + � Cu + Zn2 + . 

Obviously, the only work produced in this mode of performing the reaction is expansion 
work, and there is very little of that. On the other hand, this same chemical reaction can 
be carried out in such a way as to produce a quantity of electrical work vv" = tv.l ' In the 
Daniell cell shown in Fig. 17 . 1 ,  a zinc electrode is immersed in a solution of zinc sulfate 
and a copper electrode is immersed in a solution of copper sulfate ; the solutions are in 
electrical contact through a porous partition that prevents the solutions from mixing. The 
Daniell cell can produce electrical work vv"l , which is related to the decrease in Gibbs 
energy, -fiG, of the chemical reaction by relation (10 . 14). If the cell operates reversibly, 
then the electrical work produced is equal to the decrease in Gibbs energy. The perform
ance of the electrochemical cell is discussed in detail in Chapter 17 . 

Any spontaneous transformation may be harnessed to do some kind of work in 
addition to expansion work, but it need not necessarily be so harnessed. For the present, 
our interest is in those transformations that are not harnessed to do special kinds of work ; 
for these cases, d'f'v" = 0, and the condition of equilibrium and spontaneity for a transfor
mation at constant p and T, relation ( 10. 14), becomes 

-dG ;::: 0, (10. 1 6) 
or, for a finite change, 

- fiG ;::: O. (10. 17) 
Both relations ( 10. 1 6) and (10. 1 7) require the Gibbs energy to decrease in any real trans
formation at constant T and p ; if the Gibbs energy decreases, fiG is negative and -fiG is 
positive. Spontaneous changes can continue to occur in such a system as long as the Gibbs 
energy of the system can decrease, that is, until the Gibbs energy of the system reaches a 
minimum value. The system at equilibrium has a minimum value of the Gibbs energy ; this 
equilibrium condition is expressed by the equality sign in relation (10. 16) :  dG = 0, the 
usual mathematical condition for a minimum value. 

Of the several criteria for equilibrium and spontaneity, we shall have the most use for 
the one involving dG or fiG, simply because most chemical reactions and phase transfor
mations are subject to the conditions, constant T and p. If we know how to compute the 
change in Gibbs energy for any transformation, the algebraic sign of fiG tells us whether 
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this transformation can occur in the direction in which we imagine it. There are three 
possibilities : 

1 .  /').G is - ; the transformation can occur spontaneously, or naturally ; 

2. /').G = 0 ;  the system is at equilibrium with respect to this transformation ; or 

3. /').G is + ; the natural direction is opposite to the direction we have envisioned for the 
transformation (the transformation is nonspontaneous). 

The third case is best illustrated by an example. Suppose we ask whether water can 
flow uphill. The transformation can be written 

(T and p constant). 

The value of /').G for this transformation is calculated and found to be positive. We conclude 
that the direction of this transformation as it is written is not the natural direction, and 
that the natural, spontaneous direction is opposite to the way we have written it. In the 
absence of artificial restraints, water at a high level will flow to a lower level ; the /').G for 
water flowing downhill is equal in magnitude but opposite in sign to that for water flowing 
uphill. Transformations with positive values for /').G include such outlandish things as 
water flowing uphill, a ball bearing jumping out of a glass of water, an automobile manu
facturing gasoline from water and carbon dioxide as it is pushed down the street. 

1 0 . 3  R EC O L L E CTI O N  

By comparing real transformations with reversible ones we arrived at the Clausius in
equality, dS > dQ/T, which gives us a criterion for a real, or spontaneous, transformation. 
By algebraic manipulation this criterion was given simple expression in terms of the 
entropy change, or changes in value of two new functions A and G. By examining the 
algebraic sign of /').S, /').A, or /').G for the transformation in question, we can decide whether 
it can occur spontaneously or not. At the same time we obtain the condition of equilibrium 
for the tranformation. These conditions of spontaneity and equilibrium are summarized 
in Table 10. 1 ; we shall make the greatest use of those on the last line, since the con
straints tv" = 0, T and p constant are those most frequently used in the laboratory. 

Table 1 0. 1  

Constraint Condition for spontaneity Equilibrium condition 

None - (dU + p dV  - TdS) - ¢!Wa = + - (dU + p d V  - T dS) - ¢!Wa = 0 

Infinitesimal Finite Infinitesimal Finite 
change change change change 

Isolated 
system dS = + AS =  + dS = 0 AS = 0 

T constant dA + ¢!W = - AA + W = - dA + ¢!W = O  AA + W =  0 
T, p constant dG + ¢!Wa = - AG + Wa = - dG + ¢!Wa = 0 AG + Wa = 0 
Wa = 0 ; T, V 

constant dA = - AA = dA = 0 AA = 0 
Wa = O ; T, p 

constant dG = - AG = - dG = 0 AG = O  
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The word "spontaneous" applied to changes in state in a thermodynamic sense must 
not be given too broad a meaning. It means only that the change in state is possible. 
Thermodynamics cannot provide any information about how much time is required for 
the change in state. For example, thermodynamics predicts that at 25 °C and 1 atm pressure 
the reaction between hydrogen and oxygen to form water is a spontaneous reaction. How
ever, in the absence of a catalyst or an initiating event, such as a spark, they do not react to 
form water in any measurable length of time. The length of time required for a spontaneous 
transformation to come to equilibrium is a proper subject for kinetics, not thermo
dynamics. Thermodynamics tells us what can happen ; kinetics tells us whether it will take 
a thousand years or a millionth of a second. Once we know that a certain reaction can 
happen, it may be worth our while to search for a catalyst that will shorten the time interval 
required for the reaction to reach equilibrium. It is futile to seek a catalyst for a reaction 
that is thermodynamically impossible. 

What can be done about those transformations that have /).G positive and are thermo
dynamically impossible, or nonspontaneous ? Human nature being what it is, it does not 
submit lightly to the judgment that a certain change is " impossible." The " impossible " 
flow of water uphill can be made "possible," not through the agency of a catalyst that is 
unchanged in the transformation, but by coupling the nonspontaneous uphill flow of a 
certain mass of water with the spontaneous downhill flow of a greater mass of some sub
stance. A weight cannot by itself jump three feet up from the floor, but if it is coupled 
through a pulley to a heavier weight that falls three feet, it will jump up. The composite 
change, light weight up, heavier weight down, is accompanied by a decrease in Gibbs energy 
and thus is a "possible" one. As we shall see later, coupling one change in state with an
other can be turned to great advantage in dealing with chemical reactions. 

1 0 .4  D R I VI N G  F O R C ES F O R  N AT U R A L  C H AN G ES 

In a natural change at constant temperature and pressure, /).G must be negative. By 
definition, G = H - TS, so that at constant temperature 

/).G = /).H - T /).S. (10. 1 8) 
Two contributions to the value of /).G can be distinguished in Eq. (10. 1 8) :  an energetic 
one, /).H, and an entropic one, T /).S. From Eq. (10. 1 8) it is clear that to make /).G negative, 
it is best if /).H is negative (exothermic transformation) and /).S is positive. In a natural 
change, the system attempts to achieve the lowest enthalpy (roughly, the lowest energy) 
and the highest entropy. It is also clear from Eq. ( 10. 1 8) that a system can tolerate a de
crease in entropy in the change in state that makes the second term positive, if the first 
t,erm is negative enough to over-balance the positive second term. Similarly, an increase 
in enthalpy, /).H positive, can be tolerated if /).S is sufficiently positive so that the second 
term over-balances the first. In such instances the compromise between low enthalpy and 
high entropy is reached in such a way as to minimize the Gibbs energy at equilibrium. The 
majority of common chemical reactions are exothermic in their natural direction, often 
so highly exothermic that the term T /).S has little influence in determining the equilibrium 
position. In the case of reactions that are endothermic in their natural direction, the term 
T /).S is all-important in determining the equilibrium position. 

1 0 . 5  T H E F U N DA M E N TA L  E Q U ATI O N S  O F  T H E R M O DYN A M I C S  

In addition to  the mechanical properties p and V, a system has three fundamental proper
ties T, U, and S, defined by the laws of thermodynamics, and three composite properties 
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H, A, and G, which are important. We are now in a position to develop the important 
differential equations that relate these properties to one another. 

For the present we restrict the discussion to systems that produce only expansion 
work so that dfv" =;= O. With this restriction, the general condition of equilibrium is 

dU =;= T dS - p dV. (10. 19) 
This combination of the first and second laws of thermodynamics is the fundamental 
equation of thermodynamics. Using the definitions of the composite functions, 

H =;= U + pv, A =;= U - TS, 

and differentiating each one, we obtain 

dH =;= dU + P dV + V dp, 
dA =;= dU - T dS - S dT, 

G =;= U + pV - TS, 

dG =;= dU + P dV + V dp - T dS - S dT. 
In each of these three equations, dU i s  replaced by its value from Eq. (10. 1 9) ; after collect
ing terms, the equations become [Eq. (10. 1 9) is repeated first] 

dU =;= T dS - p dV, 
dH =;= T dS + V dp, 
dA =;= - S dT - p dV, 
dG =;= - S dT + V dp. 

(10. 19) 
(10.20) 
(10.21) 
(10.22) 

These four equations are sometimes called the four fundamental equations of thermo
dynamics ; in fact, they are simply four different ways of looking at the one fundamental 
equation, Eq. ( 10. 19). 

Equation (10. 1 9) relates the change in energy to the changes in entropy and volume. 
Equation (10 .20) relates the change in enthalpy to changes in entropy and pressure. 
Equation ( 10.21) relates the change in the Helmholtz energy dA to changes in temperature 
and volume. Equation (10.22) relates the change in Gibbs energy to changes in temperature 
and pressure. Because of the simplicity of these equations, S and V are called the "natural" 
variables for the energy ; S and p are the natural variables for the enthalpy ; T and V are 
the natural variables for the Helmholtz energy ; and T and p are the natural variables for 
the Gibbs energy. 

Since each of the expressions on the right-hand side of these equations is an exact 
differential expression, it follows that the cross-derivatives are equal. From this we imme
diately obtain the four Maxwell relations : 

(10.23) 

( 10.24) 

(10.25) 

( 10.26) 
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The first two of these equations relate to changes in state at constant entropy, that is, 
adiabatic, reversible changes in state. The derivative (aT/aV)s represents the rate of 
change of temperature with volume in a reversible adiabatic transformation. We shall not 
be much concerned with Eqs. ( 10.23) and (10.24). 

Equations ( 10.25) and (10.26) are of great importance because they relate the iso
thermal volume dependence of the entropy and the isothermal pressure dependence of the 
entropy to easily measured quantities. We obtained these relations earlier, Eqs. (9 .3 1 ) and 
(9.41), by utilizing the fact that dS is an exact differential. Here we obtain them with much 
less algebraic labor from the facts that dA and dG are exact differentials . The two deriva
tions are clearly equivalent since A and G are functions of the state only if S is a function 
of the state. 

1 0 . 6  T H E T H E R M O DY NA M I C  e Q U ATI O N  O F  STATE 

The equations of state discussed so far, the ideal gas law, the van der Waals equation, and 
others, were relations between p, V, and T obtained from empirical data on the behavior 
of gases or from speculation about the effects of molecular size and attractive forces on 
the behavior of the gas. The equation of state for a liquid or solid was simply expressed 
in terms of the experimentally determined coefficients of thermal expansion and com
pressibility. These relations applied to systems at equilibrium, but there is a more general 
condition of equilibrium. The second law of thermodynamics requires the relation, 
Eq. ( 10. 19), 

dU = T dS - p dV 
as an equilibrium condition. From this we should be able to derive an equation of state 
for any system. Let the changes in U, S, and V of Eq. ( 10. 1 9) be changes at constant T :  

(aUh = T(aSh - p(avh · 
Dividing by (aVh , we have 

(10.27) 

where, from the writing of the derivatives, U and S are considered to be functions of T and 
V. Therefore the partial derivatives in Eq. (10.27) are functions of T and V. This equation 
relates the pressure to functions of T and V ;  it is an equation of state. Using the value for 
(as/avh froin Eq. (10.25) and rearranging, Eq. (10.27) becomes 

_ T(ap ) _ (au) p - aT v av T ' 
which is perhaps a neater form for the equation. 

( 10.28) 

By restricting the second fundamental equation, Eq. ( 10.20), to constant temperature 
and dividing by (aph we obtain 

(�;)T = T(��)T + V. (10.29) 

Using Eq. ( 10.26) and rearranging, this equation becomes 

V = T(:�)p + (�;)/ ( 10.30) 
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which is a general equation of state expressing the volume as a function of temperature and 
pressure. These thermodynamic equations of state are applicable to any substance 
whatsoever. Eqs. (10.28) and (10 .30) were obtained earlier, Eqs. (9.30) and (9.40), but were 
not discussed at that point. 

1 0 . 6 . 1  A p p l i cat i o n s  of the  Thermodyn a m i c  Equat ion  of State 

If we knew the value of either (aUjav)y or (aHjap)y for a substance, we would know 
its equation of state immediately from Eqs. (10.28) or (10.30). More commonly we do not 
know the values of these derivatives, so we arrange Eq. ( 10.28) in the form 

G�)T = T(:�t - p. (10. 3 1) 

From the empirical equation of state, the right-hand side of Eq. (10. 3 1 )  can be evaluated 
to yield a value of the derivative (aUjav)y. For example, for the ideal gas, p = nRTjV, so 
(apjaT)v = nRjV. Using these values in Eq. (10. 3 1), we obtain (aUjaVh = nRTjV - p 
= p - p = 0. We have used this result, Joule's law, before ; this demonstration proves its 
validity for the ideal gas. 

Since, from Eq. (9.23), (apjaT)v = ajK, Eq. ( 10. 3 1) is often written in the form 

and Eq. (10.30) in the form 

(a u) = T � _ p = aT - KP, av  T K K 

(��) 
T 

= V(l - aT). 

(10. 32) 

(10.33) 

It is now possible, using Eqs. (10.32) and (10.33), to write the total differentials of U and 
H in a form containing only quantities that are easily measurable : 

dU = Cv dT + (aT - Kp) dV, K 
dH = Cp dT + V(l - aT) dp. 

(10.34) 

(10 .35) 
These equations together with the two equations for dS, Eqs. (9.33), and (9.42), are helpful 
in deriving others. 

Using Eq. (10 .32), we can obtain a simple expression for Cp - C . From Eq. (7 .39), 
we have 

Cp - Cv = [p + (��)Jva. 
Using the value of (aU jav)y from Eq. ( 10.32), we obtain 

TVa2 Cp - Cv = --
K 

(10. 36) 

which permits the evaluation of Cp - Cv from quantities that are readily measurable for 
any substance. Since T, V, K, and a2 must all be positive, Cp is always greater than Cv ' 

For the Joule-Thomson coefficient we have, from Eq. (7. 50), 

CP�JT = - (��) T' 
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Using Eq .  (10.33), we obtain for flJT , 

CpflJT = V(IXT - 1). ( 10.37) 
Thus, if we know C p ' V, and IX for the gas, we can calculate flJT . 

These quantities are much more easily measured than is flJT itself. At the Joule
Thomson inversion temperature, flJT changes sign ; that is, f.lJT = 0 ;  using this condition 
in Eq. (10 .37), we find at the inversion temperature, T;.nv lX  - 1 = 0. 

1 0 . 7  T H E P R O P E RTI ES O F  A 

The properties of the Helmholtz energy A are expressed by the fundamental equation 
( 10.21), 

dA = - S dT - p dV. 
This equation views A a s  a function o f  T and V, and we have the identical equation 

dA = (:;t dT + (;�) T 
dV. 

Comparing these two equations shows that 

(:;t -S, (10.38) 

and 

(:�) T 
-po (10.39) 

Since the entropy of any substance is positive, Eq. ( 10.38) shows that the Helmholtz energy 
of any substance decreases (minus sign) with an increase in temperature. The rate of this 
decrease is greater the greater the entropy of the substance. For gases, which have large 
entropies, the rate of decrease of A with temperature is greater than for liquids and solids, 
which have comparatively small entropies. 

Similarly, the minus sign in Eq. (10.39) shows that an increase in volume decreases the 
Helmholtz energy ; the rate of decrease is greater the higher the pressure. 

1 0 . 7 . 1  The C o n d i t i o n  fo r M ec ha n i ca l  Eq u i l i b r i u m  

Consider a system at constant temperature and constant total volume that is subdivided 
into two regions, IX and /3. Suppose that region IX expands reversibly by an amount, dYa,  
while region /3 contracts by  an equal amount, dVp = - dll;, , since the total volume must 
remain constant. Then, by Eq. (10.39), we have 

dA" = - p" dV" 
The total change in A is 

and dAp = -Pp dVp . 

dA = dA" + dAp = -p" dV" -Pp dVp = (pp - pcJ dV" .  
Since no work is produced, dW = 0, and Eq. (10.9) requires dA < ° if the transformation 
is to be spontaneous. Since dV" is positive, this means that p" > pp. The high-pressure 
region expands at the expense of the low-pressure region. The equilibrium requirement 
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is that dA = 0 ;  that is, 
Pa = pp. 

This is the condition for mechanical equilibrium ; namely, that the pressure have the same 
value in all parts of the system. 

1 0 . 8  T H E P R O P E RTI ES O F  G 

The fundamental equation (10.22), 
dG = - S dT + V dp, 

views the Gibbs energy as a function of temperature and pressure ; the equivalent expres
sion is therefore 

dG = (:�t dT + (��)T dp. ( 10.40) 

Comparing these two equations shows that 

- S, (10.41) 

and 

( 10.42) 

Because of the importance of the Gibbs energy, Eqs. (10.41) and ( 10.42) contain two of the 
most important pieces of information in thermodynamics. Again, since the entropy of any 
substance is positive, the minus sign in Eq. (10 .41) shows that increase in temperature 
decreases the Gibbs energy if the pressure is constant. The rate of decrease is greater for 
gases, which have large entropies, than for liquids or solids, which have small entropies. 
Because V is always positive, an increase in pressure increases the Gibbs energy at con
stant temperature, as shown by Eq. ( 10.42). The larger the volume of the system the 
greater is the increase in Gibbs energy for a given increase in pressure. The comparatively 
large volume of a gas implies that the Gibbs energy of a gas increases much more rapidly 
with pressure than would that of a liquid or a solid. 

The Gibbs energy of any pure material is conveniently expressed by integrating Eq. 
( 10.42) at constant temperature from the standard pressure, pO = 1 atm, to any other 
pressure p :  

or 

f
p 

dG = fP Vdp, 
pO pO 

G - GO = fP V dp, 
pO 

( 10.43) 

where GO(T) is the Gibbs energy of the substance under 1 atm pressure, the standard 
Gibbs energy, which is a function of temperature. 

If the substance in question is either a liquid or a solid, the volume is nearly independ
ent of the pressure and can be removed from under the integral sign ; then 

(liquids and solids). (10.44) 
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Since the volume of liquids and solids is small, unless the pressure i s  enormous, the second 
term on the right of Eq. (10.44) is negligibly small ; ordinarily for condensed phases we will 
write simply 

(10.45) 
and ignore the pressure dependence of G. 

The volume of gases is very much larger than that of liquids or solids and depends 
greatly on pressure ; applying Eq. ( 10.43) to the ideal gas, it becomes 

G = GO(T) + fP nRT 
dp, 

�. = G
O(T) + RT In 

(p atm)
. 

pO p n n 1 atm 

It is customary to use a special symbol, fl, for the Gibbs energy per mole ; we define 

G 
fl = - .  

n 
Thus for the molar Gibbs energy of the ideal gas, we have 

fl = flO(T) + RT In p. 

(10.46) 

(10.47) 
As in Section 9. 1 1 , the symbol p in Eq. ( 10.47) represents a pure number, the number which 
when multiplied by 1 atm yields the value of the pressure in atmospheres. 

The logarithmic term in Eq. ( 10.47) is quite large in most circumstances and cannot 
be ignored. From this equation it is clear that at a specified temperature, the pressure 
describes the Gibbs energy of the· ideal gas ; the higher the pressure the greater the Gibbs 
energy (Fig. 10. 1) . 

It is worth emphasizing that if we know the functional form of G(T, p), then we can 
obtain all other thermodynamic functions by differentiation, using Eqs. ( 10.41) and 
(10.42), and combining with definitions. (See Problem 10.29.) 

/.1 _/.1 0 
2RT 

RT 

O r---�---+----r---�---+- P 

- RT 

- 2RT 
F i g u re 1 0. 1  G i bbs energy of idea l  gas as a 
fu nct ion of pressure .  
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1 0 . 9  T H E G I B B S E N E R G Y  O F  R EA L  G A S E S  

The functional form of  Eq. ( 10.47) i s  particularly simple and convenient. It would be 
helpful if the molar Gibbs energy of real gases could be expressed in the same mathemat
ical form. We therefore "invent" a function of the state that will express the molar Gibbs 
energy of a real gas by the equation 

(10.48) 
The function f is called the fugacity of the gas. The fugacity measures the Gibbs energy of 
a real gas in the same way as the pressure measures the Gibbs energy of an ideal gas. 

An invented function such as the fugacity has little use unless it can be related to 
measurable properties of the gas. Dividing the fundamental equation ( 10.22) by n, the 
number of moles of gas, and restricting to constant temperature, dT = 0, we obtain for 
the real gas dJ1 = V dp, while for the ideal gas dJ1id = Vid dp, where V and Vid are the 
molar volumes of the real and ideal gases, respectively. Subtracting these two equations, 
we obtain d(J1 - J1id) = (V - Vid) dp. 

Integrating between the limits p* and p yields 

(J1 - J1id) - (J1* - J1*id) = fP (V - Vid) dp. 
P* We now let p* -+ o. The properties of any real gas approach their ideal values as the pres

sure of the gas approaches zero. Therefore, as p* -+ 0, J1* -+ J1*id. The equation becomes 

J1 - J1id = foP (V - j7id) dp. ( 10.49) 

But by Eq. ( 10.47), J1id = J10(T) + RT In p, and by the definition off, Eq. (10.48), J1 = 
J10(T) + R T  hi.j. Using these values for J1 and J1id, Eq. ( 10.49) becomes 

RT(lnf - ln p) = f: (V - V id) dp ; 

1 (P - - .d lnf = In p + 
R T  Jo 

(V - V I  ) dp. (10 .50) 

The integral in Eq. (10 .50) can be evaluated graphically ; knowing V as a function of 
pressure, we plot the quantity (V - Vid)/R T as a function of pressure. The area under the 
curve from p = 0 to p is the value of the second term on the right of Eq. (10 .50). Or, if V 
can be expressed as a function of pressure by an equation of state, the integral can be 
evaluated analytically, since Vid = RT/p. The integral can be expressed neatly in terms 
of the compressibility factor Z; by definition, V = ZVid. Using this value for V, and Vid = 
RT /p, in the integral of Eq. (10.50), it reduces to-

Inf = In p + (P
(Z - 1) 

dp. (10. 5 1 )  
Jo p 

The integral in Eq. (10. 5 1) is evaluated graphically by plotting (Z - 1)/p against p and 
measuring the area under the curve. For gases below their Boyle temperatures, Z - 1 is 
negative at moderate pressures, and the fugacity, by Eq. (10.5 1), will be less than the 
pressure. For gases above their Boyle temperatures, the fugacity is greater than the 
pr�ssure. 
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The Gibbs energy of gases will usually be discussed as though the gases were ideal, and 
Eq. ( 10.47) will be used. The algebra will be exactly the same for real gases ; we need only 
replace the pressure in the final equations by the fugacity, keeping in mind that the fugacity 
depends on temperature as well as pressure. 

1 0 . 1 0 T E M P E RATU R E  D E P E N D E N C E  O F  T H E G I B B S E N E R G Y  

The dependence of the Gibbs energy on temperature i s  expressed in several different ways 
for convenience in different problems. Rewriting Eq. ( 10.41), we have 

(:�t = - So ( 10. 52) 

From the definition G = H - TS, we obtain - S  = (G - H)/T, and Eq. (10 .52) becomes 

a form that is sometimes useful. 

G - H 
T ' (10.53) 

Frequently it is important to know how the function G/T depends on temperature. 
By the ordinary rule of differentiation, we obtain (O(G/T») = � (OG) _ � G. aT T aT ' T2 p p 
Using Eq. ( 10.52), this becomes 

which reduces to 

(O(G/T») 
aT p 

(O(G/T») 
aT p 

TS + G 
T2 

the Gibbs-Helmholtz equation, which we use frequently. 

( 1 0.54) 

Since delfT) = - (1/T2) dT, we can replace aT in the derivative in Eq. ( 10.54) by 
- T2 o(1/T) ;  this reduces it to (O(G/T») = H, 

o(1/T) p 

which is another frequently used relation. 

( 10.55) 

Any of Eqs. (10. 52), (10 .53), (10.54), (10 .55) are simply different versions of the funda
mental equation, Eq. (10 .52). We will refer to them as the first, second, third, and fourth 
forms of the Gibbs-Helmholtz equation. 

Q U E STI O N S  

10.1 For what sort of experimental conditions is (a) A or (b) G the appropriate indicator of spontaneity? 
10.2 The second law states that the entropy of the universe (system and surroundings) increases in a 

spontaneous process : llSsyst + llSsurr ;?: O. Argue that, at constant T and p, llSsurr is related to the 
system enthalpy change by llSsurr = - llHsysJT. Then argue that Eq. (10 . 17) follows, where G 
is the system Gibbs energy. 



10.3 Discuss the meaning of the term " spontaneous " in thermodynamics. 
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10.4 Construct a I1H and I1S table, including the four possibilities associated with the two possible 
signs for each of I1H and I1S. Discuss the resulting sign of I1G and the spontaneity of the process. 

10.5 The endothermic process of fo�ming a solution of salt (NaCl) and water is spontaneous at room 
temperature. Explain how this is possible in terms of the higher entropy of the ions in solution 
compared to that of ions in the solid. 

10.6 Is the increase of Jl with increasing p for an ideal gas an enthalpy or an entropy effect ? 
10.7 Explain why Eqs. (10 . 1 7) and ( 10.47) do not imply that an ideal gas at constant temperature will 

spontaneously reduce its own pressure. 

P R O B L E M S  

10.1 Using the van der Waals equation with the thermodynamic equation of state, evaluate (a UjaVh 
for the van der Waals gas. 

10.2 By integrating the total differential dU for a van der Waals gas, show that if Cv is a constant, 
U = U' + Cv T - najr, where U' is a constant of integration. (The answer to Problem 10 . 1  is 
needed for this problem.) 

10.3 Calculate I1U for the isothermal expansion of one mole of a van der Waals gas from 20 dm3 jmol 
to 80 dm3jmol ; if a = 0.141 m6 Pa mol- 2 (nitrogen) and if a = 3 . 1 9  m6 Pa mol- 2 (heptane). 

10.4 a) Find the value of (aSjaVh for the van der Waals gas. 
b) Derive an expression for the change in entropy for the isothermal expansion of one mole of 

the van der Waals gas from Vi to V2 . 
c) Compare the result in (b) with the expression for the ideal gas. For the same increase in 

volume, will the entropy increase be greater for the van der Waals gas or for the ideal gas ? 
10.5 Evaluate the derivative, (aU  jaVh, for the Berthelot equation and the Dieterici equation. 

10.6 a) Write the thermodynamic equation of state for a substance that follows Joule's law. 
b) By integrating the differential equation obtained in (a), show that at constant volume the 

pressure is proportional to the absolute temperature for such a substance. 
10.7 As a first approximation, the compressibility factor of the van der Waals gas is given by 

�� = 1 + (b - R
a
T):T ' 

From this expression and the thermodynamic equation of state show that (aHjaph = b - (2ajRT). 
10.8 Using the expression in Problem 10.7 for the compressibility factor, show that for the van der 

Waals gas 

(:;) T 
= - [; + (R

R;)2 J 
10.9 Using the results in Problems 10.7 and 10.8, calculate I1H and I1S for an isothermal increase in 

pressure of CO2 from 0. 100 MPa to 10.0 MPa, assuming van der Waals behavior ; a = 
0.366 m6 Pa mol- 2 , b = 42.9 X 10- 6 m3jmol. 
a) At 300 K. 
b) At 400 K. 
c) Compare with the ideal gas values. 

10.10 At 700 K calculate I1H and I1S for the compression of ammonia from 0 . 1013 MPa to 50.00 MPa, 
using the Beattie-Bridgeman equation and the constants in Table 3 .5 .  
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,/ 10.11  Show that for a real gas 
_ RT2 (OZ) 
Cp f.1rr = 

-p- oT p
' 

where f.1rr is the Joule-Thomson coefficient, and Z = p VJRT is the compressibility factor of 
the gas. Compare to Eq. (7.50). 

10.12 Using the value of Z for the van der Waals gas given in Problem 10.7, calculate the value of 
f.1rr . Show that f.1rr changes sign at the inversion temperature, Tinv = 2a/Rb. 

10.13 a) Show that Eq. (10. 3 1 )  can be written in the form (OU) 
= T2[O(P/T)] 

= 
_ [O(P/T)] 

av  T oT v o(l/T) v 

b) Show that Eq. (10 .30) can be written in the form (OH) 
= _ T2[O(V/T)] 

= [O(V/T)] 
op T oT p o(l/T) p 

10.14 At 25 °C calculate the value of M for an isothermal expansion of one mole of the ideal gas from 
10 litres to 40 litres. 

10.15 By integrating Eq. (10.39) derive an expression for the Helmholtz energy of 
a) the ideal gas ; 
b) the van der Waals gas. (Don't forget the " constant " of integration !) 

10.16 Calculate I1G for the isothermal (300 K) expansion of an ideal gas from 5000 kPa to 200 kPa. 
10.17 Using the form given in Problem 10.7 for the van der Waals equation, derive an expression for 

I1G if one mole of gas is compressed isothermally from 1 atm to a pressure p. 
10.18 Calculate I1G for the isothermal expansion of the van der Waals gas at 300 K from 5000 kPa to 

ioo kPa. Compare with the result in Problem 10. 16  for O2 for which a = 0. 138  m6 Pa mol- 2 
and b = 3 1 .8 x 1O- 6 m3/moL 

10.19 At 300 K one mole of a substance is subjected to an isothermal increase in pressure from 100 kPa 
to 1000 kPa. Calculate I1G for ea.ch substance in (a) through (d) and compare the numerical 
values. 
a) Ideal gas. 
b) Liquid water ; V = 18 cm3/moL 
c) Copper ; V = 7 . 1  cm3/moL 
d) Sodium chloride ; V = 27 cm3/moL 

1 0.20 Using the van der Waals equation in the form given in Problem 10.7, derive the expression for 
the fugacity of the van der Waals gas. 

10.21 From the definition of the fugacity and the Gibbs-Helmholtz equation, show that the molar 
enthalpy, H, of a real gas is related to the molar enthalpy of the ideal gas, HO, by 

H = HO _ RT2 (O ln J) 
oT p 

and that the molar entropy, S, is related to the standard molar entropy of the ideal gas So by 

S = So - R[ln J + T(O:;)J 
Show also from the differential equation for dG that V = RT(o ln f/dp)r .  

10.22 Combining the results o f  Problems 10.20 and 10.21 show that the enthalpy o f  the van der Waals 
gas is 

_ _  ( 2a ) H = HO + b -
RT 

p. 



10.23 From the purely mathematical properties of the exact differential 

dU = Cv dT + (8U) dV, 
8V  T 
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show that if (8U  j8V)y is a function only of volume, then Cv is a function only of temperature. 
10.24 By taking the reciprocal of both sides of Eq. (10.23) we obtain (8Sj8p)v = - (8Vj8Y)s . Using 

this equation and the cyclic relation between V, T, and S, show that C8Sj8p)v = KCv/rt.T. 
10.25 Given dU = Cv dT + [(Trt. - pK)jKJ dV, show that dU = [Cv + (TVrt.2/K) - pVrt.J dT + 

V(pK - Trt.) dp. Hint: Expand dV in terms of dT  and dp. 
10.26 Using the result in Problem 10.25 and the data for carbon tetrachloride at 20 °C : rt. = 12.4 x 

10 - 4 K - 1 ; K = 103 x 10 - 6 atm - 1 ; density = 1 . 5942 gjcm 3 and M = 153 .8  gjmol, show that 
near 1 atm pressure, (8Uj8p)y ;:::; - VTrt.. Calculate the change in molar energy per atm at 
20 °C. 

10.27 Using the approximate value of the compressibility factor given in Problem 10.7, show that for 
the van der Waals gas : 
a) Cp - Cv = R + 2apjRT2 
b) (8Uj8p)y = - ajRT. [Hint: Refer to Problem 10.25.J 
c) (8Uj8T)p = Cv + apjR T2 . 

10.28 Knowing that dS = (CiT) dT - Vrt. dp, show that 
a) (8Sj8p)v = KCiTrt.. 
b) (8Sj8V)p = CpjTVrt. . 
c) - (ljV)(Wj8p)s = Kjy, where y == CpjCv . 

10.29 By using the fundamental differential equations and the definitions of the functions, determine 
the functional form of S, V, H, U for 
a) the ideal gas, given that !l = !l0(Y) + RTln p. 
b) the van der Waals gas, given that 

!l = !l0(T) + RT ln p + (b - ajRT)p . 
/10.30 Show that if Z = 1 + B(T)p, then f = peZ- 1 ; and that this implies that at low to moderate . 

pressures f ;:::; pZ, and that p2 = f Pidea] ' (This last relation states that the pressure is the geo
metric mean of the ideal pressure and the fugacity.) 
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Co m pos i t i o n ; 
C h e m i ca l  Eq u i l i b r i u m  

1 1 . 1 T H E F U N DA M E NTA L E Q U ATI O N  

In our study so far we have assumed implicitly that the system is composed of a pure 
substance or, if it was composed of a mixture, that the composition of the mixture was 
unaltered in the change of state. As a chemical reaction proceeds, the composition of 
the system and the thermodynamic properties change. Consequently, we must introduce 
the dependence on composition into the thermodynamic equations. We do this first 
only for the Gibbs energy G, since it is the most immediately useful. 

For a pure substance or for a mixture of fixed composition the fundamental equation 
for the Gibbs energy is 

dG = - S dT + V dp. (1 1 . 1) 

If the mole numbers, nb n2 , . . .  , of the substances present vary, then G = G(T, p, n l , n2 , . . . ), 
and the total differential is 

dG = (��) dT + (�G) dp + (:G ) dni + (:G ) dn2 + . . .  , ( 1 1 .2) p, n, P T, n, n i T, p, nj n2 T, p, nj 
where the subscript ni on the partial derivative means that all the mole numbers are 
constant in the differentiation, and the subscript nj on the partial derivative means that 
all the mole numbers except the one in that derivative are constant in the differentiation. 
For example, C8G/8n2h, p, nj means that T, p, and all the mole numbers except n2 are 
constant in the differentiation. 

If the system does not suffer any change in composition, then 
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and so on, and Eq. (1 1 .2) reduces to 

dG = (:G) dT + (�G) dp. T p, n, P T, n, 

Comparison of Eq. ( 1 1 .3) with Eq. ( 1 1 . 1), shows that (8G) - - S 8T p, n, 
- and 

To simplify writing, we define 

l1-i = (8G) . 8ni T,.p, nj 

( 1 1 .3) 

( 1 1 .4a, b) 

( 1 1 .5) 

In view of Eqs. ( 1 1 .4) and (1 1 . 5), the total differential of G in Eq. ( 1 1 .2) becomes 

dG = - S dT + V dp + 11-1 dn1 + 11-2 dn2 + . . . . (1 1 .6) 

Equation ( 1 1 .6) relates the change in Gibbs energy to changes in the temperature, pressure, 
and the mole numbers ; it is usually written in the more compact form 

dG = - S dT + Vdp + L l1-i dni ' i 
where the sum includes all the constituents of the mixture. 

1 1 . 2 T H E P R O P E RT I E S  O F  Pi 

( 1 1 .7) 

If a small amount of substance i, dni moles, is added to a system, keeping T, p, and all 
the other mole numbers constant, then the increase in Gibbs energy is given by Eq. (1 1 .7), 
which reduces to dG = l1-i dni ' The increase in Gibbs energy per mole of (he substance 
added is (8G) = l1-i ' 8ni T, p, n) 

This equation expresses the immediate significance of l1-i ' and is simply the content of the 
definition of l1-i in Eq. (1 1 . 5). For any substance i in a mixture, the value of l1-i is the increase 
in Gibbs energy that attends the addition of an infinitesimal number of moles of that 
substance to the mixture per mole of the substance added. (The amount added is restricted 
to an infinitesimal quantity so that the composition of the mixture, and therefore the value 
of l1-i ' does not change.) 

An alternative approach involves an extremely large system, let us say a roomful 
of a water solution of sugar. If one mole of water is added to such a large system, 
the composition of the system remains the same for all practical purposes, and therefore 
the I1-H20 of the water is constant. The increase in Gibbs energy attending the addition 
of one mole of water to the roomful of solution is the value of I1-H20 in the solution. 

Since l1-i is the derivative of one extensive variable by another, it is an intensive property 
of the system and must have the same value everywhere within a system at equilibrium. 

Suppose that l1-i had different values, 11-1 and I1-f, in two regions of the system, A and B. 
Then keeping T, p, and all the other mole numbers constant, suppose that we transfer 
dni moles of i from region A to region B. For the increase in Gibbs energy in the two 
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regions, we have from Eq. (1 1 .7), dGA = ,4( - dni), and dGB = flf dni , since +dni 
moles go into B and -dni moles go into A. The total change in Gibbs energy of the system 
is the sum dG = dGA + dGB, or 

dG = (flf - fl1) dni ' 
Now if flf is less than 111, then dG is negative, and this transfer of matter decreases the Gibbs 
energy of the system ; the transfer therefore occurs spontaneously. Thus, substance i 
flows spontaneously from a region of high fli to a region of low fli ; this flow continues 
until the value of fli is uniform throughout the system, that is, until the system is in equi
librium. The fact that fli must have the same value throughout the system is an important 
equilibrium condition, which we will use again and again. 

The property fli is called the chemical potential of the substance i. Matter flows 
spontaneously from a region of high chemical potential to a region of low chemical 
potential just as electric current flows spontaneously from a region of high electrical 
potential to one of lower electrical potential, or as mass flows spontaneously from a 
position of high gravitational potential to one of low gravitational potential. Another 
name frequently given to fli is the escaping tendency of i. If the chemical potential of a 
component in a system is high, that component has a large escaping tendency, while if 
the chemical potential is low, the component has a small escaping tendency. 

1 1 .3 T H E G I B B S E N E R GY O F  A M IXTU R E  

The fact that the l1i are intensive properties implies that they can depend only on other 
intensive properties such as temperature, pressure, and intensive composition variables 
such as the mole ratios, or the mole fractions. Since the fli depend on the mole numbers 
only through intensive composition variables, an important relation is easily derived. 

Consider the following transformation :  
. 

Initial State Final State 
T, p T, p 

Substances 1 2 3 1 2 3 
Mole numbers 0 0 0 nl n2 n3 
Gibbs energy G = O  G 

We achieve this transformation by considering a large quantity of a mixture of uniform 
composition, in equilibrium at constant temperature and constant pressure. Imagine 
a small, closed mathematical surface such as a sphere that lies completely in the 
interior of this mixture and forms the boundary that encloses our thermodynamic 
system. We denote the Gibbs energy of this system by G* and the number of moles of the 
ith species in the system by nf, We now ask by how much the Gibbs energy of the system 
increases if we enlarge this mathematical surface so that it encloses a greater quantity 
of the mixture. We may imagine that the final boundary enlarges and deforms in such a 
way as to enclose any desired amount of mixture in a vessel of any shape. Let the Gibbs 
energy of the enlarged system be G and the mole numbers be ni ' We obtain this change in 
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Gibbs energy by integrating Eq. (1 1 .7) at constant T and p ; that is, 

f
G Ini dG = L f.1i dni ; 

G* i n't 

G - G* = I f.1;(ni - nt) . i ( 1 1 .8) 

The f.1i were taken out of the integrals because, as we have shown above, each f.1i must have 
the same value everywhere throughout a system at equilibrium. Now we allow our initial 
small boundary to shrink to the limit of enclosing zero volume ; then nt = 0, and G* = O. 
This reduces Eq. (1 1 .8) to 

G = L nif.1i ' i ( 1 1 .9) 

The addition rule in Eq. (1 1 .9) is a very important property of chemical potentials. 
Knowing the chemical potential and the number of moles of each constituent of a mixture, 
we can compute, using Eq. (1 1 .9), the total Gibbs energy, G, of the mixture at the specified 
temperature and pressure. If the system contains only one substance, then Eq. ( 1 1 .9) 
reduces to G = nf.1, or 

G f.1 = - . n (1 1 . 10) 

By Eq. (1 1 . 1  0), the f.1 of a pure substance is simply the molar Gibbs energy ; for this reason 
the symbol f.1 was introduced for molar Gibbs energy in Section 10.8 . In mixtures, f.1i is 
the partial molar Gibbs energy of the substance i. 

1 1 .4 T H E C H E M I CA L  P OT E NTiAL  O F  A P U R E  I D EA L  GAS 

The chemical potential of  a pure ideal gas i s  given explicitly by Eq. ( 10.47) : 
f.1 = f.10(T) + RT ln p. (1 1 . 1 1) 

This equation shows that at a given temperature the pressure is a measure of the chemical 
potential of the gas. If inequalities in pressure exist in a container of a gas, then matter 
will flow from the high-pressure regions (high chemical potential) to those of lower 
pressure (lower chemical potential) until the pressure is equalized throughout the vessel. 
The equilibrium condition, equality of the chemical potential everywhere, requires that 
the pressure be uniform throughout the vessel. For nonideal gases it is the fugacity that 
must be uniform throughout the vessel ; however, since the fugacity is a function of 
temperature and pressure, at a given temperature equal values of fugacity imply equal 
values of pressure. 

1 1 . 5 C H E M I CA L  POTENTIAL  O F  A N  I D EA L  GAS 
I N  A M IXTU R E  OF I D EA L  GAS E S  

Consider the system shown in Fig. 1 1 . 1 .  The right-hand compartment contains a mixture 
of hydrogen under a partial pressure PH2 and nitrogen under a partial pressure PN2 ' 
the total pressure being P = PH2 + PN2 ' The mixture is separated from the left-hand side 
by a palladium membrane. Since hydrogen can pass freely through the membrane, 
the left-hand side contains pure hydrogen. When equilibrium is attained, the pressure 
of the pure hydrogen on the left-hand side is equal by definition to the partial pressure of 
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Palladium membrane 
i 

Pure Hz 

F i g u re 1 1 . 1 Chemica l  
potent ia l  of  a gas i n  a m ixtu re .  

the hydrogen in the mixture (see Section 2.8). The equilibrium condition requires that the 
chemical potential of the hydrogen must have the same value in both sides of the vessel : 

,uH2(pure) = ,uH2(mix) ' 
The chemical potential of pure hydrogen under a pressure PH2 is, by Eq. (1 1 . 1 1), 

,uH2(pure) = ,uH2(T) + RT ln PH2 ' 
Therefore in the mixture it must be that 

,uH2(mix) = ,uH2(T) + RT ln PH2 ' 
This equation shows that the chemical potential of hydrogen in a mixture is a logarithmic 
function of the partial pressure of hydrogen in the mixture. By repeating the argument 
using a mixture of any number of ideal gases, and a membrane* permeable only to sub
stance i, it may be shown that the chemical potential of substance i in the mixture is given by 

,ui = ,urCT) + RT ln pi ' (1 1 . 12) 

where Pi is the partial pressure of substance i in the mixture. The ,ur(T) has the same 
significance as for a pure gas ; it is the chemical potential of the pure gas under 1 atm 
pressure at the temperature T. 

By using the relation Pi = XiP, where Xi is the mole fraction of substance i in the 
mixture and P is the total pressure, for Pi in Eq. (1 1 . 1 2), and expanding the logarithm, 
we obtain 

,ui = f-lr(T) + RT ln P + RT ln Xi ' (1 1.1 3) 

By Eq. (1 1 . 1 1), the first two terms in Eq. (1 1 . 1 3) are the ,u for pure i under the pressure 
P, so Eq. ( 1 1 . 1 3) reduces to 

f-li = ,ui(pure) (T, p) + RT ln x i. ·  (1 1 . 14) 

Since Xi is a fraction and its logarithm is negative, Eq. ( 1 1 . 14) shows that the chemical 
potential of any gas in a mixture is always less than the chemical potential of the pure 
gas under the same total pressure. If a pure gas under a pressure P is placed in contact 
with a mixture under the same total pressure, the pure gas will spontaneously flow 
into the mixture. This is the thermodynamic interpretation of the fact that gases, and 
for that matter liquids and solids as well, diffuse into one another. 

The form of Eq. (1 1 . 1 4) suggests a generalization. Suppose we define an ideal mixture, 
or ideal solution, in any state of aggregation (solid, liquid, or gaseous) as one in which 

* The fact that such membranes are known for only a few gases does not impair the argument. 
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the chemical potential of every species is given by the expression 

f1i = f1i(T, p) + RT ln Xi ' (1 1 . 14a) 

In Eq. (1 1 . 14a) we interpret f1i(T, p) as the chemical potential of the pure species i in 
the same state of aggregation as the mixture ; that is, in a liquid mixture, f1i(T, p) is the 
chemical potential, or molar Gibbs energy, of pure liquid i at temperature T and pressure 
p, and Xi is the mole fraction of i in the liquid mixture. We will introduce particular 
empirical evidence to justify this generalization in Chapter 1 3 .  

1 1 . 6 G I B BS E N E R G Y  A N D E N T R O PY OF M IXI N G  

Since the formation of a mixture from pure constituents always occurs spontaneously, 
this process must be attended by a decrease in Gibbs energy. Our object now is to calculate 
the Gibbs energy of mixing. The initial state is shown in Fig. 1 1 .2(a). Each of the com
partments contains a pure substance under a pressure p. The partitions separating the 
substances are pulled out and the final state, shown in Fig. 1 1 .2(b), is the mixture under 
the same pressure p. The temperature is the same initially and finally. For the pure sub
stances, the Gibbs energies are 

The Gibbs energy of the initial state is simply the sum 

Ginitial = GI + G2 + G3 = nlf1� + n2 f1� + n3 f13 = L: nif1i · i 
The Gibbs energy in the final state is given by the addition rule, Eq. ( 1 1 .9) :  

Gfinal = nlf11 + n2 f12 + n3 f13 = L nif1i ' i 

The Gibbs energy of mixing, LlGmix = Gfinal - Ginitial , on inserting the values of Gfinal 
and Ginitial , becomes 

LlGmix = nl(f11 - f1n + n2(f12 - f1D + n3(f13 - f13) = L nlf1i - f1i) . i 
Using the value of f1i - f1i from Eq. ( 1 1 . 14a), we obtain 

LlGmix = RT(nl In Xl + n2 In X2 + n3 In X3) = RT L ni In Xi ' i 
which can be put in a slightly more convenient form by the substitution ni = xi n, where 

T, p  T, p  T, p T, p  

n1 n2 n3 

(a) (b) 

F i g u re 1 1 .2 Free energy of m ix ing .  (a )  I n i t ia l  state. (b )  F i na l  state .  
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n is the total number of moles in the mixture, and Xi is the mole fraction of i. Then 

(1 1 . 1 5) 
which is the final expression for the Gibbs energy of mixing in terms of the mole fractions 
of the constituents of the mixture. Every term on the right-hand side is negative, and so 
the sum is always negative. From the derivation, it can be seen that in forming an ideal 
mixture of any number of species the Gibbs energy of mixing will be 

fiGmix = nRT I Xi In Xi ' i (1 1 . 1 6) 

If there are only two substances in the mixture, then if X l  = X ,  X2 = 1 - X ,  Eq. (1 1 . 1 6) 
becomes 

fiGmix = nRT[x In X + (1 - x) In (1 - x)] . ( 1 1 . 1 7) 
A plot of the function in Eq. (1 1 . 1 7) is shown in Fig. 1 1 . 3 .  The curve is symmetrical about 
X = l The greatest decrease in Gibbs energy on mixing is associated with the formation 
of the mixture having equal numbers of moles of the two constituents. In a ternary 
system, the greatest decrease in free energy on mixing occurs if the mole fraction of each 
substance is equal to t, and so on. 

Differentiation of �Gmix = Gfinal - Ginitial , with respect to temperature, yields 
�Smix directly, through Eq. ( l 1Aa) :  (0 ��mix) 

p, n , 
= e��al) 

p, n, 
- CG��ial) 

p, n , 
- (Sfinal - Sinitial) ; 

(0 �GmiX) 
aT p, n , 

Differentiating both sides of Eq. (1 1 . 16) with respect to temperature, we have 

so that Eq. (1 1 . 1 8) becomes 

o 

o 

(0 fiG miX) '\' a = nR L., Xi In Xi ' T p, n , , 

�Smix = - nR I Xi In Xi ' i 

x 1 

o 

F i g u re 1 1 .3 I1Gm ;xlnRT for a 
b ina ry idea l  m ixture .  

(1 1 . 1 8) 

( 1 1 . 1 9) 
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The functional form of the entropy of mixing is the same as for the Gibbs energy 
of mixing, except that T does not appear as a factor and a minus sign occurs in the 
expression for the entropy of mixing. The minus sign means that the entropy of mixing 
is always positive, while the Gibbs energy of mixing is always negative. The positive 
entropy of mixing corresponds to the increase in randomness that occurs in mixing the 
molecules of several kinds. The expression for the entropy of mixing in Eq. ( 1 1 . 19) should 
be compared to that in Eq. (9.75), which was obtained from the statistical argument. 
Note that N in Eq. (9.75) is the number of molecules, whereas in Eq. ( 1 1 . 19) n is the number 
of moles ; therefore different constants, R and k, appear in the two equations. 

A plot of the entropy of mixing of a binary mixture according to the equation 

i\Smix = - nR[x In x + (1 - x) In (1 - x)] (1 1 .20) 
is shown in Fig. 1 1 .4. The entropy of mixing has a maximum value when x = l Using 
x = ! in Eq. ( 1 1 .20), we obtain for the entropy of mixing per mole of mixture 

i\Smixin = - R(! In ! + ! In !) = - R  In ! = +0.693R = 5.76 J/K mol. 

In a mixture containing only two substances, the entropy of mixing per mole of the final 
mixture varies between 0 and 5.76 J/K, depending on the composition. 

The heat of mixing can be calculated by the equation 

( 1 1 .21) 
using the values of the Gibbs energy and entropy of mixing from Eqs. ( 1 1 . 16) and ( 1 1 . 1 9). 
This reduces Eq. ( 1 1 .2 1 )  to 

nRT I Xi In Xi = i\Hmix + nRT I Xi In Xi ' 
i i 

which becomes 
i\Hmix = O. ( 1 1 .22) 

There is no heat effect �ssociated with the formation of an ideal mixture. 
Using the result that i\Hmix = 0, Eq. (1 1 .21) becomes 

- i\Gmix = T i\SmiX "  ( 1 1 .23) 
Equation ( 1 1 .23) shows that the driving force, - i\Gmix , that produces the mixing is 
entirely an entropy effect. The mixed state is a more random state, and therefore is a more 

x 1 

o 

F i g u re 1 1 .4 /!,.Sm i.!nR for a 
b ina ry idea l  m ixtu re. 
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probable state. If the value of 5.76 J/K mol is used for the entropy of mixing, then at 
T = 300 K, .1Gmix = - (300 K) (5.76 J/K mol) = - 1730 J/mol. Thus the Gibbs energy 
of mixing of an ideal binary mixture ranges from 0 to - 1730 J Imo!. Since - 1730 J Imol is 
not large, in nonideal mixtures for which the heat of mixing is not zero, the heat of mixing 
must either be negative or only slightly positive if the substances are to mix spontaneously. If 
the heat of mixing is more positive than about 1 300 to 1600 J Imol of mixture, then .1G mix 
is positive, and the liquids are not miscible but remain in two distinct layers. 

The volume of mixing is obtained by differentiating the Gibbs energy of mixing with 
respect to pressure, the temperature and composition being constant, 

.1 v. .  = (13 .1Gmi� mIx i3p )T, n, · 
However, inspection of Eq. (1 1 . 1 6) shows that the Gibbs energy of mixing is independent 
of pressure, so the derivative is zero ; hence, 

.1Vmix = o. (1 1 .24) 
Ideal mixtures are formed without any volume change. 

1 1 .7 C H E M I CA L  E QU I LI B R I U M  I N  A M IXTU R E  

Consider a closed system at a constant temperature and under a constant total pressure. 
The system consists of a mixture of several chemical species that can react according to 
the equation 

( 1 1 .25) 

where the Ai represent the chemical formulas of the substances, while the Vi represent the 
stoichiometric coefficients. This is the notation used in Sec. 1 .7. 1 for chemical reactions. 
It is understood that the Vi are negative for reactants and positive for products. 

We now inquire whether the Gibbs energy of the mixture will increase or decrease if 
the reaction advances in the direction indicated by the arrow. If the Gibbs energy decreases 
as the reaction advances, then the reaction goes spontaneously in the direction of the 
arrow ;  the advance of the reaction and the decrease in Gibbs energy continue until the 
Gibbs energy ofthe system reaches a minimum value. When the Gibbs energy of the system 
is a minimum, the reaction is at equilibrium. If the Gibbs energy of the system increases 
as the reaction advances in the direction of the arrow, then the reaction will go spon
taneously, with a decrease in Gibbs energy, in the opposite direction ; again the mixture 
will reach a minimum value of Gibbs energy at the equilibrium position. 

Since T and p are constant, as the reaction advances the change in Gibbs energy of 
the system is given by Eq. ( 1 1 .7); which becomes 

dG = L J1.i dni i (1 1 .26) 

where the changes in the mole numbers, dni ' are those resulting from the chemical 
reaction. These changes are not independent because the substances react in the stoichio
metric ratios. Let the reaction advance by � moles, where � is the advancement of the 
reaction ; then the number of moles of each of the substances present is 

(1 1 .27) 
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where the n? are the numbers of moles of the substances present before the reaction 
advanced by � moles. Since the n? are constant, by differentiating Eq. (1 1 .27) we obtain 

dni = Vi d� 

Using Eq. ( 1 1 .28) in Eq. (1 1 .26), we obtain 

dG = (� Vi lli) d� 

which becomes 

( 1 1 .28) 

(1 1 .29) 

The derivative, (oG/a�h, p , is the rate of increase of the Gibbs energy of the mixture 
with the advancement � of the reaction. If this derivative is negative, the Gibbs energy 
of the mixture decreases as the reaction progresses in the direction indicated by the 
arrow, which implies that the reaction is spontaneous. If this derivative is positive, 
progress of the reaction in the forward direction would lead to an increase in Gibbs 
energy ofthe system ; since this is not possible, the reverse reaction would go spontaneously. 
If (aG/o�h. p is zero, the Gibbs energy has a minimum value and the reaction is at equi
librium. The equilibrium condition for the chemical reaction is then 

and 

(OG) = 0 o� T. p, eq 
, 

(2:: Vi lli) = 0 
I eq 

(1 1 .30) 

( 1 1 . 3 1) 

The derivative in Eq. (1 1 .29) has the form of an increase of Gibbs energy, f1G, since it 
is the sum of the Gibbs energies of the products of the reaction less the sum of the Gibbs 
energies of the reactants. Consequently we._will write I1G for (oG/o�h, p and call 11G the 
reaction Gibbs energy. From the above derivation it is clear that for any chemical reaction 

( 1 1 . 32) 

The equilibrium condition for any chemical reaction is 
(1 1 . 3 3) 

The subscript eq is placed on the quantities in Eqs. ( 1 1 . 3 1) and ( 1 1 . 33) to emphasize 
the fact that at equilibrium the values of the Il'S are related in the special way indicated by 
these equations. Since each Ili is IllT, p, n�, n� , . . .  , �) the equilibrium condition deter
mines �e as a function of T, p, and the specified values of the initial mole numbers. 

1 1 .8 T H E G E N E R A L  B E H AVI O R  O F  G AS A F U N CTI O N  O F  � 

Figure 1 1 . 5a shows the general behavior of G as a function of � in a homogeneous system. 
The advancement, �, has a limited range of variation between a least value, �v and a 
greatest value, �g . At �1 ' one or more of the products has been exhausted, while at �g 
one or more of the reactants has been exhausted, At some intermediate value, �e >  G 
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w � 
F i g u re 1 1 .5 G ibbs energy as a funct ion of the advancement .  

passes through a minimum. The value �e is the equilibrium value of the advancement. To 
the left of the minimum, 8G/8� is negative, indicating spontaneity in the forward direction, 
while to the right of the minimum, 8G/8� is positive, indicating spontaneity in the reverse 
direction. Note that even though in the case illustrated the products have an intrinsically 
higher Gibbs energy than the reactants, the reaction does form some products. This is a 
consequence of the contribution of the Gibbs energy of mixing. 

At any composition the Gibbs energy of the mixture has the form 

G = L: ni Pi ' i 
If we add and subtract pf(T, p), the chemical potential of the pure species i in each term 
of the sum, we obtain 

G = I n;(pf + Pi - pf) = I ni pf(T, p) + I ni(Pi - pD· i i i 
The first sum is the total Gibbs energy of the pure gases separately, Gpure ; the last sum 
is the Gibbs energy of mixing, �Gmix ' The Gibbs energy of the system is given by 

(1 1 .34) 
The plot of Gpure , �GmiX ' and G as a function of the advancement is shown in Fig. 1 1 . 5b. 
Since Gpure depends on � only through the ni ' each of which is a linear function of �, we 
see that Gpure is a linear function of �. The minimum in G occurs at the point where �Gmix 
decreases as rapidly as Gpure increases ; by differentiating, 

(8G) = (8Gpure) + (8 �'Gmix) . 8� T, p  8� T, p  8� T, p 

At equilibrium 

(8Gpure) = _ (8 �Gmix) . 8� eq 8� eq 
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This condition can be established geometrically by reflecting the line for Gpure in the 
horizontal line 00, to yield the line OA ; the point of tangency of the line O'A', parallel to 
OA, with the curve for AGmix yields the value of the advancement at equilibrium. Equation 
( 1 1 .34) is correct for any equilibrium in a homogeneous ' system. Equation ( 1 1 . 34) is, in 
fact, formally correct for any equilibrium, but unless at least one phase is a mixture, 
the term Gmix , will be zero and only the first term, Gpure , will appear. 

Equation ( 1 1 .34) shows that a system approaches the equilibrium state of minimum 
Gibbs energy by forming substances of intrinsically lower Gibbs energy ; this makes 
Gpure small. It also lowers its Gibbs energy by mixing the reactants and products. A 
compromise is reached between a pure material having a low intrinsic Gibbs energy and 
the highly mixed state. 

1 1 . 9 C H E M I CA L  E Q U I LI B R I U M  I N  A M IXTU R E  O F  I D EA L  G A S E S  

I t  has been shown, Eq. ( 1 1 . 1 2), that the Jl o f  an ideal gas i n  a gas mixture i s  given by 

Jli = Jlf + RT ln Pi '  ( 1 1 . 35) 
where Pi is the partial pressure of the gas in the mixture. We use this value of Jli in Eq. 
( 1 1 .29) to compute the AG for the reaction. 

aA + f3B � yC + c5D 
where A, B, C, and D represent the chemical formulas of the substances, while a, 13, y, 
and c5 represent the stoichiometric coefficients. Then 

AG = YJle + yRT ln Pc + c5Jl'tJ + c5RT In PD - aJlA - aRT In PA - f3Jl� - f3RT In PB ' 
= YJle + c5Jl'tJ - (aJlA + f3Jl�) + R T[y In Pc + c5 ln PD - (a In PA + 13 In PB)] . 

Let 
( 1 1 . 36) 

AGO is the standard reaction Gibbs energy. Then, combining the logarithmic terms, 
1 {) 

AG = AGO + R T ln PCPD . ( 1 1 .37) 
PAP' 

The argument of the logarithm is called the proper quotient of pressures ; the numerator 
is the product of partial pressures of the chemical products each raised to the power 
of its stoichiometric coefficient, and the denominator is the product of the partial pressures 
of the reactants, each raised to the power of its stoichiometric coefficient. Ordinarily 
the quotient is abbreviated by the symbol Qp : 

( 1 1 .38) 

This reduces Eq. ( 1 1 .37) to 

( 1 1 . 39) 
The sign of AG is determined by the sign and magnitude of In Qp , since at a given 
temperature AGo is a constant characteristic of the reaction. If, for example, we compose 
the mixture so that the partial pressures of the reactants are very large, while those of the 
products are very small, then Qp will have a small fractional value, and In Qp will be a 
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large negative number. This in turn will make tJ.G more negative and iJilcrease the tendency 
for products to form. 

At equilibrium, tJ.G = 0, and Eq. (1 1 . 37) becomes 

0 = tJ.Go + R T ln (Pd�(PD);
, ( 1 1 .40) 

(PA)�(PB)e 

where the subscript e indicates that these are equilibrium partial pressures. The quotient of 
equilibrium partial pressures, is the pressure equilibrium constant Kp : 

K = (Pd�(Po)� 
p 

(P A)�(PB)� . 
(1 1 .41)  

Using the more general notation, we put the value of Ili from Eq.  ( 1 1 . 35) in Eq. 
(1 1 .29) to obtain 

which can be written, 

But 

tJ.G = (��) = � v;(lli + R T ln Pi), 
T, p , 

tJ.G = I Vi lli + R T I Vi In Pi ' 
i i 

I Vi lli = tJ.Go, 
i 

( 1 1 .36a) 

the change in the standard reaction Gibbs energy, and Vi In Pi = In pii ; thus the equation 
becomes 

. tJ.G = tJ.Go + R T I In pii• 
i 

But a sum of logarithms is the logarithm of a product : 

In p'? + In p�2 + In p;3 + . .  , = In (p�lp�2p;3 . .  J 
This continued product, IT 

P
Vi - pVlpV2pV3 i - I 2 3 " ' , 

i 

is called the proper quotient of pressures, Qp . 

Qp = IT pii 
i 

(1 1 .37a) 

(1 1 . 38a) 

Note that since the Vi for the reactants are negative, we have for the reaction in question 

and 
Vz = - [3, 

y b 
Q _ - a - p y b _ PBPO 

p - PA PB PePD - -a-p 
PoPe 

Correspondingly, Kp can be written as 

Kp = IT (Pi)� i 
i 

Equation ( 1 1 .40) becomes 

( l 1 . 38b) 

(1 1 .4 1a) 

( 1 1 .42) 
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The quantity f1Go i s  a combination of flo,S, each of which is a function only of temperature ; 
therefore f1Go is a function only of temperature, and so K p is a function only of temperature. 
From a measurement of the equilibrium constant of the reaction f1GO can be calculated 
using Eq. ( 1 1 .42). This is the way in which the value of f1Go for any reaction is obtained. 

II!! EXAMPLE 1 1 . 1  For the reaction 

!Nig) + !Hig) � NHig), 

the equilibrium constant is 6 .59 x 10 - 3 at 450 °C. Compute the standard reaction 
Gibbs energy at 450 °C. 

Solution. 
f1GO = - (8. 3 14  J/K mol) (723 K) In (6.59 x 10 - 3) 

= - (6010 J/mol) ( - 5.02) = + 30 200 J/mo!. 

Since this is the formation reaction for ammonia, it follows that 30 200 J/mol is the 
standard Gibbs energy of formation of ammonia at 450 °C. 

1 l . 1 0  C H E M I CA L  E QU I LI B R I U M I N  A M IXT U R E  O F  R EA L  G A S E S  

I f  the corresponding algebra were carried out for real gases using Eq. (10.48), the equation 
equivalent to Eq. (1 1 .41 )  is 

( 1 1 .43) 

and, corresponding to Eq. (1 1 .42), 

f1GO = - R T ln KJ . (1 1 .44) 

For real gases, it is K J rather than K p that is a function of temperature only. 

1 1 . 1 1  T H E E QU I LI B R I U M  C O N STANTS,  Kx A N D Kc 

It is sometimes advantageous to express the equilibrium constant for gaseous systems 
in terms of either mole fractions, Xi ' or concentrations, ci , rather than partial pressures. 
The partial pressure, Pi ' the mole fraction, and the total pressure, p, are related by Pi 
= XiP, Using this relation for each of the partial pressures in the equilibrium constant, we 
obtain from Eq. (1 1 .4 1 )  

K = (Pd�(PD)� = (XCpmXDP)� = (Xd�(XD)� y H - a � p p 
(PA)�(PB)� (XAP)�(XB P)� (XA)�(XB)� 

P 
. 

The mole fraction equilibrium constant is defined by 

K = (Xd�(XD)� x 
(XA)�(XB)� ' 

(1 1 .45) 

Then 
(1 1 .46) 

where f1v = LVi is the sum of stoichiometric coefficients on the right-hand side of the 
chemical equation minus the sum of the coefficients on the left-hand side. Rearranging 
Eq. (1 1 .46), we obtain Kx = Kpp

- b.v . Since Kp is independent of pressure, Kx will depend 
on pressure unless f1v is zero . 
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Keep in mind that in Kp the Pi are pure numbers-abbreviations for the ratio Pi/(l atm) 
-which we will write as Pi/po ; see the discussion of Eqs. (9.52), (9.53), and (10.47). It 
follows that the pressure in Eq. (1 1 .46) is also a pure number ; it is an abbreviation for 
p/po = p/(l atm). 

In a similar way, since the partial pressure of a gas is given by Pi = niRT/V and the 
concentration is C i = ni/V, we obtain Pi = CiRT. Introducing the standard pressure 
explicitly, we have 

P ° 
. 

Before we put this in Kp it is useful to have Ci in a dimensionless ratio, so we multiply 
and divide by a standard concentration, co. Then we have 

(1 1 .47) 

Since we have a ratio of concentrations, it follows that 

where the Ci and CO are concentrations in moljL, whereas the Ci and CO are the corresponding 
concentrations in mol/m3, the SI unit of concentration. As before, we will abbreviate 
pdpo as Pi and cdco = cd(1 moljL) as ci ; then we have 

Pi = c{O;T) (1 1 .48) 

in which Pi and Ci are to be understood as the pure numbers equal to the ratios p;/(l atm) 
and c;/(l moljL). If we insert these values of Pi in Kp by the same argument that we used 
to obtain Eq. ( 1 1 .46), we find _ (CORT)dV 

Kp - Kc --
pO 

(1 1 .49) 

where Kc is a quotient of equilibrium concentrations ; Kc is a function of temperature 
only. 

Since the standard concentration was CO = 1 moljL, the corresponding value of 
CO = 103 mol/m3 ; thus 

and we have 

cORT = (103 moljm3) (8 . 3 1441 J/K mol)T = 0.0820568 T/K 
pO 101 325 Pa ' 

( RT )dV 
Kp = Kc 101 .325 J/mo} = Kc(O.0820568 T/KY'.v 

Note that the quantity in the parentheses is dimensionless, as are Kp and Kc . 

1 1 . 1 2  STA N DA R D  G I B B S E N E R G I ES O F  F O R M ATI O N  

( 1 1 . 50) 

Having obtained values of I1Go from measurements of equilibrium constants, it is possible 
to calculate conventional values of the standard molar Gibbs energy 11° of individual 
compounds. Just as in the case of the standard enthalpies of substances, we are at liberty 
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to assign a value of zero to the Gibbs energy of the elements in their stable state of aggrega
tion at 25 °C and 1 atm pressure. For example, at 25 °C 

.u°(Br z , 1) = 0, .u°(S, rhombic) = O . 
For the formation reaction of a compound such as CO, we have 

C(graphite) + 10z(g) -------+ CO(g), 

!1G'} = .u°(CO, g) - [aO(C, graphite) + !.u°(Oz , g)] . 

Since .u°(C, graphite) = 0 and .u°(Oz , g) = 0 by convention, we have 

!1G'} = .u°(CO, g) (1 1 . 5 1 )  

Consequently, the standard Gibbs energy of  formation of  any compound i s  equal to 
the conventional standard molar Gibbs energy of that compound. Some values of the 
standard Gibbs energy of formation at 25 °C are given in Table A-V . 

It is always possible to relate the composition of an equilibrium mixture to the 
equilibrium value of the advancement, �e ' the initial mole numbers, nf, and the stoichio
metric coefficients, Vi ' Two examples will be discussed. 

III EXAMPLE 1 1 .2 The dissociation of dinitrogen tetroxide. 

N z 0 4 (g) :;::==::::': 2 NO zCg) 

This equilibrium can be easily studied in the laboratory through a measurement of the 
vapor density of the equilibrium mixture. In the following formulation the various 
quantities are listed in columns under the formulas of the compounds in the balanced 
chemical equation. Let n° be the initial number of moles of Nz04 , �e the equilibrium 
advancement, and lXe the fraction dissociated at equilibrium lXe = �e/n°. 

NzOig) 

Stoichiometric coefficient - 1 

Initial mole numbers, nf n° 

Equilibrium mole numbers, ni n° - �e 

Total number of moles, n = n° + �e 

Mole fractions, Xi n° - �e 
n° + �e 

or, since lXe = �e/n°, the Xi are 
1 - lXe 

--

I + lXe 

Partial pressures, Pi = XiP C - IX ) 1 + IX: P 

U sing these values of the partial pressures, we obtain 

K = P�02 = 6-�!�: P r 
p 

PN204 1 - lXe 
J7 1 + lXe 

¢ 2 NOz(g) 

+ 2 

0 

o + 2�e 

2�e 
n° + �e 

2IXe 
--

1 + lXe ( 2IXe ) 1 + lXe P 

(1 1 . 52) 
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By the ideal gas law, pV = nRT, where n = (1 + exe)n°. Thus pV _�_I1°(L+ exe)RT. But 
n° = w/M, where w is the mass of gas in the volume V and Mis- the molarmass ·of 
N204 . Thus, if we know p, T, V, and w we can calculate exe and then, using Eq. ( 1 1 . 52), 
we can obtain Kp . 

A measurement of exe at any pressure p suffices to determine Kp . From Kp ' I1Go can 
be calculated. The dependence of exe on the pressure can be obtained explicitly by 
solving Eq. (1 1 . 52) for exe : J' Kp exe = 

Kp + 4p · 

It is clear that as p --+ 0, exe --+ 1 ,  while as p --+ 00 ,  exe --+ O. This is what would be expected 
from the LeChatelier principle. At moderately high pressures, Kp � 4p and 
exe = 1K;/2/p1/2 , approximately. 

Iiil EXAMPLE 1 1 .3 The ammonia synthesis. 
Suppose we mix one mole of N2 with 3 moles of H2 (the stoichiometric ratio) and 

consider the equilibrium : 

N2(g) + 3 Hz(g) � 2NHig) 

Stoichiometric coefficients - 1 - 3 2 
Initial mole numbers, n? 1 3 0 
Equilibrium mole numbers, ni 1 - � 3 - 3� 2� 
Total number of moles, n = 4 - 2� 

Mole fractions, Xi 
1 - � 3(1 - �) 2� 

2(2 - �) 2(2 - �) 2(2 - �) 

Partial pressures, Pi = xiP 1 - � 3(1 - �) 2�p 
2(2 - �) P 2(2 - �) P 2(2 - �) 

We note immediately that PH2 = 3PN2 ; using these values in Kp , we get 
2 

K = PNH3 
P PN2P�2 

Taking the square root, we have 

or, using the partial pressures from the table, 

Analysis of the mixture yields the value of XNH3 from which we can obtain the value of � 
at equilibrium. From the experimental value of � we can calculate Kp , and from that, 
I1Go. We can also formulate the expression in terms of PNH3 and the total pressure. Since 
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P = PN2 + PH2 + PNH3 and PH2 = 3 PN2 ' then P = 4 PN2 + PNH3 or PN2 = i(P - PNHJ 
Then 

16 

From this relation, the partial pressure of  NH3 can be calculated at  any total pressure. 
If the conversion to NH3 is low, then P - PNH3 � p, and PNH3 = 0.325K�/2p2, so that 
the partial pressure of ammonia is approximately proportional to the square of the 
pressure. If the reactants are not mixed originally in the stoichiometric ratio, the 
expression is more complex. 

A measurement of the equilibrium partial pressure of NH3 at a given temperature 
and pressure yields a value of /}.Go for this reaction, which is twice the conventional 
standard molar Gibbs energy of NH3 at this temperature. 

Note that we have suppressed the subscripts on �e and (PNH,)e to avoid a 
cumbersome notation. We will usually omit the subscript except when it is needed to 
avoid confusion. It is to be understood that all the quantities in the equilibrium 
constant are equilibrium values. 

1 1 . 1 3  T H E T E M P E R AT U R E  D E P E N D E N C E  O F  T H E 
EQU i li B R I U M  C O N STA N T  

The equilibrium constant can be  written as 

Differentiating, we obtain 
d In Kp 

dT 
Dividing Eq. (1 1 . 36a) by  T, we obtain 

Differentiating, we have 

d(/}'GO/T) = I v . d(pf/T) 
dT i

! dT 

(1 1 . 53) 

(1 1 . 54) 

(1 1 .55) 

where the pf are standard molar Gibbs energies of pure substances. Using molar values 
in the Gibbs-Helmholtz equation, Eq. (10.54), we have d(pf/T)/dT = -Hf/T2 . This 
relation reduces Eq. (1 1 . 55) to 

d(/}'GO/T) = _ _ 
1 

I v .H? = _ 
/}.HO 

dT T2 i 
! !  T2 ' (1 1 .56) 

since the summation is the standard enthalpy increase for the reaction, /}.Ho. Equation 
(1 1 . 56) reduces Eq. (1 1 . 54) to 

or 
2.303 RT2 ' (1 1 . 57) 

Equation ( 1 1 .57) is also called the Gibbs-Helmholtz equation. 
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If the reaction is exothermic, !1Ho is negative, and the equilibrium constant decreases 
with increase in temperature. If the reaction is endothermic, !1Ho is positive ; then K p 
increases with increase in temperature. Since an increase in the equilibrium constant 
implies an increase in the yield of products, Eq. ( 1 1 . 57) is the mathematical expression 
of one aspect of the LeChatelier principle. 

Equation ( 1 1 .57) can be expressed readily in a form convenient for plotting : 

d In K = !1Ho dT 
= _ !1Ho d(�) p R T2 R T ' 

d In Kp 
d(1/T) 

d logl o  Kp 
d(lIT) 

!1Ho 
2.303 R (1 1 .58) 

Equation ( 1 1 .58) shows that a plot of In Kp versus liT has a slope equal to - !1HolR. 
Since !1Ho is almost constant, at least over moderate ranges of temperature, the plot 
is often linear . 

If Kp is measured at several temperatures and the data plotted as In Kp versus liT, 
the slope of the line yields a value of !1Ho for the reaction through Eq. (1 1 .58) . Conse
quently, it is possible to determine heats of reaction by measuring equilibrium constants 
over a range of temperature. The values of the heats of reaction obtained by this method 
are usually not so precise as those obtained by precision calorimetric methods. However, 
the equilibrium method can be used for reactions that are not suited to direct calorimetric 
measurement. Later we will find that certain equilibrium constants can be calculated 
from calorimetrically measured quantities only. 

Having obtained values of !1Go at several temperatures and a value of !1Ho from 
the plot of Eq. (1 1 . 58), we can calculate the values of !1So at each temperature from the 
equation 

(1 1 . 59) 
The equilibrium constant can be written as an explicit function of temperature by 

integrating Eq. (1 1 . 57). Suppose that at some temperature To , the value of the equilibrium 
constant is (Kp)o and at any other temperature T the value is Kp : fIri Kp IT !1HO IT !1HO d(ln Kp) = �-2 dT, In Kp - In (Kp)o = ""j.{2 dT, In.(Kp )o To R T To T 

IT !1HO 
In Kp = In (Kp)o + �-2 dT. To RT 

If !1Ho is a constant, then by integrating, we have 
!1Ho ( 1 1 ) 

In Kp = In (Kp)o - R T - To . 

(1 1 .60) 

(1 1 .61 )  

From the knowledge of !1H 0 and a value of (K p)o at any temperature To , we can calculate 
Kp at any other temperature. 

If, in Eq. (1 1 . 53), we set !1Go = !1Ho - T !1So, we obtain 
!1Ho !1So 

In K = - - + - (1 1 . 6 1a) p RT R 
This relation is always true. But if !1Ho is constant, then !1So must also be constant, and 
this equation is equivalent to Eq. ( 1 1 .61) .  (Note that constancy of !1Ho implies that 
!1C� = 0 ;  but if !1C� = 0, then !1So must also be constant.) 
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If I:lHo is not a constant, it can ordinarily be expressed (see Section 7.24) as a power 
series in T :  

I:lHo = I:lH'O + A'T + B'T2 + C'T3 + . . . . 
Using this value for I:lHo in Eq. (1 1 .60) and integrating, we obtain 

I:lH'O ( l 1 ) � ( T) B 
In Kp = In (Kp)o - -- - - - + - In - + - (T  - To) R T To R To / R 

(1 1 .62) 

which has the general functional form 

A 
In Kp = 

T + B + C In T + DT + ET2 + . . .  , (1 1 .63) 

in which A, B, C, D, and E are constants. Equations having the general form of Eq. 
( 1 1 .63) are often used to calculate an equilibrium constant at 25 °C (so that it can be 
tabulated) from a measurement at some other (usually higher) temperature. To evaluate 
the constants, the values of I:lHo and the heat capacities of all the reactants and products 
must be known. 

1 1 . 1 4  e QU I LI B R I A  B ETWE E N  I D EA L  G A S E S  A N D 
P U R E  C O N D E N S E D  P H AS E S  

If the substances participating in the chemical equilibrium are in more than one phase, 
the equilibrium is heterogeneous. If the substances are all present in a single phase, the 
equilibrium is homogeneous. We have dealt so far only with homogeneous equilibria in 
gases. If, in addition to gases, a chemical reaction involves one or more pure liquids or 
solids, the expression for the equilibrium constant is slightly different. 

1 1 . 1 4 . 1  The  l i mestone D eco m posit i o n  

Consider the reaction 

CaO(s) + CO2(g). 

The equilibrium condition is 

[,u(CaO, s) + ,u(C02 , g) - ,u(CaC03 , s)] eq = O . 
For each gas present, e.g., CO2 , [,u(C02 , g)]eq = ,u°(COZ '  g) + RT In (PC02)e ' While for 
the pure solids (and for pure liquids if they appear), because of the insensitivity of the Gibbs 
energy of a condensed phase to change in pressure, we have 

,u(CaO, s) = ,u°(CaO, s). 

The equilibrium condition becomes 

0 =  ,u°(CaO, s) + ,u°(C02 , g) - ,u°(CaC03 , s) + RT ln (PC02)e , 

o = I:lGo + R T In (Peo,)e ' (1 1 .64) 
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In this case, the equilibrium constant is simply 

Kp = (PCO,)e . 

The equilibrium constant contains only the pressure of the gas ; however, the !J.Go contains 
the standard Gibbs energies of all the reactants and products. 

From the data in Table A-V, we find (at 25 °C) 

Substance 

pO/(kJ/mol) 

LlHjl(kllmol) 

CaCOis) 

- 1 128 .8 

- 1206.9 

CaO(s) 

- 604.0 - 394.36 

- 635.09 - 393 . 5 1  

Then for the reaction 

!J.GO = - 604.0 - 394.4 - ( - 1 128.8) = BOA kllmol, 
and 

LlHO = - 635 . 1  - 393 .5 - ( - 1206.9) = 178 .3 kllmo!. 

The equilibrium pressure is calculated from Eq. ( 1 1 .64). 

In (p ) = _ 1 30 400 J/mol _ _ . 

CO2 e (8 . 3 14  J/K mol) (298 . 1 5  K) -
52.60 , 

(Peo2)e = 1 .43 x 10- 2 3 atm (at 298 K). 

Suppose we want the value at another temperature, 1 100 K. We use Eq. (1 1 .61 ) : 

178 300 J Imol ( 1 1 ) _ . = - 52.60 - 8 .3 14 J/K mol 1 l00 K  - 298. 1 5 K - 0. 1 7 ,  

(PCO,) 1 1 00 = 0.84 atm. 

1 1 . 1 4 . 2  The Decomposi t i o n  of  M ercu r i c  Ox ide  

Consider the reaction 
HgO(s) :;:::=:==:: Hg(l) + !02(g)· 

The equilibrium constant is Kp = (P02)� /2 . Also 

llGo = pO(Hg, 1) + !pO(02 ' g) - pO(HgO, s) = - pO(HgO, s) = 58 .56 kllmol. 

Then 

In _ 58 560 J/mol _ . 

(P02)e - -
(8. 3 14  11K mol) (298 .  1 5  K) - - 23 .62 , 

(PO,)e = 5 .50 x 10 - 1 1  atm. 
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1 1 . 1 4 .3  Va por izat i o n  Eq u i l i b r i a  

An important example o f  equilibrium between ideal gases and pure condensed phases 
is the equilibrium between a pure liquid and its vapor : 

A(l) � A(g). 

Let p be the equilibrium vapor pressure. Then 

Kp = p and I1Go = flO(g) - !l0(l) . 

Using the Gibbs-Helmholtz equation, Eq. ( 1 1 . 57), we have 

d In p 
dT 

I1H�ap 
RT2 ' ( 1 1 .65) 

which is the Clausius-Clapeyron equation ; it relates the temperature dependence of the 
vapor pressure of a liquid to the heat of vaporization. A similar expression holds for the 
sublimation of a solid. Consider the reaction 

A(s) � A(g) ; and 

where p is the equilibrium vapor pressure of the solid. By the same argument as above 

d In p 
dT (1 1 .66) 

where I1H�ub is the heat of sublimation of the solid. In either case, a plot of In p versus 
1/T has a slope equal to - I1Ho/R and is nearly linear. 

* 1 1 . 1 5  T H E LE C H AT E LI E R  P R I N CI P L E  

It i s  fairly easy to  show how a change in temperature o r  pressure affects the equilibrium 
value of the advancement �e of a reaction. We need only to determine the sign of the 
derivatives (8�e/8T)p and (8�e/8p)y .  We begin by writing the identity 

(��) = I1G. 
T, p 

(1 1 .67) 

Since (8G/8�h, p is itself a function of T, p, and � we may write the total differential 
expression, 

d(��) = 8� (��) dT + :p (��) dp + 8
8
� (��) d�. ( 1 1 .68) 

Using Eq. ( 1 1 .67) and setting (82G/8�2) = Gil, Eq. (1 1 .68) becomes (8G) 8 I1G 8 I1G I I  d a[ = fiT dT + ---ap dp + G d�. 

From the fundamental equation, (8 I1G/8T) = - 118 and (8 I1G/8p) = I1V, in which 
118 is the entropy change and 11 V is the volume change for the reaction. Thus 

d(��) = - L�S  dT + I1V dp + Gil d�. 

If we insist that these variations in temperature, pressure, and advancement occur while 



The leChate l i e r  Pr inc ip le  243 

keeping the reaction at equilibrium, then aG/a� = 0 and hence d(aG/a�) = O. At 
equilibrium, 115 = I1H/T, so the equation becomes 

o = - (11:) (dT)eq + 11 V(dP)eq + G�(d�e). ( 1 1 .69) 

At equilibrium G is a minimum ; therefore G� must be positive. 
At constant pressure, dp = 0, and Eq. ( 1 1 . 69) becomes 

(a�e) 
aT p 

I1H (1 1 .70) 

At constant temperature, dT = 0, and Eq. ( 1 1 .69) becomes 

(a�e) 
ap T 

I1V 
Gil · e 

( 1 1 .7 1 )  

Equations (1 1 .70) and ( 1 1 .71 ) are quantitative statements of  the principle of 
LeChatelier : They describe the dependence of the advancement of the reaction at equi
librium on temperature and on pressure. Since G� is positive, the sign of (a�e/aT)p depends 
on the sign of I1H. If I1H is + ,  an endothermic reaction, then (a�e/aT)p is + ,  and an 
increase in temperature increases the advancement at equilibrium. For an exothermic 
reaction, I1H is - , so (a�e/aT)p is - ; increase in temperature will decrease the equilibrium 
advancement of the reaction. 

Similarly, the sign of (a�e/ap)y depends on .1. V. If 11 V is - , the product volume is less 
than the reactant volume and (a�e/ap)y is positive ; increase in pressure increases the 
equilibrium advancement. Conversely, if Li Vis + ,  then (a�e/ap)y is - ; increase in pressure 
decreases the equilibrium advancement. 

The net effect of these relations is that an increase in pressure shifts the equili
brium to the low-volume side of the reaction while a decrease in pressure shifts the 
equilibrium to the high-volume side. Similarly an increment in temperature shifts 
the equilibrium to the high-enthalpy side, while a decrease in temperature shifts it to the 
low-enthalpy side. 

We may state the principle of LeChatelier in the following way. If the external con
straints under which an equilibrium is established are changed, the equilibrium will 
shift in such a way as to moderate the effect of the change. 

For example, if the volume of a nonreactive system is decreased by a specified amount, 
the pressure rises correspondingly. In a reactive system, the equilibrium shifts to the 
low-volume side (if Li V =1= 0), so the pressure increment is less than in the nonreactive 
case. The response of the system is moderated by the shift in equilibrium position. This 
implies that the compressibility of a reactive system is much greater than that of a non
reactive one (see Problem 1 1 .39). 

Similarly, if we extract a fixed quantity of heat from a nonreactive system, the tempera
ture decreases by a definite amount. In a reactive system, withdrawing the same amount 
of heat will not produce as large a decrease in temperature because the equilibrium shifts 
to the low-enthalpy side (if LiH =1= 0). This implies that the heat capacity of a reactive 
system is much larger than that of a nonreactive one (see Problem 1 1 .40). This is useful if 
the system can be used as a heat-transfer or heat-storage medium. 

It must be noted here that there are certain types of systems that do not obey the 
LeChatelier principle in all circumstances (for example, open systems). A very general 
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validity has been claimed for the LeChatelier principle. However, if the principle does 
have such broad application, the statement of the principle must be very much more 
complex than that given here or in other elementary discussions. 

* 1 1 . 1 6  E Q U I LI B R I U M  C O N STA NTS F R O M  CALO R I M ET R I C  
M EAS U R E M E NTS . T H E T H I R D  LAW I N  ITS H I STO R I CA L  
C O NTEXT 

Using the Gibbs-Helmholtz equation, we can calculate the equilibrium constant of a 
reaction at any temperature T from a knowledge of the equilibrium constant at one 
temperature To and the I1Ho of the reaction. For convenience we rewrite Eq. (1 1 .60) : 

IT I1HO In Kp = In (Kp)o + RT2 dT. 
To 

The I1Ho for any reaction and its temperature dependence can be determined by purely 
thermal (that is, calorimetric) measurements .  Thus, according to Eq. (1 1 .60), a measure
ment of the equilibrium constant at only one temperature together with the thermal 
measurements of I1Ho and I1Cp suffice to determine the value of Kp at any other tem
perature. 

The question naturally arises whether or not it is possible to calculate the equilibrium 
constant exclusively from quantities that have been determined calorimetrically. In view 
of the relation I1Go = - RT ln Kp , the equilibrium constant can be calculated if I1Go is 
known. At any temperature T, by definition, 

( 1 1 .72) 
Since I1Ho can be obtained from thermal measurements, the problem resolves into the 
question of whether or not I1So can be obtained solely from thermal measurements .  

For any single substance 
( 1 1 .73) 

where Sr is the entropy of the substance at temperature T; So , the entropy at 0 K, and 
SO-+ T is the entropy increase if the substance is taken from 0 K to the temperature T. 
The SO-+T can be measured calorimetrically. For a chemical reaction, using Eq. ( 1 1 .73) 
for each substance 

I1So = I1So + I1S0-+ T '  
Putting this result into Eq. (1 1 .72), we obtain 

Therefore 
I1Go = I1Ho - T I1So - T I1S0-+T ' 

In K = I1So + 
I1So -+ T _ 11H� 

R R RT (1 1 .74) 

Since the last two terms in Eq. ( 1 1 .74) can be calculated from heat capacities and heats of 
reaction, the only unknown quantity is I1So , the change in entropy of the reaction at 0 K. 
In 1906, Nernst suggested that for all chemical reactions involving pure crystalline solids, 
I1So is zero at the absolute zero ; the N ernst heat theorem. In 1913 ,  Planck suggested that 
the reason that I1So is zero is that the entropy of each individual substance taking part in 
such a reaction is zero . It is clear that Planck's statement includes the Nernst theorem. 
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However, either one is sufficient for the solution of the problem of determining the 
equilibrium constant from thermal measurements. Setting LlSg = 0 in Eq. (1 1 . 74), we 
obtain 

(1 1 .75) 

where LlSo is the difference, at temperature T, in the third-law entropies of the substances 
involved in the reaction. Thus it is possible to calculate equilibrium constants from 
calorimetric data exclusively, provided that every substance in the reaction follows 
the third law. 

Nernst based the heat theorem on evidence from several chemical reactions. The 
data showed that, at least for those reactions, LlGo approached LlHo as the temperature 
decreased ; from Eq. (1 1 .72) 

If LlGo and LlHo approach each other in value, it follows that the product T LlSo -.. 0 
as the temperature decreases. This could be because T is getting smaller ; however, the 
result was observed when the value of T was still of the order of 250 K. This strongly 
suggests that LlSo -.. ° as T -.. 0, which is the Nernst heat theorem. 

The validity of the third law is tested by comparing the change in entropy of a reaction 
computed from the third-law entropies with the entropy change computed from equi
librium measurements. Discrepancies appear whenever one of the substances in the 
reaction does not follow the third law. A few of these exceptions to the third law were 
described in Section 9 . 17. 

* 1 1 . 1 7  C H E M I CA L  R EACTI O N S  A N D T H E 
E N T R O PY O F T H E U N IV E R S E  

A chemical reaction proceeds from some arbitrary initial state to the equilibrium state. 
If the initial state has the properties T, p, G1 , HI ' and S 1 , and the equilibrium state has the 
properties T, p, Ge , He ' Se , then the Gibbs energy change in the reaction is LlG = Ge - G1 ; 
the enthalpy change is LlH = He - HI' and the entropy change of the system is LlS = 
Se - S1 ' Since the temperature is constant, we have 

LlG = LlH - T LlS, 
and since the pressure is constant, Qp = LlH. The heat that flows to the surroundings 
is Qs = - Qp == - LlH. If we suppose that Qs is transferred reversibly to the immediate 
surroundings at temperature T, then the entropy increase of the surroundings is 
LlSs = Qs /T = - LlH/T; or LlH = - T LlSs ' In view of this relation we have 

LlG = - T(LlSs + LlS). 
The sum of the entropy changes in the system and the immediate surroundings is the 
entropy change in the universe ; we have the relation 

LlG = - T LlSuniverse ' 
In this equation we see the equivalence of the two criteria for spontaneity : the Gibbs 

energy decrease of the system and the increase in entropy of the universe. If LlSuniverse is 
positive, then I1G is negative. Note that it is not necessary for spontaneity that the entropy 
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of the system increase and in many spontaneous reactions the entropy of the system 
decreases ; for example, Na + !Clz ---+ NaCl. The entropy of the universe must increase 
in any spontaneous transformation. 

* 1 1 . 1 8  C O U P L E D  R EACTI O N S  

It often happens that a reaction which would be useful to produce a desirable product 
has a positive value of I1G. For example, the reaction 

I1G�9 8  = + 1 52.3 kllmol, 

would be highly desirable for producing titanium tetrachloride from the common ore 
TiOz . The high positive value of I1Go indicates that at equilibrium only traces of TiCl4 
and 0z are present. Increasing the temperature will improve the yield TiCl4 but 
not enough to make the reaction useful. However, if this reaction is coupled with 
another reaction that involves a I1G more negative than - 1 52.3 kllmol, then the 
composite reaction can go spontaneously. If we are to pull the first reaction along, 
the second reaction must consume one of the products ; since TiCl4 is the desired 
product, the second reaction must consume oxygen. A likely prospect for the second 
reaction is 

I1G�98 = - 394.36 kllmol. 

The reaction scheme is 

coupled {TiOz(S) + 2CI2(g) 
reactions C(s) + 02(g) 

and the overall reaction is 

-----+ TiCI4(l) + °zCg), 
-----+ C°zCg), 

I1G�98 = + 1 52.3 kllmol, 
I1G�98  = - 394.4 kllmol, 

C(s) + Ti02(s) + 2 CI2(g) -----+ TiC14(l) + COz(g), I1G�98  = - 242. 1 kllmol. 

Since the overall reaction has a highly negative I1Go, it is spontaneous. As a general rule 
metal oxides cannot be converted to chlorides by simple replacement ; in the presence 
or carbon, the chlorination proceeds easily. 

Coupled reactions have great importance in biological systems. Vital functions in an 
organism often depend on reactions which by themselves involve a positive I1G ; these 
reactions are coupled with the metabolic reactions, which have highly negative values of 
I1G. As a trivial example, the lifting of a weight by Mr. Universe is a nonspontaneous 
event involving an increase in Gibbs energy. The weight goes up only because that event 
is coupled with the metabolic processes in the body that involve decreases in Gibbs 
energy sufficient to more than compensate for the increase associated with the lifting 
of the weight. 

1 1 . 1 9  D E P E N D E N C E  O F  T H E OTH E R  T H E R M O DY NA M I C  
F U N CTI O N S  O N  C O M P O S ITI O N  

Having established the relation between the Gibbs energy and the composition, we can 
readily obtain the relation of the other functions to the composition. Considering the 
fundamental equation, Eq. (1 1 .7), 

dG = - S dT + V dp + I fli dni • i 
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We write the definitions of the other functions in terms of G : 
U = G - p V  + TS, 

H = G + TS, 
A = G - pv. 

Differentiating each o f  these definitions, we  have 

dU = dG - p dV - V dp + T dS + S dT, 
dH = dG + TdS + S dT, 
dA = dG - p dV - V dp. 

Replacing dG by its value in Eq. (1 1 .7), we obtain 

dU = T dS - p dV + L fli dn; , ; 
dH = T dS + V dp + L fl; dn; , ; 
dA = - S dT - p dV +  L fl; dn; , ; 
dG = - S dT + V dp + L fl; dni ' 

; 

(1 1 .76) 

( 1 1 .77) 

( 1 1 . 78) 

(1 1 .79) 

Equations ( 1 1 .76), ( 1 1 .77), (1 1 .78), and ( 1 1 .79) are the fundamental equations for systems 
of variable composition, and they imply that fli may be interpreted in four different ways : 

fli = 
(:�)s. v, nj 

= 
(��tp, nj 

= 
G�)T' V, nj 

= 
(��)T, p, nj 

( 1 1 .80) 

The last equality in Eq. ( 1 1 .80), namely 

fl; 
== (OG) , ani T, p, nj 

is the one we have used previously. 

1 1 . 20 PARTIAL M O LA R  QUA NTITI ES A N D A D D iTIVITY R U LES 

(1 1 .81) 

Any extensive property of a mixture can be considered as a function of T, p,  n l ' nz , . . . .  
Therefore, corresponding to any extensive property U, V, S, H, A, G, there are partial 
molar properties, Ui ' V;, S; , Hi , A; , a; . The partial molar quantities are defined by - (aU) U; = ani T, p, n/ 

V =  -
- (a V) 

! ani T, p, n/ 

- (OH) H; = ani T, p, n/ 

A · = -- (OA
) ! ani T, p, n/ 

- (OS
) Si = ani T, p , n/ 

(1 1 . 82) 

If we differentiate the defining equations for H, A, and G with respect to n; , keeping 
T, p, nj constant, and use the definitions in Eqs. ( 1 1 .82), we obtain 

( 1 1 . 83) 
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Equations (1 1 .83) show that the partial molar quantities are related to each other in 
the same way as the total quantities. (The use of fli rather than Vi for the partial molar 
Gibbs energy is customary.) 

The total differential of any extensive property then takes a form analogous to 
Eq. ( 1 1 .7). Choosing S, V, and H as examples, 

(OS ) (OS) _ dS = 
}T p, ni 

dT + OP I T, ni 
dp + � Si dni ; 

(OV) (OV) - ' dV = 
aT 

dT + a dp + L V; dni ; 
p, ni P T, ni l 

(OH) (OH) _ dH = a dT + a dp + 4: Hi dni ' 
T p, ni p T, ni ! 

(1 1 . 84) 

(1 1 .85) 

(1 1 .86) 

Since 5i , �,  and Hi are intensive properties they must have the same value everywhere 
in a system at equilibrium. Consequently, we could use precisely Jhe same argument 
that was used for G in Section 1 1 .3 to arrive at the additivity rules, namely, 

S = 'V n ·5 · f...J 1 .  P ( 1 1 . 87) i 
However, by proceeding differently we gain some additional insights. 

The Gibbs energy of a mixture is given by Eq. ( 1 1 .9), G = Li ni l1i ' If we differentiate 
this with respect to temperature (p and ni are constant), we obtain 

(OG) = L ni(OUi) . 
aT p, ni i aT p, ni 

(1 1 . 88) 

By Eq. (1 1 .79), the derivative on the left of Eq. ( 1 1 .88) is equal to - S. The derivative on 
the right is evaluated by differentiating Eq. (1 1 . 8 1) with respect to T (suppressing sub
scripts to simplify writing) : 

(��tni 
= O

� (:�) = O�i G�) = - (;:)T, p, nj 
= -5i · 

The second equality is correct since the order of differentiation does not matter (Section 
9.6) ;  the third since oGloT = -So This reduces Eq. (1 1 . 88) to 

(1 1 . 89) 

which is the additivity rule for the entropy. 
By differentiating Eq. (1 1 .9) with respect to p, keeping T and ni constant, we obtain 

(OG) = L ni(Ofli) . (1 1 .90) op T, ni i op T, ni 
Differentiating Eq. ( 1 1 . 8 1) with respect to p, we obtain 

(�)T, n i 
= 
:p (��) 

= O�i (��) = (��)T, p, nj = �, 
since (oGloph, ni = V. Equation ( 1 1 .90) then reduces to 

(1 1 .91) 
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which is the additivity rule for the volume. The other additivity rules can be established 
from these by taking the appropriate equation from the set ( 1 1 .8 3). For example, multiply 
the last equation in the set by ni and sum : 

I nif.1i = I n;lli - T I ni Si ' i i i 
In view of Eqs. (1 1 .9) and (1 1 .89) this becomes 

G = I n}Ii - TS, 
i 

but, by definition, G = H - TS ; therefore 

H = I n}li ' i 
In the same way, the additivity rules for U and A can be derived. 

Any extensive property 1 of a system follows the additivity rule 1 = I nJi ' i 

where Ji is the partial molar quantity 

Ii = ( 81) . 
ani T, p, nj 

(1 1 .92) 

( 1 1 .93) 

(1 1 . 94} 

This is true also for the total number of moles, N = Ii ni '  or the total mass, M = 
Ii niMi ·  The partial molar mole numbers are all equal to unity. The partial molar mass 
of a substance is its molar mass. 

1 1 . 21 T H E  G I B B S-D U H E M  E Q U ATI O N  

An additional relation between the f.1i can be obtained by differentiating Eq. ( 1 1 .9) : 

dG = I (ni df.1i + f.1i dn;), i 
but, by the fundamental equation, 

dG = - S dT + V dp + I f.1i dni · i 
Subtracting, the two equations yield 

I ni df.1i = - S dT + V dp, (1 1 .95) 
i 

which is the Gibbs-Duhem equation. An important special case arises if the temperature 
and pressure are constant and only variations in composition occur ; Eq. (1 1 .95) becomes 

I ni df.1i = 0 
i 

(T, p constant). (1 1 .96) 

Equation (1 1 .96) shows that if the composition varies, the chemical potentials do not 
change independently but in a related way. For example, in a system of two constituents, 
Eq. ( 1 1 . 96), becomes 

(T, p constant). 
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Rearranging, we have 

d�2 = - (:J d�l ' (1 1 .97) 

If a given variation in composition produces a change d�l in the chemical potential of the 
first component, then the concomitant change in the chemical potential of the second 
component d�2 is given by Eq. (1 1 .97). 

By a similar argument it can be shown that the variations with composition of any 
of the partial molar quantities are related by the equation 

(T, p constant), (1 1 .98) 

where Ji is any partial molar quantity. 

1 1 . 22 PARTIAL M O LA R  QUANTITI ES I N  M I XT U R ES O F  I D EA L  G A S E S  

The various partial molar quantities for the ideal gas are obtained from �i ' From 
Eq. ( 1 1 . 1 3), 

�i = ��(T) + RT ln p + RT ln Xi = �i(pure) + RT ln Xi ' 

Differentiating, we have 

But (a�JaT)p, ni = - Si ' so that 

Si = S� - R In p - R In Xi = Si(pure) - R In Xi ' (1 1 .99) 

Similarly, differentiation of �i with respect to pressure, keeping T and all ni constant, 
yields 

Since (a�Japh, ni = V; ,  we obtain 

R T  
p 

- RT 
V; = - .  

P 
(1 1 . 100) 

For an ideal gas mixture we have V = nRTjp, where n is the total number of moles of all 
the gases in the mixture. Therefore 

- V 
V; = -, 

n 
(1 1 . 101) 

which shows that in a mixture of ideal gases, the partial molar volume is simply the 
average molar volume, and that the partial molar volume of all the gases in the mixture 
has the same value. 

From Eqs. ( 1 1 . 1 3), (1 1 . 83), (1 1 .99), and ( 1 1 . 100) it is easy to show that Hi = 
�f + TSf = Hf, and that 0i = Hf - RT = Of. 
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If dn moles of pure solid i, with molar enthalpy Hr, are added at constant T and p to a 
solution in which the partial molar enthalpy is Hi , then the heat absorbed is dq = dH 
= (Hi - HD dn. (The system contains both solid and solution.) The differential heat of 
solution is defined as dq/dn : 

dq - - 0  

dn = Hi - Hi ' (1 1 . 102) 

The differential heat of solution is a more generally useful quantity than the integral 
heat of solution defined in Section 7.22. 

QU ESTI O N S  

1 1 . 1  What is the importance of the chemical potential ? What is its interpretation ? 
1 1 .2 How can the quantity - aG/a� be viewed as a " driving force " towards chemical equilibrium. 

Discuss. 
1 1 .3 Sketch G versus � for a reaction for which f1Go < O. What are the roles of both f1Go and the 

mixing Gibbs energy in determining the equilibrium position ? 
1 1 .4 What is the distinction between Kp and Qp for a gas phase reaction ? 
1 1 .5 If initially Qp < Kp for a reaction system, what is the sign of the slope f1G = aG/a� ? What 

subsequently happens to the pressures of the species in the system? Answer the same questions 
for Qp > Kp . 

1 1 .6 Sketch a G versus � plot for the " reaction " A(l) ¢ A(g) for three different external pressures : 
Pext less than, equal to, and greater than exp [ - f1Go/RT] . (� = the fraction of A in the gaseous 
state.) What does the equilibrium condition aG/a� = 0 give for the equilibrium vapor pressure 
in terms of P ext ?  

1 1 . 7  What i s  the connection between the temperature effects on  equilibrium described by  Eqs. ( 1 1 . 58) 
and ( 1 1 .70) ? 

1 1 .8 Apply the LeChatelier principle, Eq. ( 1 1 .7 1 ), to predict the effect of pressure on the gas phase 
equilibria (a) Nz + 3 Hz ¢ 2NH3 ; (b) NZ04 ¢ 2NOz ' 

1 1 .9 What is the practical value of the Nernst heat theorem in calculating equilibrium constants ? 
11 .10  What is the origin of the increased entropy of the universe in a reaction for which f1Ho � O  

and f1So < O ? 

P R O B LE M S  

In all of the following problems, the gases are assumed to be ideaL 
1 1 . 1  Plot the value of (J1 - J1°)!R T  for an ideal gas as a function of pressure. 
1 1 .2 The conventional standard Gibbs energy of ammonia at 25 °C is - 16.5 kJ/moL Calculate the 

value of the molar Gibbs energy at 1, 2, 10, and 100 atm. 
1 1 .3 Consider two pure gases A and B, each at 25 °C and 1 atm pressure. Calculate the Gibbs energy 

relative to the unmixed gases of 
a) a mixture of 10 mol of A and 10 mol of B ;  
b) a mixture of 1 0  mol of A and 20 mol of B. 
c) Calculate the change in Gibbs energy if 10 mol of B are added to the mixture of 10 mol of 

A with 10 mol of B. 
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11 .4 a) Calculate the entropy of mixing 3 mol of hydrogen with 1 mol of nitrogen. 
b) Calculate the Gibbs energy of mixing at 25 DC. 
c) At 25 DC, calculate the Gibbs energy of mixing 1 - � mol of nitrogen, 3(1 - �) mol of 

hydrogen, and 2� mol of ammonia as a function of �. Plot the values from � = 0 to � = 1 
at intervals of 0.2. 

d) If �Gf(NH3) = - 16.5 kJ/mol at 25 DC, calculate the Gibbs energy of the mixture for values 
of � = 0 to � = 1 at intervals of 0.2. Plot G versus � if the initial state is the mixture of 1 mol 
N2 and 3 mol H2 . Compare the result with Figure 1 1 .5 .  

e) Calculate G for �e at p = 1 atm. 
1 1 .5 Four moles of nitrogen, n mol of hydrogen and (8 - n) mol of oxygen are mixed at T = 300 K 

and p = 1 atm. 
a) Write the expression for �Gmix/mol of mixture. 
b) Calculate the value of n for which �GmiJmol has a minimum. 
c) Calculate the value of �GmiJmol of the mixture at the minimum. 

11 .6 Show that in an ideal ternary mixture, the minimum Gibbs energy is obtained if Xl = X2 = 
X3 = t-

11 .7  Consider the reaction 
H2(g) + lig) --+ 2 HI(g). 

a) If there are 1 mol of H2 , 1 mol of 12 , and 0 mol of HI present before the reaction advances, 
express the Gibbs energy of the rea�tion mixture in terms of the advancement �. 

b) What form would the expression for G have if the iodine were present as the solid ? 
11 .8 At 500 K, we have the data 

Substance Llli�oo/(kJ/mol) 

32.41 
5 .88 

69.75 

S�oo/(J/K mol) 

221 .63 
145.64 
279.94 

One mole of H2 . and one mole of 12 are placed in a vessel at 500 K. At this temperature only 
gases are present and the equilibrium 

H2(g) + lig) � 2 HI(g) 
is established. Calculate Kp at 500 K and the mole fraction of HI present at 500 K and 1 atm. 
What would the mole fraction of HI be at 500 K and 10 atm? 

11 .9 a) Equimolar amounts of H2 and CO are mixed. Using data from Table A-Y calculate the 
equilibrium mole fraction of formaldehyde, HCHO(g), at 25 DC as a function of the total 
pressure ; evaluate this mole fraction for a total pressure of 1 atm and for 10 atm. 

b) If one mole of HCHO(g) is placed in a vessel, calculate the degree of dissociation into H2(g) 
and CO(g) at 25 DC for a total pressure of 1 atm and 10 atm. 

c) Calculate Kx at 10 atm and Kc for the synthesis of HCHO. 
11 .10 For ozone at 25 DC, �Gf = 163.2 kJ/mol. 

a) At 25 DC, compute the equilibrium constant Kp for the reaction 

3 02(g) � 20ig) 
b) Assuming that the advancement at equilibrium, �e , is very much less than unity, show that 

�e = tJPK;. (Let the original number of moles of O2 be three, and of 03 be zero .) 
c) Calculate Kx at 5 atm and Kc . 
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At 25 °C for NOCI(g), L'lG'} = 66.07 kJ/mal ; for NO(g), L'lG'} = 86.57 kJ/mol. If NO and Clz are 
mixed in the molar ratio 2 : 1 ,  show that XNO = (2IpKp) 1 /3 and XNOC1 = 1 - ¥,,2IpKp) 1 /3 at 
equilibrium. (Assume that XNOC1 ::::; 1 .) Note how each one ofthese quantities depends on pressure. �valuate XNO at 1 atm and at 10 atm. 

�onsider the dissociation of nitrogen tetroxide : NZ04(g) ¢ 2NOz(g) at 25 °C. Suppose 1 mol 
of Nz04 is confined in a vessel under 1 atm pressure. Using data from Table A-V, 
it) calculate the degree of dissociation. 
b) If 5 mol of argon are introduced and the mixture confined under 1 atm total pressure, ,,/ 

what i s  the degree of  dissociation ? I 2> 7 J 
c) The system comes to equilibrium as in (a). If the volume of the vessel is then kept constant r / 

and 5 mol of argon are introduced, what will be the degree of dissociation ? n / if i.? 
11 .13 From the data in Table A-V compute Kp for the reaction Hig) + S(rhombic) ¢ HzS(g) at 

25 °C. What is the mole fraction of Hz present in the gas phase at equilibrium? 
1 1 .14 Consider the following equilibrium at 25 °C : 

PCIs(g) � PCI3(g) + Clz(g)· 
a) From the data in Table A-V compute L'lGo and L'lHo at 25 °C. 
b) Calculate the value of Kp at 600 K. 
c) At 600 K calculate the degree of dissociation at 1 atm and at 5 atm total pressure. 

1 1 .15 At 25 °C the data are 

Compound L'lG'}I(kJ/mol) 

68 . 1  
209.2 

a) Calculate Kp at 25 °C for the reaction 

L'lH'}I(kJ/mol) 

52.3 
226.7 

CZH4(g) � CzHz(g) + Hz(g)· 
b) What must the value of Kp be if 25 percent of the CZH4 is dissociated into CzHz and Hz at a 

total pressure of 1 atm? 
c) At what temperature will Kp have the value determined in (b) ? 

11 .16 At 25 °C, for the reaction 
Br z(g) � 2 Br(g), 

we have L'lGo = 16 1 .67 kJ/mol, and L'lHo = 192. 8 1  kJ/mol. 
a) Compute the mole fraction of bromine atoms present at equilibrium at 25 °C and p = 1 atm. 
b) At what temperature will the system contain 10 mol percent bromine atoms in equilibrium 

with bromine vapor at p = 1 atm. 
11 .17  For the reaction 

Hig) + Iig) � 2 HI(g), 
�p = 50.0 at 448 °C and 66.9 at 350 0C. Calculate L'lHo for this reaction. e,At 600 K the degree of dissociation of PCIs(g) according to the reaction 

PCIs(g) � PCI3(g) + ClzCg) 
is 0.920 under 5 atm pressure. 
a) What is the degr�e of �is�ociation un�er 1 atm pressure ? J f/ 6:8 1 <7  /(J� ; )  
b) If the degree of dISSOCIatIOn at 520 K IS 0.80 at 1 atm pressure, what are L'l.Ir ,  L'lGo, and AS. ' 

at 520 K?  
� 

G )(� 
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11 .19 At SOO K, 2 mol of NO are mixed with 1 mol of Oz . The reaction 
2NO(g) + 0z(g) � 2NOz(g) 

comes to equilibrium under a total pressure of 1 atm. Analysis of the system shows that 0.71 
mol of oxygen are present at equilibrium. 
a) Calculate the equilibrium constant for the reaction. 
b) Calculate I1Go for the reaction at SOO K. 

1 1 .20 Consider the equilibrium 
C2H6(g) � CZH4(g) + Hz(g)· 

At 1000 K and 1 atm pressure, C2H6 is introduced into a vesseL At equilibrium, the mixture 
consists of 26 mol percent Hz , 26 mol percent CzH4 and 4S mol percent CzH6 . 
a) Calculate Kp at 1000 K. 
b) If I1Ho = 1 37.0 kllmol, calculate the value of Kp at 29S. 1 5  K. 
c) Calculate I1Go for this reaction at 29S . 1 5  K. 

11 .21 Consider the equilibrium 
NOzCg) � NO(g) + !02(g) . 

One mole of NOz is placed in a vessel and allowed to come to equilibrium at a total pressure of 
1 atm. Analysis shows that 

T 700 K SOO K 

O.S72 2.50 

a) Calculate Kp at 700 K and SOO K. 
b) Calculate I1Go and I1Ho. 

11 .22 Consider the equilibrium 
CO(g) + HzO(g) � COzCg) + HzCg). 

a) At 1000 K the composition of a sample of the equilibrium mixture is 

Substance COz Hz CO H2O 

mol % 27. 1 27. 1 22.9 22.9 

Calculate Kp and I1Go at 1000 K. 
b) Given the answer to part (a) and the data 

Substance C°zCg) H2(g) CO(g) H2O(g) 

I1Hil(kllmol) - 393 .5 1  0 - 1 10.52 - 241 . S 1  

Calculate I1Go  for this reaction at  29S . 1 5  K .  
1 1.23 Nitrogen trioxide dissociates according to  the equation 

NZ03(g) � NOz(g) + NO(g). 
At 25 °C and 1 atm total pressure the degree of dissociation is 0.30. Calculate I1Go for this reac
tion at 25 °C. 

1 1 .24 Consider the synthesis of formaldehyde : 
CO(g) + HzCg) � CHzO(g). 

At 25 °C, I1Go = 24. kllmol and I1Ho = - 7 kllmoL For CHzO(g) we have : CplR = 2.263 + 
7.021 ( 10- 3)T  - l .S77( 10- 6)Tz. The heat capacities of Hz(g) and CO(g) are given in Table 7. 1 . 
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a) Calculate the value of Kp at 1000 K assuming I1HD is independent of temperature. 
b) Calculate the value of Kp at 1000 K taking into account the variation of I1HD with temper

ature, and compare the result with that in (a). 
c) At 1000 K compare the value of Kx at 1 atm pressure with that at 5 atm pressure. 

11 .25 At 25 DC for the reaction 
HzO(l) � HzO(g), 

I1W = 44.016  kJ/mol. If Cp(l) = 75.29 J/K mol and Cig) = 33 .58 J/K mol, calculate I1W for 
this reaction at 100 0c. 

11 .26 Liquid bromine boils at 58.2 DC ; the vapor pressure at 9.3 °C is 100 Torr. Calculate the standard 
Gibbs energy of Br ig) at 25 DC. 

11 .27 Consider the reaction 
FeO(s) + CO(g) 

for which we have 

600 1000 

0.900 0.396 

a) Calculate I1Ho, I1Go, and I1SD for the reaction at 600 DC. 
b) Calculate the mole fraction of COz in the gas phase at 600 DC. 

1 1 .28 If the reaction 
FezN(s) + 1Hz(g) � 2 Fe(s) + NH3(g) 

comes to equilibrium at a total pressure of 1 atm, analysis of the gas shows that at 700 K and 
800 K PNH'/PH2 = 2 .165 and 1 .083, respectively, if only Hz was present initially with an excess 
of FezN. Calculate 
a) Kp at 700 K and 800 K. 
b) I1W and I1SD. 
c) I1GD at 298. 1 5  K. 

11 .29 From the data in Table A-V find the values of I1GD and I1HD for the reactions 
MC03(s) � MO(s) + COzCg) ; (M = Mg, Ca, Sr, Ba). 

Under the rash assumption that I1HD for these reactions does not depend on temperature, 
calculate the temperatures at which the equilibrium pressure of COz in these carbonate-oxide 
systems reaches 1 atm. (This is the decomposition temperature of the carbonate.) 

11.30 Solid white phosphorus has a conventional standard Gibbs energy of zero at 25 DC. The melting 
point is 44.2 DC and I1H�us = 2510 J Imol P 4 '  The vapor pressure of white phosphorus has the 
values 

t;oC 
plTorr 

76.6 

a) Calculate I1H�ap of liquid phosphorus. 
b) Calculate the boiling point of the liquid. 

128.0 
10 

c) Calculate the vapor pressure at the melting point. 

197.3 
100 

d) Assuming that solid, liquid, and gaseous phosphorus are in equilibrium at the melting 
point, calculate the vapor pressure of solid white phosphorus at 25 DC. 

e) Calculate the standard Gibbs energy of gaseous phosphorus at 25 0c. 
n.31 For the reaction at 25 DC 

Zn(s) + Clz(g) � ZnClz(s), 
I1GD = - 369.43 kllmol and I1HD = - 41 5.05 kJ/mol. Sketch I1GD as a function of temperature 
in the range from 298 K to 1 500 K for this reaction under the condition that all the substances 
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are in their stable states of aggregation at every temperature. The data are (Tm = melting point ; 
Tb = boiling point) : 

LiHrus/(kJ/mol) LiH vap/(kJ /mol) 

Zn 
ZnClz 

H.32 For the reaction 

692.7 
548 

7 .385 
23.0 

1 180 
1029 

Hg(l) + 102(g) � HgO(s), 

1 14.77 
129.3 

0.42 X lOs 
LiGo/(J/mol) = - 9 1 044 + 1 .54T ln T - 10.33(1O- 3)T2 -

T 
+ 103.8 1 T  

a) What is the vapor pressure of oxygen over liquid mercury and solid HgO at 600 K?  
b )  Express In Kp , LiHo, and LiSo a s  functions of temperature. 

11 .33 Consider the reaction 
AgzO(s) � 2Ag(s) + 102(g), 

for which LiGo/(J/mol) = 32 384 + 1 7.32T 1og1 0 T - 1 16.48T. 
a) At what temperature will the equilibrium pressure of oxygen be 1 atm? 
b) Express logl o Kp ' LiHo, and LiSo as functions of temperature. 

11 .34 The values of LiGo and LiHo at 25 °C for the reactions 
C(graphite) + 102(g) � CO (g) 

can be obtained from the data in Table A-V. 
and 

a) Assuming that the values of LiHo do not vary with temperature, compute the composition 
(mole percent) of the gas in equilibrium with solid graphite at 600 K and 1000 K if the total 
pressure is 1 atm. Qualitatively, how would the composition change if the pressure were 
increased ? 

b) Using the heat capacity data in Table 7 . 1 ,  compute the composition at 600 K and 1000 K 
(1 atm) and compare the results with those in (a). 

c) Using the equilibrium constants from (b), compute the composition at 1000 K and 10 atm 
pressure. 

11 .35 At 25 °C, the data for the various isomers of CsH l o in the gas phase are 

Substance LiHi/(kJ/mol) LiGi/(kJ /mol) logl o Kf 

A = I -pentene - 20.920 78.605 - 13 .7704 
B = cis-2-pentene - 28.075 7 1 .852 - 12.5874 
C = trarts-2-pentene - 3 1 .757 69.350 - 12. 1495 
D = 2-methyl- l -butene - 36.3 1 7  64.890 - 1 1 .3680 
E = 3-methyl-l -butene - 28.953 74.785 - 13 . 1017  
F = 2-methyl-2-butene - 42.551 59.693 - 10.4572 
G = cyc10pentane - 77.24 38 .62 - 6.7643 

Consider the equilibria 
A � B � C � D � E � F � G, 

which might be established using a suitable catalyst. 
a) Calculate the mole ratios (A/G), (B/G), . . .  , (F /G) present at equilibrium at 25 °C. 
b) Do these ratios depend on the total pressure ? 
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c) Calculate the mole percent of the various species in the equilibrium mixture. 
d) Calculate the composition of the equilibrium mixture at 500 K. 

11 .36 The following data are given at 25 DC. 

Compound 

l\Hil(kllmol) 
l\Gil(kllmol) 

C�/(lIK mol) 

CuO(s) 

- 157 
- 130 

42.3 

Cu(s) 

- 169 
- 146 

63.6 24.4 29.4 

a) Calculate the equilibrium pressure of oxygen over copper and cupric oxide at 900 K and at 
1200 K ; that is, the equilibrium constant for the reaction 2 CuO(s) ¢ 2 Cu(s) + OzCg). 

b) Calculate the equilibrium pressure of oxygen over CUzO and Cu at 900 K and 1200 K. 
c) At what temperature and pressure do Cu, CuO, CUzO, and O2 coexist in equilibrium? 

1 1 .37 The standard state of zero Gibbs energy for phosphorus is solid white phosphorus, P 4(S). At 
25 DC, 

P 4(S) 
tP4(s) 
1 P 4(S) 

P 4(g), 

peg), 
PzCg), 

l\W = 58.9 kllmol, 
l\W = 3 16 .5 kJ/mol, 
l\W = 144.0 kllmol, 

l\GO = 24.5 kJ/mol ; 
l\GD = 280. 1 kJ/mol ; 
l\Go = 103.5 kllmo!. 

a) The P 4 molecule consists offour phosphorus atoms at the corners of a tetrahedron. Calculate 
the bond strength of the P-P bond in the tetrahedral molecule. Calculate the bond strength 
in Pz . 

b) Calculate the mole fractions of P, P z , and P 4 in the vapor at 900 K and 1200 K, and 1 atm 
total pressure. 

1 1 .38 In a gravity field the chemical potential of a species is increased by the potential energy required 
to raise one mole of the material from ground level to the height z. Then !li(T, p, z) = !liCT, p) + 
MigZ, in which !liCT, p) is the value of !Ii at ground leve!, Mi is the molar mass, and 9 is the 
gravitational acceleration. 
a) Show that if we require the chemical potential to be the same everywhere in an isothermal 

column of an ideal gas, this form of the chemical potential yields the barometric distribution 
law, Pi = Pia exp ( - Mi gzlR T). 

b) Show that the condition of chemical equilibrium is independent of the presence or absence of 
a gravity field. 

c) Derive expressions for the entropy and enthalpy as functions of z. (Hint: Write the differ
ential of !Ii in terms of dT, dp, and dz.) 

n .39 The degree of dissociation, IX, of NZ04 is a function of the pressure. Show that if the mix
ture remains in equilibrium as the pressure is changed, the apparent compressibility 
( - 1IV) (iWI3ph = (lip) [1 + 11X.(1  - IX.)] . Show that the quantity in brackets has a maximum 
value at p = iKp . 

HAO One mole of NZ04 is placed in a vessel. When the equilibrium 
N z 0 4 (g) :;:::::=::::': 2 NO z 

is established, the enthalpy of the equilibrium mixture is 
H = ( 1  - (.)H(N204) + 2 (. B(N02) 

If the mixture remains in equilibrium as the temperature is raised, 
a) show that the heat capacity is given by 

Cp/R = Cp(NZ04)/R + (.l\CpIR + 1(.(1 - (;)(l\WIR T)Z ; 
b) show that the last term has a maximum value when (. = 1J3; 
c) plot CplR versus T from 200 K to 500 K at p = 1 atm using 

CiNz04)IR = 9.29 and Cp(NOz)IR = 4.47 ; l\H�98  = 57.20 kJ/mo! ; l\G�98 = 4.77 kllmo!. 
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1 1 .41 Consider the equilibrium 
Ti02(s) + 2CI2(g) � TiCI4(1) + °2(g)· 

L1Hvap(TiCI4) = 35 . 1 kllmol at 409 K, the normal boiling point of TiCI4 . At 298. 1 5  K 

Substance 

L1HJI(kllmol) 
L1Gjl(kJ Imol) 

TiOz(s) 

- 945 
- 890 

- 804 
- 737 

a) Calculate Kp for the reaction at 500 K and 1000 K under 1 atm pressure. 
b) Using data from Table A-V for the reaction 

CCgraphite) + 02(g) CO2(g), 
calculate the value of Kp for the reaction 

CCgraphite) + Ti02(s) + 2Clz(g) � TiCI4(g) + COz(g) 
at 500 K and 1000 K. 

c) If one mol of Ti02 and 2 mol of Clz (and 1 mol C when needed) are placed in the vessel, 
calculate the fraction of Ti02 converted to TiCl4 at 500 K and 1000 K if the total pressure is 
1 atm. Do this for the reactions in (a) and (b). Compare the yield in (a) to that in (b). 

1 1 .42 Consider the two equilibria, 
Az � 2A 
AB � A + B, 

( 1 )  
(2) 

and assume that the L1Go and therefore Kp is the same for both. Show that the equilibrium value 
of �2 is greater than the equilibrium value of � 1 . What is the physical reason for this result ? 

1 1 .43 An athlete in the weight room lifts a 50 kg mass through a vertical distance of 2.0 m ;  g = 
9.8 m/s2 The mass is allowed to fall through the 2.0 m distance while coupled to an electrical 
generator. The electrical generator produces an equal amount of electrical work, which is used 
to produce aluminum by the Hall electrolytic process. 

Alz03(sln) + 3 C(graphite) -----> 2Al(l) + 3 CO(g). 
L1Go = 593 kllmo!. How many times must the athlete lift the 50 kg mass to provide sufficient 
Gibbs energy to produce one soft drink can ( ;::;:; 27 g). Nate : This is the energy for the electrol
ysis. It is estimated that the total energy expenditure required to produce aluminum from the 
ore is about three times this amount. 



P h ase Eq u i l i b r i u m  
S i m p l e  Syste ms ; 
T h e  P h ase R u l e 

1 2 . 1  T H E EQU I LI B R I U M C O N D ITI O N  

• 

I n  

For a system in equilibrium the chemical potential of each constituent must be the same 
everywhere in the system. If there are several phases present, the chemical potential of each 
substance must have the same value in every phase in which that substance appears. 

For a system of one component, fJ = Gin ; dividing the fundamental equation by n, we 
obtain 

dfJ = - S dT + V dp, (12 . 1)  

where S and V are the molar entropy and molar volume. Then 

and 
(OfJ) 

= 
v. 

op T 
(12.2a, b) 

The derivatives in Eqs. (l2 .2a, b) are the slopes of the curves fJ versus T and fJ versus p, 
respectively. 

1 2 . 2  STA B i L ITY O F  T H E P HAS E S  O F  A P U R E  S U B STA N C E  

By the third law of thermodynamics, the entropy of a substance is always positive. This 
fact combined with Eq. (12.2a) shows that (ofJloT)p is always negative. Consequently, the 
plot of fJ versus T at constant pressure is a curve with a negative slope. 

For the three phases of a single substance we have (0 fJsolid) 
= _ S . 

aT solId 
p 

(OfJliq) 
= _ S . 

aT IIq 
p 

(0 fJgas) 
= _ S 

iJT p 
gas '  (12 .3) 
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At any temperature, 8gas � 8liq > 8s0lid • The entropy of the solid is small so that in Fig. 12. 1 
the 11 versus T curve for the solid, curve S, has a slight negative slope. The 11 versus T curve 
for the liquid has a slope which is slightly more negative than that of the solid, curve L. 
The entropy of the gas is very much larger than that of the liquid, so the slope of curve G 
has a large negative value. The curves have been drawn as straight lines ; they should be 
slightly concave downward. However, this refinement does not affect the argument. 

The thermodynamic conditions for equilibrium between phases at constant pressure 
are immediately apparent in Fig. 12. 1 .  Solid and liquid coexist in equilibrium when 
Ilsolid = Illiq ; that is, at the intersection point of curves S and L. The corresponding tempera
ture is Tm , the melting point. Similarly, liquid and gas coexist in equilibrium at the tempera
ture 1/" the intersection point of curves L and G at which Illiq = Ilgas . 

The temperature axis is divided into three intervals. Below Tm the solid has the lowest 
chemical potential. Between Tm and 1/, the liquid has the lowest chemical potential. Above 
1/, the gas has the lowest chemical potential. The phase with the lowest value of the chemical 
potential is the stable phase. If liquid were present in a system at a temperature below Tm , 
Fig. 12.2, the chemical potential of the liquid would have the value Ila while the solid has 
the value Ilb '  Thus, liquid could freeze spontaneously at this temperature, since freezing will 
decrease the Gibbs energy. At a temperature above Tm the situation is reversed : the 11 ofthe 
solid is greater than that of the liquid and the solid melts spontaneously to decrease the 
Gibbs energy of the system. At Tm the chemical potentials of solid and liquid are equal, so 
neither phase is preferred ; they coexist in equilibrium. The situation is much the same near 
1/, .  Just below Tb liquid is stable, while just above 1/, the gas is the stable phase. 

The diagram illustrates the familiar sequence of phases observed if a solid is heated 
under constant pressure. At low temperatures the system is completely solid ; at a definite . 
temperature Tm the liquid forms ; the liquid is stable until it vaporizes at a temperature 
1/, .  This sequence of phases is a consequence of the sequence of entropy values, and so is an 
immediate consequence of the fact that heat is absorbed in the transformation from solid 
to liquid, and from liquid to gas. 

F i g u re 1 2 . 1  J.I versus T a t  constant 
pressu re .  

L 

T 

F igu  re 1 2 .2  J.I versus T at constant 
pressu re .  
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1 2 . 3  P R ES S U R E  D E P E N D E N C E  O F  p. V E R S U S  T C U RVES 

At this point i t  i s  natural to  ask what happens to  the curves if the pressure i s  changed. This 
question is answered using Eq. (12.2b) in the form dll = V dp. If the pressure is decreased, 
dp is negative, V is positive ; hence dll is negative, and the chemical potential decreases in 
proportion to the volume of the phase. Since the molar volumes of the liquid and solid are 
very small, the value of 11 is decreased only slightly ; for the solid from a to a'

, for the liquid 
from b to b' (Fig. 12 .3a). The volume of the gas is roughly 1000 times larger than that of the 
solid or liquid, so the 11 of the gas decreases greatly ; from c to c'. The curves at the lower 
pressure are shown as dashed lines parallel to the original lines in Fig. 12 .3(b). (The figure 
has been drawn for the case �iq > V.olid') Figure 12 .3(b) shows that both equilibrium 
temperatures (both intersection points) have shifted ; the shift in the melting point is small, 
while the shift in the boiling point is relatively large. The melting point shift has been 
exaggerated for emphasis ; it is actually very small. The decrease in boiling point of a 
liquid with decrease in pressure is neatly illustrated. At the lower pressure the range of 
stability of the liquid is noticeably decreased. If the pressure is reduced to a sufficiently low 
value, the boiling point of the liquid may even fall below the melting point of the solid 
(Fig. 12 .4). Then there is no temperature at which the liquid is stable ; the solid sublimes. 
At the temperature 1'., the solid and vapor coexist in equilibrium. The temperature 1'. is the 
sublimation temperature of the solid. It is very dependent on the pressure. 

Clearly there is some pressure at which the three curves intersect at the same tempera
ture. This temperature and pressure define the triple point ; all three phases coexist in 
equilibrium at the triple point. 

Whether or not a particular material will sublime under reduced pressure rather than 
melt depends entirely on the individual properties of the substance. Water, for example, 
sublimes at pressures below 6 1 1  Pa. The higher the melting point, and the smaller the 
difference between the melting point and boiling point at 1 atm pressure, the higher will be 
the pressure below which sublimation is observed. The pressure (in atm) below which 
sublimation is observed can be estimated for substances obeying Trouton's rule by the 
formula 

(a) 

(7'" - Tm) ln p = - 10.8 Tm . 

T' b 
(b) 

T 

F i g u re 1 2 .3  Effect of  pressu re on melt i ng and boi l i n g  points. So l id  l i n e  i nd icates 
h igh  pressure ;  dashed l i ne  low p ressu re .  

( 12.4) 
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G 

1 2 .4  T H E C LA P EY R O N  E Q U ATI O N  

L 

F i g u re 1 2 .4 J1 versus T for a 

T substance that sub l imes. 

The condition for equilibrium between two phases, CI. and [3, of a pure substance is 

(12 .5) 

If the analytical forms of the functions f.1a and f.1p were known, it would be possible, in 
principle at least, to solve Eq. (12. 5) for 

T = !(P) or p = geT). (12.6a, b) 

Equation (12 .6a) expresses the fact, illustrated in Fig. 12 .3(b), that the equilibrium tempera
ture depends on the pressure. 

In the absence of this detailed knowledge of the functions f.1a and f.1fJ ' it is possible 
nonetheless to obtain a value for the derivative of the temperature with respect to pressure. 
Consider the equilibrium between two phases CI. and [3 under a pressure p ;  the equilibrium 
temperature is T. Then, at T and p, we have 

f.1a(T, p) = f.1p(T, p). (12 .7) 

If the pressure is changed to a value p + dp, the equilibrium temperature will change to 
T + dT, and the value of each f.1 will change to f.1 + df.1. Hence at T + dT, p + dp the 
equilibrium condition is 

f.1a(T, p) + df.1a = f.1p(T, p) + df.1p . (12.8) 

Subtracting Eq. (12.7) from Eq. (12.8), we obtain 

df.1a = df.1p . (12 .9) 

We write df.1 explicitly in terms of dp and dT using the fundamental equation, Eq. (12. 1) :  

(12 . 10) 

Using Eqs. (12. 10) in Eq. ( 12.9), we get 

- Sa dT + Ya dp = - SfJ dT + flp dp. 
Rearranging, we have 

(Sp - SJ dT = (flp - Ya) dp. (12. 1 1) 

If the transformation is written CI. -+ [3, then !1S = Sp - Sa , and !1V = flp - Ya,  and 



Eq. (12 . 1 1) becomes 
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dT �V 
dp  �S 

or dp �S 
dT �V · 

Either of Eqs. (12. 12) is called the Clapeyron equation. 
The Clapeyron equation is fundamental to any discussion of the equilibrium between 

two phases of a pure substance. Note that the left-hand side is an ordinary derivative and 
not a partial derivative. The reason for this should be apparent from Eqs. (12.6). 

Figure 12.3(b) shows that the equilibrium temperatures depend on the pressure, since 
the intersection points depend on pressure. The Clapeyron equation expresses the 
quantitative dependence of the equilibrium temperature on pressure, Eq. (12. 12a), or the 
variation in the equilibrium pressure with temperature, Eq. (12 . 12b). Using this equation, 
we can plot the equilibrium pressure versus temperature schematically for any phase 
transformation. 

1 2 .4 . 1  The S o l i d-Li q u i d  Eq u i l i b r i u m  

Applying the Clapeyron equation t o  the transformation solid � liquid, we have 

�S = 8liq - 8s0lid = �Sfus � V = �iq - V.olid = � Vrus · 
At the equilibrium temperature, the transformation is reversible ; hence �Sfus = �HfusIT. 
The transformation from solid to liquid always entails an absorption of heat, (�Hfus is + ) ; 
hence 

�Sfus is + (all substances). 

The quantity � Vrus may be positive or negative, depending on whether the density of the 
solid is greater or less than that of the liquid ; therefore 

�Vrus is + 

�Vrus is -

(most substances) ; 

(a few substances, such as H20). 
The ordinary magnitudes of these quantities are 

�Sfus = 8 to 25 J/(K mol) �Vrus = ± (1 to 10) cm3/mole. 

If, for illustration, we choose : �Sfus = 16 J/(K mol) and �Vrus = ± 4  cm3/mol, then for 
the solid-liquid equilibrium line, 

dp 16 J/(K mol) 6 
dT ± 4(10 6) m3/mol = ± 4(10 ) Pa/K = ± 40 atm/K. 

Inverting, we obtain dT  Idp = ± 0.02 K/atm. This value shows that a change in pressure of 
1 atm alters the melting point by a few hundredths of a kelvin. In a plot of pressure as a 
function of temperature, the slope is given by Eq. (12 . 12b) ; (40 atm/K in the example) ; this 
slope is large and the curve is nearly vertical. The case dpldT is + is shown in Fig. 12 .5(a) ; 
over a moderate range of pressure the curve is linear. 

The line in Fig. 12 .5(a) is the locus of all points (T, p) at which the solid and liquid can 
coexist in equilibrium. Points that lie to the left of the line correspond to temperatures 
below the melting point ; these points are conditions (T, p) under which only the solid is 
stable. Points immediately to the right of the line correspond to temperatures above the 
melting point ; hence these points are conditions (T, p) under which the liquid is stable. 
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p 

s 1 

T 
(a) 

p 

(b) 

F i g u re 1 2 . 5  Eq u i l ib r i um l i nes.  ( a )  So l id-l iq u i d .  ( b )  L iqu id-vapor.  

1 2 .4 .2  The l i q u i d-G as Equ i l i b r i u m  

T 

Application of the Clapeyron equation to the transformation liquid -+ gas yields 

A _ - - _ 
L1Hvap . tiS - Sgas - Sliq - ---y IS + (all substances), 

L1 V = �as - �iq is + 

and, consequently, 

(all substances), 

dp 
dT 

L1S 
L1V i s  + (all substances). 

The liquid-gas equilibrium line always has a positive slope. At ordinary T and p the 
magnitudes are 

L1S � + 90 J/K mol 

However, L1 V depends strongly on T and p because �as depends strongly on T and p. The 
slope of the liquid-gas curve is small compared with that of the solid-liquid curve : (dP ) 90 J/K mol 

dT . � 
0 02 3 I 1 

= 4000 PalK = 0.04 atm/K. 
hq, gas . m mo 

Figure 12 .5(b) shows the l-g curve as well as the s-1 curve. In Fig. 12 .5(b), curve I-g is the 
locus of all points (T, p) at which liquid and gas coexist in equilibrium. Points just to the 
left of l-g are below the boiling point and so are conditions under which the liquid is stable. 
Points to the right of l-g are conditions under which the gas is stable. 

The intersection of curves 8-1 and I-g corresponds to a temperature and pressure at 
which solid, liquid, and gas all coexist in equilibrium. The values of T and p at this point are 
determined by the conditions 

flsoliiT, p) = flliq(T, p) and flliiT, p) = flgasCT, p). ( 12. 1 3) 

Equations (12. 1 3) can, in principle at least, be solved for definite numerical values of T and 
p. That is, 

p = Po ( 12. 14) 
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where 7; and Pt are the triple-point temperature and pressure. There is only one such triple 
point at which a specific set of three phases (for example, solid-liquid-gas) can coexist in 
equilibrium. 

1 2 .4 .3  The  S o l i d-G as Eq u i l i b r i u m  

For the transformation solid -+ gas, we have 

11 V = �as -
V.olid is + 

and the Clapeyron equation is 

I1S 
I1V is + 

(all substances), 

(all substances), 

(all substances). 

The slope of the s-g curve is steeper at the triple point than the slope of the l-g curve. 
Since I1Hsub = I1Hfus + I1Hvap , then 

I1Hvap 
T I1V 

and 

The 11 V's in the two equations are very nearly equal. Since I1Hsub is greater than I1Hvap , the 
slope of the s-g curve in Fig. 12.6 is steeper than that of the I-g curve. 

Points on the s-g curve are those sets of temperatures and pressures at which solid 
coexists in equilibrium with vapor. Points to the left of the line lie below the sublimation 
temperature, and so correspond to conditions under which the solid is stable. Those points 
to the right of the s-g curve are points above the sublimation -temperature, and so are 
conditions under which the gas is the stable phase. The s-g curve must intersect the others 
at the triple point because of the conditions expressed by Eqs. (12. 1 3). 

p 

T 
F i g u re 1 2 .6  Phase d iag ra m  for 
a s imp le  substa nce.  
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1 2 . 5  T H E P HAS E D IAG R A M  

Examination o f  Fig. 12 .6 at a constant pressure, indicated by  the dashed horizontal line, 
shows the melting point and boiling point of the substance as the intersections of the 
horizontal line with the 8-1 and I-g curves. These intersection points correspond to the 
intersections of the /1- T curves in Fig. 12. 1 .  At temperatures below Tm , the solid is stable ; 
at the points between Tm and 1/, the liquid is stable, while above 1b the gas is stable. Illustra
tions such as Fig. 12 .6 convey more information than those such as 12 . 1 and 12 .3(b). Figure 
12 .6 is called a phase diagram, or an equilibrium diagram. 

The phase diagram shows at a glance the properties of the substance ; melting point, 
boiling point, transition points, triple points. Every point on the phase diagram represents 
a state of the system, since it describes values of T and p. 

The lines on the phase diagram divide it into regions, labeled solid, liquid, and gas. 
If the point that describes the system falls in the solid region, the substance exists as a solid. 
If the point falls in the liquid region, the substance exists as a liquid. If the point falls on a 
line such as l-g, the substance exists as liquid and vapor in equilibrium. r The l-g curve has a definite upper limit at the critical pressure and temperature, since it l is not possible to distinguish between liquid and gas above this pressure and temperature. 

1 2 . 5 . 1  The P h ase D i a g ra m  for  Carbon D i ox ide  

The phase diagram for carbon dioxide is shown schematically in  Fig. 12.7 . The solid-liquid 
line slopes slightly to the right, since �iq > V.olid ' Note that liquid CO2 is not stable at 
pressures below 5 atm. For this reason " dry ice " is dry under ordinary atmospheric 
pressure. When carbon dioxide is confined to a cylinder under pressure at 25 °C, the 
diagram shows that if the pressure reaches 67 atm, liquid CO2 will form. Commercial 
cylinders of CO2 commonly contain liquid and gas in equilibrium ; the pressure in the 
cylinder is about 67 atm at 25 °C. 

1 2 . 5 . 2  The P hase D ia g r a m  for  Water 

Figure 12 .8 is the phase diagram for water under moderate pressure. The solid-liquid line 
leans slightly to the left because �iq < V.olid ' The triple point is at 0.01 °C and 6 1 1  Pa. The 
normal freezing point of water is at 0.0002 dc. An increase in pressure decreases the melting 

73 

67 

5 . 1 1  

1 

- 78 .2 - 56 .6 25 3 1 . 1  
ffOC 

F i g u re 1 2 .7  Phase d iag ra m  for  CO 2 , 

p 374 ° , 220 atm 

1 atm ----

6 L Pa 

0 0.01 100 
flOC 

F i g u re 1 2 .8  Phase d i ag ra m  f o r  water. 
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point of water. This lower melting point under the pressure exerted by the weight of the 
skater through the knife edge of the skate blade is part of the reason that ice skating is 
possible. This effect together with the heat developed by friction combine to produce a 
lubricating layer of liquid water between the ice and the blade. In this connection, it is 
interesting to note that if the temperature is too low, the skating is not good. 

If water is studied under very high pressures, several crystalline modifications of ice 
are observed. The equilibrium diagram is shown in Fig. 12.9. Ice I is ordinary ice ; ices II, III, 
V, VI, VII are modifications that are stable at higher pressures. The range of pressure is so 
large in Fig. 12.9 that the s-g and I-g curves lie only slightly above the horizontal axis ; they 
are not shown in the figure . It is remarkable that under very high pressures, melting ice is 
quite hot ! Ice VII melts at about 100 DC under a pressure of 25 000 atm. 

1 2 . 5 . 3  The P h ase D ia g ra m  for  S u l f u r 

Figure 12. 10 shows two phase diagrams for sulfur. The stable form of sulfur at ordinary 
temperatures and under 1 atm pressure is rhombic sulfur, which, if heated slowly, trans-

10 ,000 
VI 

E 
� 5000 
� 

- 50 

95 .4 119  
tlOC 
(a) 

Vapor 

F i g u re 1 2 , 9  Phase diagram for water 
at h i g h  pressu res. ( Redrawn by per
m ission  of the N at iona l  Academy of 

50 Sciences from International Critical 
Tables of Numerical Data . )  

114 

F i g u re 1 2 . 1 0 Phase d iagram for su lfu r .  
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forms to solid monoclinic sulfur at 95.4 °c (see Fig. 12 . lOa). Above 95.4 °c monoclinic 
sulfur is stable, until 1 19 °C is reached ; monoclinic sulfur melts at 1 19 °C. Liquid sulfur is 
stable up to the boiling point, 444.6 0C. The transformation of one crystalline modification 
to another is often very slow and, if rhombic sulfur is heated quickly to 1 14 °C, it melts .  
This melting point of rhombic sulfur is shown as a function of pressure in Fig. 12 . 10(b). The 
equilibrium S(rhombic) ¢ S(l) is an example of a metastable equilibrium, since the line lies 
in the region of stability of monoclinic sulfur, shown by dashed lines in Fig. 12 . 1O(b). In 
this region the reactions 

S(rh) -----+ S(mono) and S(liq) -----+ S(mono) 

both can occur with a decrease in Gibbs energy. 
In Fig. 12 . 10(a) there are three triple points. The equilibrium conditions are 

at 95.4 °C ; 

at 1 19 °C : 

at 1 5 1 °C : 

!1rh = !1mono = !1gas ' 
!1mono = !1Uq = !1gas >  

!1rh = !1mono = !1Uq · 

1 2 . 6  T H E i NT E G RATI O N  O F  T H E C LA P EY R O N  E Q U ATI O N  

1 2 . 6 . 1  S o l i d-li q u i d  Eq u i l i b r i u m  

The Clapeyron equation is 

Then 

dp LlSfus 
dT Ll Vfus ' 

J
P2 dp = J

T;" LlHfus dT 
PI Tm LlVfus T ' 

If LlHfus and Ll Vrus are nearly independent of T and p, the equation integrates to 

LlHfus T'm P2 - PI = 
LlV, 

In 7:' 
fus m 

(12. 1 5) 

where T'm is the melting point under P2 ; Tm is the melting point under Pl '  Since T'm - Tm is 
usually quite small, the logarithm can be expanded to 

In (T'm) = In (Tm 
+ T'm - Tm) = In (1 + T'm - Tm) � T'm - Tm ; 

� � � � 
then Eq. (12 . 1 5) becomes 

,{Ii: 1 6) 
-_/ 

where LlT is the increase in melting point corresponding to the increase in pressure Llp. 

1 2 . 6 . 2  C o n d ensed - P hase-G as Eq u i l i b r i u m  

For the equilibrium of a condensed phase, either solid o r  liquid, with vapor, we have 

dp LlS LlH 
dT LlV T(Yg - Yc) ' 
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where IlH is either the molar heat of vaporization of the liquid or the molar heat of sub
limation ofthe solid, and � is the molar volume of�he solid or liquid. In most circumstances, � - � � � , and this, assuming that the gas is ideal, is equal to RTlp. Then the equation 
becomes 

d In P IlH 
ar = RT2 ' 

which is the Clausius-Clapeyron equation, relating the vapor pressure of the liquid (solid) 
to the heat of vaporization (sublimation) and the temperature. Integrating between limits, 
under the additional assumption that IlH is independent of temperature yields 

f
p IT IlH d In p = --2 dT, 

Po To RT 

In :0 = - 11: (� - �J = - �� + !�, (12. 18) 

where Po is the vapor pressure at To ,  and p is the vapor pressure at T. (In Section 5 .4, this 
equation was derived in a different way.) If Po = 1 atm, then To is the normal boiling point 
of the liquid (normal sublimation point of the solid). Then 

IlH t1H ln p = RTo - RT' 
IlH IlH 

logi o p = 2.303RTo 2.303RT · (12. 19) 

According to Eq. (12 . 19), if ln p or logi o p is plotted against liT, a linear curve is obtained 
with a slope equal to - IlHIR or - IlHI2.303R. The intercept at liT = 0 yields a value of 
MIRTo .  Thus, from the slope and intercept, both IlH and To can be calculated. Heats of 
vaporization and sublimation are often determined through the measurement of the 
vapor pressure of the substance as a function of temperature. Figure 12. 1 1  shows a plot of 
logi o p versus liT for water ; Fig. 12. 12 is the same plot for solid CO2 (dry ice). 

Compilations of data on vapor pressure frequently use an equation of the form 
logi o p = A + BIT, and tabulate values of A and B for various substances. This equation 
has the same functional form as Eq. (12 . 19). 
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For substances that obey Trouton's rule, Eq. (12 . 1 9) takes a particularly simple form, 
which is useful for estimating the vapor pressure of a substance at any temperature T from 
a knowledge of the boiling point only (Problem 12. 1 1) . 

1 2 . 7  E F F E CT OF P R ES S U R E  ON T H E VA P O R  P R ES S U R E  

In the preceding discussion of the liquid-vapor equilibrium it was implicitly assumed that 
the two phases were under the same pressure p. If by some means it is possible to keep the 
liquid under a pressure P and the vapor under the vapor pressure p, then the vapor pressure 
depends on P. Suppose that the liquid is confined in the container shown in Fig. 12 . 1 3 .  In 
the space above the liquid, the vapor is confined together with a foreign gas that is in
soluble in the liquid. The vapor pressure p plus the pressure of the foreign gas is P, the 
total pressure exerted on the liquid. As usual, the equilibrium condition is 

J1.vap(T, p) = J1.liq(T, P). (12 .20) 

At constant temperature this equation implies that p = f (P). To discover the functionality, 
Eq. ( 12.20) is differentiated with respect to P, keeping T constant : 

e�;ap) T(:;t = e:;q) T' 

Using the fundamental equation, Eq. (12.2b), this becomes 

Yvap(:;t = �iq or (:;) T 
= �::. (12 .21) 

The Gibbs equation, Eq. (12.2 1), shows that the vapor pressure increases with the total 
pressure on the liquid ; the rate of increase is very small since �iq is very much less than Yvap . 
If the vapor behaves ideally, Eq. (12 .21) can be written 

RT -
- dp = Vliq dP, 
P f

p dp -
fP 

RT - = Vliq dP, 
Po P Po 

where p is the vapor pressure under a pressure P, Po is the vapor pressure when liquid and 
vapor are under the same pressure Po , the orthobaric pressure. Thus 

R T  In (:J = �iq(P - Po)· (12.22) 

We will use Eqs. (12 .21) and (12.22) in discussing the osmotic pressure of a solution. 

Vapor + 
foreign gas 

F i g u re 1 2 . 1 3  
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1 2 . 8  T H E P HAS E R U LE 

The coexistence of two phases in equilibrium implies the condition 

piT, p) = pp(T, p), ( 12.23) 

which means that the two intensive variables ordinarily needed to describe the state of a 
system are no longer independent, but are related. Because of this relation, only one 
intensive variable, either temperature or pressure, is needed to describe the state of the 
system. The system has one degree of freedom, or is univariant, whereas if only one phase is 
present, two variables are needed to describe the state, and the system has two degrees of 
freedom, or is bivariant. If three phases are present, two relations exist between T and p :  

paCT, p) = pp(T, p) (12.24) 

These two relations determine T and p completely. No other information is necessary for 
the description of the state of the system. Such a system is invariant ; it has no degrees of 
freedom. Table 12. 1 shows the relation between the number of degrees of freedom and the 
number of phases present for a one-component system. The table suggests a rule relating 
the number of degrees of freedom, F, to the number of phases, P, present. 

F = 3 - P, ( 12.25) 

which is the phase rule for a one-component* system. 
It would be helpful to have a simple rule by which we can decide how many independent 

variables are required for the description of the system. Particularly in the study of systems 
in which many components and many phases are present, any simplification of the problem 
is welcome. 

We begin by finding the total conceivable number of intensive variables that would be 
needed to describe the state of the system containing C components and P phases. These 
are listed in Table 12.2. Each equation that connects these variables implies that one 

Tab le  1 2 . 1  

Number of  phases present 2 3 

Degrees of freedom 2 o 

Tab le  1 2 .2  

Kind of variable 

Temperature and pressure 
Composition variables (in each phase the mole fraction of each component 

must be specified ; thus, C mole fractions are required to describe one phase ; 
PC are needed to describe P phases) 

Total number of variables 

* The term " component " is defined in Section 1 2.9 .  

Total number 
of variables 

2 
PC 

PC + 2 
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Tab l e  1 2 .3  

Kind of equation 

In each phase there is a relation between the mole fractions : 
Xl + X2 + . . .  + Xc = 1 .  

For P phases, there are P equations 
The equilibrium conditions : For each component there exists a set of equations 

Jli = Jlf = Jli = . . . = Jl;' 
There are P - 1 equations in the set. Since there are C components, there are 

C(P - 1) equations. 
Total number of equations 

Total number 
of equations 

P 

C(P - 1)  
P + C(P - 1) 

variable is dependent rather than independent. So we must find the total number of equa
tions connecting the variables. These are listed in Table 12 .3 .  

The number of independent variables, F, is obtained by subtracting the total number 
of equations from the total number of variables : 

F = PC + 2 - P - C(P - 1), 
F = C - P + 2. (12.26) 

Equation (12.26) is the phase rule of J. Willard Gibbs. The best way to remember the phase 
rule is by realizing that increasing the number of components increases the number of 
variables, therefore C enters with a positive sign. Increasing the number of phases increases 
the number of equilibrium conditions and the number of equations, thus eliminating some 
of the variables ; therefore P enters with a negative sign. 

In a one-component system, C = 1, so F = 3 - P. This result is, of course, the same as 
Eq. (12.25) obtained by inspection of Table 12 . 1 .  Equation (12.25) shows that the greatest 
number of phases that can coexist in equilibrium in a one-component system is three. In 
the sulfur system, for example, it is not possible for rhombic, monoclinic, liquid, and gaseous 
sulfur to coexist in equilibrium with one another. Such a quadruple equilibrium would 
imply three independent conditions on two variables, which is an impossiblity. 

For a system of only one component it is possible to derive, as was done in Table 12. 1 ,  
the consequences of  the phase rule quite easily. The equilibria are readily represented by 
lines and their intersections in a two-dimensional diagram of the type we have used in this 
chapter. It hardly seems necessary to have the phase rule for such a situation. However, if 
the system has two components, then three variables are required and the phase diagram 
consists of surfaces and their intersections in three dimensions. If three components are 
present, surfaces in a fourdimensional space are required. Visualization of the entire 
situation is difficult in three dimensions, impossible for four or more dimensions. Yet the 
phase rule, with exquisite simplicity, expresses the limitations that are placed on the 
intersections of the surfaces in these multidimensional spaces. For this reason, the Gibbs 
phase rule is counted among the truly great generalizations of physical science. 

1 2 .9  T H E P R O B LE M  O F  C O M PO N E NTS 

The number of components in a system is defined as the least number of chemically inde
pendent species that is required to describe the composition of every phase in the system. 
At face value, the definition seems simple enough, and in ordinary practice it is simple .  A 
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number of examples will show up the joker in the deck, that little phrase, " chemically 
independent. " 

• EXAMPLE 1 2 . 1  The system contains the species PCIs , PCI3 , Cl2 . There are three 
species present but only two components, because the equilibrium 

PCIs � PCl3 + Cl2 
is established in this system. One can alter the number of moles of any two of these 
chemical individuals arbitrarily ; the alteration in the number of moles of the third 
species is then fixed by the equilibrium condition, Kx = XPCI 3XCl)XPCls . Consequently, 
any two of these species are chemically independent ; the third is not. There are only 
two components. 

• EXAMPLE 12.2 Liquid water presumably contains an enormous number of chemical 
species : H20, (H20h, (H20)3 , . . .  , (H20)n . Yet there is only one component, because, 
as far as is known, all of the equilibria 

H20 + H20 

H20 + (H20h 

H20 + (H20)n - l � (H20)n 
are established in the system ; thus, if there are n species, there are n - 1 equilibria 
connecting them, and so only one �pecies is chemically independent. There is only 
one component, and we may choose the simplest species, H20, as that component. 

• EXAMPLE 12.3 In the system water-ethyl alcohol, two species are present. No 
known equilibrium connects them at ordinary temperature ; thus there are two 
components also . 

• EXAMPLE 12.4 In the system CaC03-CaO-C02 , there are three species present ; 
also, there are three distinct phases : solid CaC03 , solid CaO, and gaseous CO2 . 
Because the equilibrium CaC03 :;;::::: CaO + CO2 is established, there are only two 
components. These are most simply chosen as CaO and CO2 ; the composition of the 
phase CaC03 is then described as one mole of component CO2 plus one mole of 
component CaO. If CaC03 and CO2 were chosen as components, the composition of 
CaO would be described as one mole of CaC03 minus one mole of CO2 . 

There is still another point to be made concerning the number of components. Our 
criterion is the establishment of a chemical equilibrium in a system ; the existence of such an 
equilibrium reduces the number of components. There are instances where this test is not 
very clear-cut. Take the example of water, ethylene, and ethyl alcohol ; at high temperatures 
several equilibria are established in this system ; we consider only one, C2HsOH :;;::::: C2H4 
+ H20. The question arises as to the temperature at which the system shifts from a three
component system, which it surely is at room temperature, to the two-component system 
that it is at high temperature. The answer lies in how long it takes us to make successive 
measurements on the system ! If we measure a certain property of the system at a series of 
pressures, and if the time required to make the measurements is very short compared with 
the time required for the equilibrium to shift under the change in pressure, the system is 
effectively a three-component system ; the equilibrium may as well not be there at all. On 
the other hand, if the equilibrium shifts very quickly under the change in pressure, in a 
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very short time compared with the time we need to make the measurement, then the fact 
of the equilibrium matters very much, and the system is indeed a two-component system. 

Liquid water is a good example of both types of behavior. The equilibria between the 
various polymers of water shift very rapidly, within 10- 1 1  s at most. Ordinary measure
ments require much longer times, so the system is effectively a one-component system. In 
contrast to this behavior, the system Hz , Oz , HzO, is a three-component system. The 
equilibrium that could reduce the number of components is Hz + !Oz � HzO. In the 
absence of a catalyst, eons are required for this equilibrium to shift from one position to 
another. For practical purposes the equilibrium is not established. 

It is clear that an accurate assignment of the number of components in a system pre
supposes some experimental knowledge of the system. This is an unavoidable pitfall in the 
use of the phase rule. Failure to realize that an unsuspected equilibrium has been established 
in a system sometimes leads an investigator to rediscover, the hard way, the second law of 
thermodynamics. 

Q U ESTI O N S  

12.1 Illustrate by a fl versus T graph how the fact that LlSfus and LlSsub are always positive guarantees 
that the solid phase is the most stable at low temperature. 

12.2 How do the liquid and gas phase lines at T = Tb in Fig. 12 .3(b) illustrate the LeChatelier principle, 
Eq. ( 1 1 .7 1 ) ?  

12.3 In  the winter, lakes that have frozen surfaces remain liquid at their bottoms (this allows survival 
of many species I). How do you explain this in terms of Fig. 12.8 ? 

12.4 Removal of water from a mixture by " freeze drying " involves cooling below 0 DC, reduction of 
pressure below the triple point, and subsequent warming. How do you explain this in terms of 
Fig. 12 .8 ? 

12.5 How do the two phase diagrams for sulfur illustrate the "problem of components " for the phase 
rule ? 

P R O B LE M S  

12.1 Dry ice has a vapor pressure of 1 atm at - 72.2 DC and 2 atm at - 69. 1 dc. Calculate the LlH of 
sublimation for dry ice. 

12.2 The vapor pressure of liquid bromine at 9.3 DC is 100 Torr. If the heat of vaporization is 30 910 
llmol, calculate the boiling point of bromine. 

12.3 The vapor pressure of diethyl ether is 100 Torr at - 1 1 . 5  DC and 400 Torr at 17 .9 DC. Calculate 
a) the heat of vaporization ; 
b) the normal boiling point and the boiling point in Denver where the barometric pressure is 

620 Torr ; 
c) the entropy of vaporization at the boiling point ; 
d) LlGD of vaporization at 25 DC. 

12.4 The heat of vaporization of water is 40 670 llmol at the normal boiling point, 100 DC. The 
barometric pressure in Denver is about 620 Torr. 
a) What is the boiling point of water in Denver ? 
b) What is the boiling point under 3 atm pressure ? 

12.5 At 25 DC, LlGj(HzO, g) = - 228.589 kllmol and LlGj(HzO, l) = - 237 .178 kJlmoL What IS 
the vapor pressure of water at 298. 1 5  K ?  



12.6 The vapor pressures of liquid sodium are 
f;oC 439 
p(Torr 1 

549 
10 

701 
100 
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By plotting these data appropriately, determine the boiling point, the heat of vaporization, 
and the entropy of vaporization at the boiling point for liquid sodium. 

12.7 Naphthalene, C1 oHs , melts at 80.0 dc. If the vapor pressure of the liquid is 10 Torr at 85 .8 °C 
and 40 Torr at 1 19 .3 DC, and that of the solid is 1 Torr at 52.6 DC, calculate 
a) the t:"Hvap of the liquid, the boiling point, and t:"Svap at Tb ; 
b) the vapor pressure at the melting point. 
c) Assuming that the melting-point and triple-point temperatures are the same, calculate 

t:"Hsub of the solid and t:"Hfus '  
d) What must the temperature be if the vapor pressure of the solid is to be less than 10- 5 Torr ? 

12.8 Iodine boils at 1 83.0 DC ; the vapor pressure of the liquid at 1 16 .5 °C is 100 Torr. If t:"H�us = 

1 5.65 kJ/mol and the vapor pressure of the solid is 1 Torr at 38 .7 DC, calculate 
a) the triple point temperature and pressure ; 
b) t:"H�ap , and t:"S�ap ; 
c) t:"Gj (12 , g) at 298. 1 5  K. 

12.9 For ammonia we have 
t;oC 
p/atm 

4.7 
5 

25.7 
10  

50. 1 
20 

78.9 
40 

Plot or do a least squares fit of the data to In p versus l/T, to obtain t:"Hvap , and the normal 
boiling point. 

12.10 a) By combining the barometric distribution with the Clausius-Clapeyron equation, derive an 
equation relating the boiling point of a liquid to the temperature of the atmosphere, Ta , 
and the altitude, h. In (b) and (c) assume ta = 20 °C. 

b) For water, tb = 100 °C at 1 atm, and t:"Hvap = 40.670 kJ/mo!. What is the boiling point on 
top of Mt. Evans, h = 14 260 ft ?  

c )  For diethyl ether, tb = 34.6 ° C  at 1 atm, and t:"Hvap = 29.86 kJ/mo!. What i s  the boiling 
point on top of M t. Evans ? 

12.1 1  a) From the boiling point Tb of a liquid and the assumption that the liquid follows Trouton's 
rule, calculate the value of the vapor pressure at any temperature T. 

b) The boiling point of diethyl ether is 34.6 dc. Calculate the vapor pressure at 25 °C. 
12.12 For sulfur, t:"S�ap = 14.6 J/K per mole S, and for phosphorus, t:"S�ap = 22.5 JIK per mole P. 

The molecular formulas of these substances are Ss and P 4 '  Show that if the correct molecular 
formulas are used, the entropies of vaporization have more normal values. 

12.13 Derive Eq. (12 .4). 
12.14 If the vapor is an ideal gas, there is a simple relation between the vapor pressure p and the 

concentration C (moljm3) in the vapor. Consider a liquid in equilibrium with its vapor. Derive 
the expression for the temperature dependence of c in such a system. 

12.15 Assuming that the vapor is ideal and that t:"Hvap is independent of temperature, calculate 
a) The molar concentration of the vapor at the boiling point Tb of the liquid. 
b) The Hildebrand temperature, TH , is that temperature at which the vapor concentration 

is (1/22.414) mol/L. Using the result in Problem 12. 14, find the expression for TH in terms of 
t:"Hvap and Tb . 

c) The Hildebrand entropy, t:"SH = t:"Hvap/TH , is very nearly constant for many normal liquids. 
If t:"SH = 92.5 J /K mol, use the result in (b) to compute values of Tb for various values of 
TH • Plot TH as a function of Tb • (Choose values of TH = 50, 100, 200, 300, 400 K to compute 
Tb ') 
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d) For the following liquids compute L1SH and the Trouton entropy, L1ST = L1HvapITb . Note 
that L1SH is more constant than L1ST (Hildebrand's rule). 

Liquid L1Hvap/(kJ/mol) TblK 

Argon 6 .51 9 87.29 

Oxygen 6.820 90. 19 

Methane 8 . 1 80 1 1 1 .67 

Krypton 9 .029 1 1 9.93 

Xenon 12.640 165 . 1  

Carbon disulfide 26.78 3 1 9.41 

12.16 The density of diamond is 3 . 52 g/cm3 and that of graphite is 2.25 g/cm3 . At 25 DC the Gibbs 
energy of formation of diamond from graphite is 2. 900 kJ/mo!. At 25 DC what pressure must be 
applied to bring diamond and graphite into equilibrium ? 

12.17 At 1 atm pressure, ice melts at 273. 1 5  K. L1Hfus = 6.009 kIlmol, density of ice = 0.92 g/cm3 , 
density of liquid = 1 .00 g/cm3 

a) What is the melting point of ice under 50 atm pressure ? 
b) The blade of an ice skate is ground to a knife edge on each side of the skate. If the width of 

the knife edge is 0.001 in, and the length of the skate in contact with the ice is 3 in, calculate 
the pressure exerted on the ice by a 1 50 lb man. 

J�-C , c) What is the melting point of ice under this pressure ? 
(12.18 �t 25 DC we have for rhombic sulfur : L1Gj = 0, So = 3 1 .88 ± 0. 1 7  J IK mol ; and for monoclinic 
�/sulfur : I'1Gj = 63 J/mol, So = 32.55 ± 0.25 11K moL Assuming that the entropies do 110t vary 

with temperature, sketch the value of J1 versus T for the two forms of sulfur. From the data 
determine the equilibrium temperature for the transformation of rhombic sulfur to monoclinic 
sulfur. Compare this temperature with the experimentai value, 95.4 DC, noting the uncertainties 
in the values of So. 

n.19 The transition 
Sn(s, gray) :;;::: Sn(s, white) 

is in equilibrium at 18 DC and 1 atm pressure. If I'1S = 8 .8 11K mol for the transition at 18 DC 
and if the densities are 5 .75 g/cm3 for gray tin and 7.28 g/cm3 for white tin, calculate the transi
tion temperature under 100 atm pressure . 

./ � 
( 12.20}For the transition, rhombic sulfur -> monoclinic sulfur, the value of L1S is positive. The transi-

' . ... -� tion temperature increases with increase in pressure. Which is denser, the rhombic or the 
monoclinic form? Prove your answer mathematically. 

12.21 Liquid water under an air pressure of 1 atm at 25 DC has a larger vapor pressure than it would 
in the absence of air pressure. Calculate the increase in vapor pressure produced by the pressure 
of the atmosphere on the water. The density of water = 1 g/cm3 ; the vapor pressure (in the 
absence of the air pressure) = 3 1 67.2 Pa. 
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S o l u t i o n s  

I .  T h e  I d ea l S o l u t i o n  a n d 
C o l l i g a t i ve P ro p e rt i es 

1 3 . 1  K I N DS O F  S O L U TI O N S  

A solution i s  a homogeneous mixture of chemical species dispersed on a molecular scale. 
By this definition, a solution is a single phase. A solution may be gaseous, liquid, or solid. 
Binary solutions are composed of two constituents, ternary solutions three, quaternary 
four. The constituent present in th� greatest amount is ordinarily called the solvent, while 
those constituents-one or more-present in relatively small amounts are called the 
solutes. The distinction between solvent and solute is an arbitrary one. If it is convenient, 
the constituent present in relatively small amount may be chosen as the solvent. We shall 
employ the words solvent and solute in the ordinary way, realizing that nothing funda
mental distinguishes them. Examples of kinds of solution are listed in Table 1 3 . 1 .  

Gas mixtures have been discussed in  some detail i n  Chapter 1 1 . The discussion in  this 
chapter and in Chapter 14 is devoted to liquid solutions. Solid solutions are dealt with as 
they occur in connection with other topics. 

Gaseous solutions 
Liquid solutions 

Solid solutions 
Gases dissolved in solids 
Liquids dissolved in solids 
Solids dissolved in solids 

Tab le  1 3 . 1  

Mixtures of  gases or  vapors 
Solids, liquids, or gases, dissolved 

in liquids 

Hz in palladium, Nz in titanium 
Mercury in gold 
Copper in gold, zinc in copper 

(brasses), alloys of many kinds 
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1 3 . 2  D E F I N IT I O N  O F  T H E I D EA L  S O L U TI O N  

The ideal gas law is an important example of a limiting law. As the pressure approaches 
zero, the behavior of any real gas approaches that of the ideal gas as a limit. Thus all real 
gases behave ideally at zero pressure, and for practical purposes they are ideal at low finite 
pressures. From this generalization of experimental behavior, the ideal gas is defined as one 
that behaves ideally at any pressure. 

We arrive at a similar limiting law from observing the behavior of solutions. For 
simplicity, we consider a solution composed of a volatile solvent and one or more in
volatile solutes, and examine the equilibrium between the solution and the vapor. If a pure 
liquid is placed in a container that is initially evacuated, the liquid evaporates until the 
space above the liquid is filled with vapor. The temperature of the system is kept constant. 
At equilibrium, the pressure established in the vapor is pO, the vapor pressure of the pure 
liquid (Fig. 1 3 . 1 a). If an involatile material is dissolved in the liquid, the equilibrium vapor 
pressure p over the solution is observed to be less than over the pure liquid (Fig. 1 3 . 1b). 

Since the solute is involatile, the vapor consists of pure solvent. As more involatile 
material is added, the pressure in the vapor phase decreases. A schematic plot of the vapor 
pressure of the solvent against the mole fraction of the involatile solute in the solution, x2 , 
is shown by the solid line in Fig. 1 3 .2. At X2 = 0, P = pO ; as X2 increases, p decreases. The 
important feature of Fig. 1 3 .2 is that the vapor pressure of the dilute solution (X2 near zero) 
approaches the dashed line connecting pO and zero. Depending on the particular combina
tion of solvent and solute, the experimental vapor-pressure curve at higher concentrations 
of solute may fall below the dashed line, as in Fig. 1 3 .2, or above it, or even lie exactly on it. 
However, for all solutions the experimental curve is tangent to the dashed line at X2 = 0, 
and approaches the dashed line very closely as the solution becomes more and more dilute. 
The equation of the ideal line (the dashed line) is 

p = pO _ pOX2 = p0(1 - x2). 
If x is the mole fraction of solvent in the solution, then x + X2 = 1, and the equation 

Vapor 

T, pO -1 
pO 

I 
(a) (b) 

F i g u re 1 3 . 1  Vapor pressu re lowering  b y  a n  i nvolat i l e  solute.  

r 
p 
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F i g u re 1 3 .3 Raou lfs law 
for  the solvent. 

1 

( 1 3 . 1) 
which is Raoult's law. It states that the vapor pressure ofthe solvent over a solution is equal 
to the vapor pressure of the pure solvent multiplied by the mole fraction of the solvent in 
the solution. 

Raoult's law is another example of a limiting law. Real solutions follow Raoult's law 
more closely as the solution becomes more dilute. The ideal solution is defined as one that 
follows Raoult's law over the entire range of concentrations. The vapor pressure of the 
solvent over an ideal solution of an involatile solute is shown in Fig. 13 .3 .  All real solutions 
behave ideally as the concentration of the solutes approaches zero. 

From Eq. ( 13 . 1 ) the vapor pressure lowering, po - p, can be calculated : 

po _ p = po _ xpo = (1 _ x)pO, 
po _ p = xzpo. ( 13 .2) 

The vapor pressure lowering is proportional to the mole fraction of the solute. If several 
solutes, 2, 3 , . . .  , are present, then it is still true that p = xpo ; but, in this case, 1 - x = 
Xz + X3 + . . .  and 

( 1 3 .3) 
In a solution containing several involatile solutes, the vapor pressure lowering depends on 
the sum of the mole fractions of the various solutes. Note particularly that it does not 
depend on the kinds of solutes present, except that they be involatile. The vapor press sure 
depends only on the relative numbers of solute molecules. 

In a gas mixture, the ratio of the partial pressure of the water vapor to the vapor 
pressure of pure water at the same temperature is called the relative humidity. When 
multiplied by 100, it is the percent relative humidity. Thus 

P R.H. = po and %R.H. = P
o (100). P 

Over an aqueous solution that obeys Raoult's law, the relative humidity is equal to the mole 
fraction of water in the solution. 
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1 3 . 3  A N A LYTI CA L  FO R M  O F  T H E  C H E M I CA L  
POTENTiAL  I N  I D EA L  L I Q U I D  S O L U TI O N S  

As a generalization of the behavior of real solutions the ideal solution follows Raoult's law 
over the entire range of concentration. Taking this definition of an ideal liquid solution and 
combining it with the general equilibrium condition leads to the analytical expression of 
the chemical potential of the solvent in an ideal solution. If the solution is in equilibrium 
with vapor, the requirement of the second law is that the chemical potential of the solvent 
have the same value in the solution as in the vapor, or 

flliq = flvap , ( 13 .4) 

where flliq is the chemical potential of the solvent in the liquid phase, flvap the chemical 
potential of the solvent in the vapor. Since the vapor is pure solvent under a pressure p, 
the expression for flvap is given by Eq. ( 10.47) ; assuming that the vapor is an ideal gas 
flvap = fl�ap + RT In p. Then Eq. ( 13 .4) becomes 

flliq = fl�ap + R T In p. 
Using Raoult's law, p = xpo, in this equation and expanding the logarithm, we obtain 

flliq = fl�ap + RT In pO + RT In x. 
If pure solvent were in equilibrium with vapor, the pressure would be pO ; the equilibrium 
condition is 

flf;q = fl�ap + R T In pO, 
where flf;q signifies the chemical potential of the pure liquid solvent. Subtracting this 
equation from the preceding one, we obtain 

flliq - flf;q = R T In x. 
In this equation, nothing pertaining to the vapor phase appears ; omitting the subscript liq, 
the equation becomes 

fl = flO + RT In x. ( 1 3 .5) 

The significance of the symbols in Eq. ( 13 . 5) must be dearly understood : fl is the chemical 
potential of the solvent in the solution, flO is the chemical potential of the pure liquid sol
vent, a function of T and p, and x is the mole fraction of solvent in the solution. This equa
tion is the result we suggested in Section 1 1 .5 ,  as a generalization from the form obtained 
for the fl of an ideal gas in a mixture. 

1 3 . 4  C H E M I CA L  P OT E N TI A L  O F  T H E S O L U T E  I N  A B I N A R Y  I D EA L  
S O L U TI O N ; A P P L I CATI O N  O F  T H E G I B B S-D U H E M E Q U ATI O N  

The Gibbs-Duhem equation can be used to calculate the chemical potential of the solute 
from that of the solvent in a binary ideal system. The Gibbs-Duhem equation, Eq. ( 1 1 .96), 
for a binary system (T, p constant) is 

( 13 .6) 

The symbols without subscripts in Eq. ( 13 .6) refer to the solvent ; those with the subscript 2 
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refer to the solute. From Eq. ( 13 .6), d/12 = - (n/n2) d/1 ; or, since n/n2 = x/xz , we have 

Differentiating Eq. ( 13 . 5) keeping T and p constant, we obtain for the solvent d/1 = 
CRT/x) dx, so that d/12 becomes 

_ dx 
d/12 = - R T -.  

Xz 

However, x + X2 = 1, so that dx + dxz = 0, or dx = - dx2 . Then d/12 becomes 

dxz d/12 = RT -. 
X2 

Integrating, we have 
/12 = R T In X2 + C, ( 13 .7) 

where C is the constant of integration ;  since T and p are kept constant throughout this 
manipUlation, C can be a function of T and p and still be a constant for this integration. If 
the value of X2 in the liquid is increased until it is unity, the liquid becomes pure liquid 
solute, and /12 must be /1� , the chemical potential of pure liquid solute. So ifx2 = 1, /12 = /1� . 
Using these values in Eq. ( 13 .7), we find /1� = C, and Eq. ( 13 .7) becomes 

/12 = /1� + RT In X2 ' ( 13 .8) 

Equation (13 .8) relates the chemical potential of the solute to the mole fraction of the 
solute in the solute. This expression is analogous to Eq. ( 13 .5), and the symbols have 
corresponding significances. Since the /1 for the solute has the same form as the /1 for the 
solvent, the solute behaves ideally. This implies that in the vapor over the solution the 
partial pressure of the solute is given by Raoult's law : 

pz = xz p� · ( 13 .9) 

If the solute is involatile, p� is immeasurably small and Eq. ( 13 .9) cannot be proved 
experimentally ; thus it has academic interest only. 

1 3 . 5  C O l U G ATIVE P R O P E RT I E S  

Since the second term in Eq. ( 1 3 .5) i s  negative, the chemical potential o f  the solvent in 
solution is less than the chemical potential of the pure solvent by an amount - R T In x. 
Several related properties of the solution have their origin in this lower value of the 
chemical potential. These properties are : (1)  the vapor pressure lowering, discussed in 
Section 13 .2 ; (2) the freezing-point depression ; (3) the boiling-point elevation ; and (4) the 
osmotic pressure. Since these properties are all bound together through their common 
origin, they are called colligative properties (colligative : from Latin : co-, together, ligare, 
to bind). All of these properties have a common characteristic : They do not depend on 
the nature of the solute present but only on the number of solute molecules relative to the 
total number of molecules present. 

The /1 versus T diagram displays the freezing-point depression and the boiling-point 
elevation clearly. In Fig. 1 3 .4(a) the solid lines refer to the pure solvent. Since the solute is 



282 So lut ions I 

p 
I 

I 
I I 

I ffim �4---�----��r----

w � 
F i g u re 1 3 .4 Co l l igative properties. 

involatile, it does not appear in the gas phase, so the curve for the gas is the same as for the 
pure gas. If we assume that the solid contains only the solvent, then the curve for the solid is 
unchanged. However, because the liquid contains a solute, the J.l of the solvent is lowered 
at each temperature by an amount - RT In x. The dashed curve in Fig. 1 3 .4(a) is the curve 
for the solvent in an ideal solution. The diagram shows directly that the intersection points 
with the curves for the solid and the gas have shifted. The new intersection points are the 
freezing point, T'.r , and the boiling point, T� , of the solution. It is apparent that the boiling 
point of the solution is higher than that of the pure solvent (boiling-point elevation), while 
the freezing point of the solution is lower (freezing-point depression). From the figure it is 
obvious that the change in the freezing point is greater than the change in the boiling point 
for a solution of the same concentration. 

The freezing-point depression and boiling-point elevation can be illustrated on the 
ordinary phase diagram of the solvent, shown for water by the solid curves in Fig. 1 3 .4(b). 
If an involatile material is added to the liquid solvent, then the vapor pressure is lowered at 
every temperature as, for example, from point a to point b. The vapor-pressure curve for 
the solution is shown by the dotted line. The dashed line shows the new freezing point as 
a function of pressure. At 1 atm pressure, the freezing points and boiling points are given by 
the intersections of the solid and dashed lines with the horizontal line at 1 atm pressure. 
This diagram also shows that a given concentration of solute produces a greater effect on 
the freezing point than on the boiling point. 

The freezing point and boiling point of a solution depend on the equilibrium of the 
solvent in the solution with pure solid solvent or pure solvent vapor. The remaining possible 
equilibrium is that between solvent in solution and pure liquid solvent. This equilibrium 
can be established by increasing the pressure on the solution sufficiently to raise the J.l of the 
solvent in solution to the value of the J.l of the pure solvent. The additional pressure on the 
solution that is required to establish the equality of the J.l ofthe solvent both in the solution 
and in the pure solvent is cal1ed the osmotic pressure of the solution. 

1 3 . 6  T H E F R E E ZI N G - PO I NT D E P R ES S I O N  

Consider a solution that is in equilibrium with pure solid solvent. The equilibrium con
dition requires that 

J.l(T, p, x) = J.lsolid(T, p), ( 13 . 10) 
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where /leT, p, x) is the chemical potential of the solvent in the solution, /lsoliiT, p) is the 
chemical potential of the pure solid. Since the solid is pure, /lsolid does not depend on any 
composition variable. In Eq. ( 13 . 10), T is the equilibrium temperature, the freezing point of 
the solution ; from the form of Eq. ( 13 . 10), T is some function of pressure and x, the mole 
fraction of solvent in the solution. If the pressure is constant, then T is a function only of x. 

If the solution is ideal, then /leT, p, x) in the solution is given by Eq. ( 13 . 5), so that 
Eq. ( 13 . 10) becomes 

/lO(T, p) + RT In x = /lsoliiT, p). 
Rearrangement yields 

In x = _ 
/lO(T, p) - /lsolid(T, p) . RT 

(13 . 1 1) 

Since /lo is the chemical potential of the pure liquid, /lO(T, p) - /lsoliiT, p) = �Gfu" where 
�Gfus is the molar Gibbs energy offusion of the pure solvent at the temperature T. Equation 
(13 . 1 1)  becomes 

ln x = 11 Gfus - --

RT 
(13 . 12) 

To discover how T depends on x, we evaluate (oT/ox)p ' Differentiating Eq. (1 3 . 12) 
with respect to x, p being constant, we obtain 

� = _ ! [O(l1Gfus/T)] (aT) . x R aT p ox p 
Using the Gibbs-Helmholtz equation, Eq. (10.54), [o(�G/T)/oT]p = -l1H/T2, we obtain 

1 
_ 
�Hfus (aT) 

� - R T2 ox p' (1 3 . 1 3) 

In Eq. ( 13 . 1 3), �Hfus is the heat of fusion of the pure solvent at the temperature T. The pro
cedure is now reversed and we write Eq. ( 13 . 1 3) in differential form and integrate : 

Jx dx = JT �Hf�S dT. 
1 x To RT 

(13 . 14) 

The lower limit x = 1 corresponds to pure solvent having a freezing point To . The upper 
' limit x corresponds to a solution that has a freezing point T. The first integral can be 
evaluated immediately ; the second integration is possible if �Hfus is known as a function of 
temperature. For simplicity we assume that �Hfus is a constant in the temperature range 
from To to T; then Eq. ( 13 . 14) becomes 

In x = - 11Hfus (! - �). (13 . 1 5) 
R T To 

This equation can be solved for the freezing point T, or rather more conveniently for 1fT, 

1 
T 

1 R In x 
To 
-
11Hfus ' 

(1 3 . 1 6) 

which relates the freezing point of an ideal solution to the freezing point of the pure solvent, 
To , the heat of fusion of the solvent, and the mole fraction of the solvent in the solution, x. 
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The relation between freezing point and composition of a solution can be simplified 
considerably if the solution is dilute. We begin by expressing the freezing-point depression 
- dT in terms of the total molality of the solutes present, m, where m = mz + m3 + . . . . 
Let n and M be the number of moles and molar mass of the solvent, respectively ; then the 
mass of solvent is nM. Then mz = nz/nM ; m3 = n3/nM ; . . .  ; or nz = nMmz ; n3 = 
nMm3 ; . . .  The mole fraction of the solvent is given by 

n n x = -------n + nz + n3 + . . . n + nM(mz + m3 + . . .  ) 
1 x = --,------

1 + Mm 
Taking logarithms and differentiating, we obtain In x = - In (1 + Mm), and 

d In x = M dm 
1 + Mm 

Equation ( 1 3 . 1 3) can be written 

RTz 
dT = --;;:--- d In x. tiHfus 

Replacing d In x by the value in Eq. ( 1 3 . 1 8), we obtain 

dT = _ MRTz dm . 
LlHfus (1 + Mm) 

(13 . 1 7) 

( 13 . 1 8) 

( 13 . 19) 

If the solution is very dilute in all solutes, then m approaches zero and T approaches To , 
and Eq. ( 13 . 19) becomes 

_ 
(aT) = MRT6 = 

Kf am p. m = O LlHfus 
. ( 13 .20) 

The subscript, m = 0, designates the limiting value of the derivative, and K f is the freezing
point depression constant. The freezing-point depression ef = To - T, def = - dT, so 
for dilute solutions we have 

(oef) - = Kf am p, m = O  
' 

which integrates immediately, if m is small, to 

ef = Kfm . 

( 1 3 .21) 

(13 .22) 

The constant K f depends only on the properties of the pure solvent. For water, 
M = 0.0 1 80152 kg/mol, To = 273 . 1 5  K, and LlHfus = 6009. 5  J/mol. Thus 

K = (0.0180152 kg/mol) (8.3 1441  J/K mol) (273 . 1 5  K)2 = 1 8597 K k / 
1 f 

6009.5  J/mol 
. g mo . 

Equation (13 .22) provides a simple relation between the freezing-point depression and 
the molal concentration of solute in a dilute ideal solution, which is often used to determine 
the molar mass of a dissolv.ed solute. If Wz kg of a solute of unknown molar mass, M 2 , are 
dissolved in w kg of solvent, then the molality of solute is m = W2/wM 2 '  Using this value 
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Compound M/(k:g/mol) t"j°C K I/(K kg/mol) 

Water 0.01 80 0 
Acetic acid 0.0600 16 .6 
Benzene 0.0781  5.45 
Dioxane 0.0881  1 1 .7 
Naphthalene 0 .1283 80. 1 
p-dichloro benzene 0. 1470 52.7 
Camphor 0. 1 522 178 .4 
p-dibromo benzene 0.2359 86 

for m in Eq. ( 13 .22) and solving for M 2 yields 

M = 
KfW2 2 () • 

fW 

1 . 86  
3 . 57  
5.07 
4.7 1  
6.98 
7. 1 1  

37.7 
12 .5 

The measured values of () f ' W 2 , and W, together with a knowledge of K f ofthe solvent, suffice 
to determine M 2 .  It is clear that for a given value of m, the larger the value of K f ' the greater 
will be () f . This increases the ease and accuracy of the measurement of () f ; consequently, it 
is desirable to choose a solvent having a large value of K f . By examining Eq. ( 13 .20) we can 
decide what sorts of compounds will have large values of K f . First of all, we replace I1Hfus 
by To I1Sfus ; this reduces Eq. (13 .20) to 

K _ RMTo 
f - I1Sfus

' ( 13 .23) 

which shows that K f increases as the product MTo increases. Since To increases as M 
increases, K f increases rapidly as the molar mass ofthe substance increases. The increase is 
not very uniform, simply because I1Sfus may vary a good deal, particularly when M is very 
large. Table 1 3 .2 illustrates the behavior of K f with increasing M. Because of variations in 
the value of I1Sfus , marked exceptions occur ; the general trend is apparent, however. 

* 1 3. 7  S O LU B I LITY 

The equilibrium between solid solvent and solution was considered in Section 1 3.6 . The 
same equilibrium may be considered from a different point of view. The word " solvent " 
as we have seen is ambiguous. Suppose we consider the equilibrium between solute in 
solution and pure solid solute. In this condition the solution is saturated with respect to the 
solute. The equilibrium condition is that the Jl of the solute must be the same everywhere, 
that is 

Jl2(T, p, x2) = Jl2(soBdlT, p), ( 13 .24) 
where X2 is the mole fraction of solute in the saturated solution, and therefore is the 
solubility of the solute expressed as a mole fraction. If the solution is ideal, then 

Jl'2(T, p) + RT In X2 = Jl2(SoBd)(T, p), 
where Jl'2(T, p) is the chemical potential of the pure liquid solute. The argument then 
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To 
1 .-----------,-----r---

x 

o ==���--------� 
T F i g u re 1 3 . 5  Idea l  so l ub i l ity versus T. 

proceeds in exactly the same way as for the freezing-point depression ; the symbols refer 
to the solute, however. The equation corresponding to Eq. ( 13 . 1 5) is 

In X2 = 
- il�fUS (� - �J ; ( 13 .25) 

ilHfus is the heat offusion of pure solute, To the freezing point of pure solute. Using ilHfus = 

To ilSfus in Eq. (1 3 .25), we obtain 

In X2 = 
il�us (1 - �). ( 13 .26) 

Either Eq. (13 .25) or Eq. ( 13 .26) is an expression of the ideal law of solubility. According to 
this law, the solubility of a substance is the same in all solvents with which it forms an ideal 
solution. The solubility of a substance in an ideal solution depends on the properties ofthat 
substance only. Low melting point To and low heat offusion both favor enhanced solubility. 
Figure 13 . 5  shows the variation of the solubility, x, as a function of temperature for two 
substances with the same entropy of fusion but different melting points .  

The use of Eq. ( 13 .25) can be illustrated by the solubility of naphthalene. The melting 
point is 80.0 °C ; the heat offusion is 1 9 080 J/mo!. Using these data we find from Eq. ( 13 .25) 
that the ideal solubility x = 0.264 at 20 °C. The measured solubilities in various solvents 
are given in Table 13 . 3 .  

The ideal law of solubility is frequently in error i f  the temperature of interest is far 
below the melting point of the solid, since the assumption that ilHfus is independent of 
temperature is not a very good one in this circumstance. The law is never accurate for 

Tab le  1 3 .3 

Solubility Solubility 
Solvent Xz Solvent X2 

Chlorobenzene 0.256 Aniline 0. 1 30 
Benzene 0.241 Nitrobenzene 0.243 
Toluene 0.224 Acetone 0. 1 8 3  
CCl4 0.205 Methyl alcohol 0.0 180 
Hexane 0.090 Acetic acid 0.0456 

By permission from J .  H. Hildebrand and R.  L. Scott, The Solubility of 
Nonelectrolytes, 3d ed . New York : Reinhold, 1 950, p .  283 .  
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solutions of ionic materials in water, since the saturated solutions of these materials are far 
from being ideal and are far below their melting points. As the table of solubilities of 
naphthalene shows, hydrogen-bonded solvents are poor solvents for a substance that 
cannot form hydrogen bonds. 

1 3 . 8  E LEVATI O N  O F  T H E B O I LI N G  P O I N T  

Consider a solution that i s  in equilibrium with the vapor o f  the pure solvent. The equilib
rium condition is that 

If the solution is ideal, 

and 

Jl(T, p, x) = Jlvap(T, p). 

JlO(T, p) + RT In x = Jlvap(T, p), 

In _ Jlvap - JlO(T, p) 
x - RT 

. 

( 13 .27) 

The molar Gibbs energy of vaporization is 

so that 
LlGvap = Jlvap(T, p) - JlO(T, p), 

I _ LlGvap n x  - RT . (1 3 .28) 

Note that Eq. ( 13 .28) has the same functional form as Eq. (13 . 12) except that the sign is 
changed on the right-hand side. The algebra which follows is identical to that used for the 
derivation of the formulas for the freezing-point depression except that the sign is reversed 
in each term that contains either LlG or LlH. This difference in sign simply means that while 
the freezing point is depressed, the boiling point is elevated. 

We can write the final equations directly. The analogues ofEqs. (1 3 . 1 5) and ( 1 3 . 1 6) are 

In x = LlHvap (! _ �) 
R T To ' or 

1 1 R In x  
- = - + -- .  T To LlHvap 

(1 3 .29) 

The boiling pointL of the solution is expressed in terms of the heat of vaporization and the 
boiling point of the pure solvent, LlHvap and To , and the mole fraction x of solvent in the 
solution. If the solution is dilute in all solutes, then m approaches zero and T approaches 
To . The boiling-point elevation constant is defined by 

Kb = (OT ) = MRT5 . _ (13 . 30) I I .  G r-om p, m = O LlHvap � 
The boiling-point elevation, ()b = T - To , so that d()b = dT. So lo��k m is small, Eq. 
(1 3 .30) integrates to 

(1 3 . 3 1 )  
For water, M = 0.0180152 kg/mol, To = 373 . 1 5  K ,  and ilHvap = 40 656 J/mol, then 
Kb = 0.5 1299 K kg/mol. The relation, Eq. (1 3 . 3 1), between boiling-point elevation and the 
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Tab le  1 3 .4  
Bo i l i n g -po int  e levation  constants 

Compound M/(kg/mol) tb;aC Kb/(K kg/mol) 

Water 0.0180 100 0.5 1  
Methyl alcohol 0.0320 64.7 0.86 
Ethyl alcohol 0.0461 78.5 1 .23 
Acetone 0.0581  56. 1 1 . 7 1  
Acetic acid 0.0600 1 18 .3 3.07 
Benzene 0.0781 80.2 2.53 
Cyclohexane 0.0842 8 1 .4 2.79 
Ethyl bromide 0. 1090 38 .3 2 .93 

molality of a dilute ideal solution corresponds to that between freezing-point depression 
and molality ; for any liquid, the constant Kb is smaller than K J ' 

The elevation of the boiling point is used to determine the molecular weight of a solute 
in the same way as is the freezing-point depression. It is desirable to use a solvent that has a 
large value of Kb . In Eq. (13 .30) if /},.Hvap is replaced by To L1Svap then 

Kb = RMTo . 
L1Svap 

But many liquids follow Trouton's rule : L1Svap � 90 J jK mol. Since R = 8.3 J jK mol, then, 
approximately, Kb � 10 - 1 MTo . The higher the molar mass of the solvent, the larger the 
value of Kb . The data in Table 13 .4 illustrate the relationship. 

Since the boiling point To is a function of pressure, Kb is a function of pressure. The 
effect is rather small but must be taken into account in precise measurements. The Clausius
Clapeyron equation yields the connection between To and p, which is needed to calculate 
the magnitude of the effect. 

1 3 . 9  O S M OTI C P R ES S U R E  

The phenomenon of osmotic pressure is illustrated by the apparatus shown in Fig. 1 3 .6 . A 
collodion bag is tied to a rubber stopper through which a piece of glass capillary tubing is 
inserted. The bag is filled with a dilute solution of sugar in water and immersed in a beaker 

Glass tube �-r 
H-P + 71 

F i g u re 1 3 . 6  S i mple osmotic 
pressu re exper i ment.  
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of pure water. The level of the sugar solution in the tube is observed to rise until it reaches a 
definite height, which depends on the concentration of the solution. The hydrostatic pressure 
resulting from the difference in levels of the sugar solution in the tube and the surface of the 
pure water is the osmotic pressure of the solution. Observation shows that no sugar has 
escaped through the membrane into the pure water in the beaker. The increase in volume of 
the solution that caused it to rise in the tube is a result of the passage of water through the 
membrane into the bag. The collodion functions as a semipermeable membrane, which 
allows water to pass freely through it but does not allow sugar to pass. When the system 
reaches equilibrium, the sugar solution at any depth below the level of the pure water is 
under an excess hydrostatic pressure due to the extra height of the sugar solution in the 
tubing. The problem is to derive the relation between this pressure difference and the 
concentration of the solution. 

1 3 . 9 . 1  The  va n 't  H off E q u at i o n  

The equilibrium requirement i s  that the chemical potential o f  the water must have the 
same value on each side of the membrane at every depth in the beaker. This equality of the 
chemical potential is achieved by a pressure difference on the two sides of the membrane. 
Consider the situation at the depth h in Fig. 1 3 .6 . At this depth the solvent is under a 
pressure p, while the solution is under a pressure p + n. If peT, p + n, x) is the chemical 
potential of the solvent in the solution under the pressure p + n, and poeT, p) that of the 
pure solvent under the pressure p, then the equilibrium condition is 

peT, p + n, x) = poeT, p), ( 13 . 32) 
and 

( 13 .33) 
The problem is to express the p of the solvent under a pressure p + n in terms of the p 
solvent under a pressure p. From the fundamental equation at constant T, we have 
dpo = 17° dp. Integrating, we have 

( 13 . 34) 

This reduces Eq. ( 13 . 33) to 

f+1t VOdp + RT In x = O. ( 13 . 35) 

In Eq. ( 13 . 35), 17° is the molar volume of the pure solvent. If the solvent is incompressible, 
then yo is independent of pressure and can be removed from the integral. Then 

YOn + RT ln x  = 0, ( 13 .36) 
which is the relation between the osmotic pressure n and the mole fraction of solvent in the 
solution. Two assumptions are involved in Eq. ( 13 .36) ; the solution is ideal and the solvent 
is incompressible. 

In terms of the solute concentration, In x = In (1 - Xz) . If the solution is dilute, then 
Xz � 1 ; the logarithm may be expanded in series. Keeping only the first term, we obtain 

In (1 - xz) = 



290 So lut ions I 

since nz � n in the dilute solution. Then Eq. ( 13 .36) becomes 

nz RT  n = � . nVO 
( 13 .37) 

By the addition rule the volume of the ideal solution is V = n VO + nz V� .  If the solution is 
dilute, nz is very small, so that V � n yo. This result reduces Eq. ( 13 .37) to 

nz RT  n = --
V 

or n = cRT. (13 .38) 

In Eq. ( 13 .38), c = nz/V, the concentration of solute (mol/m3) in the solution. Equation 
( 1 3 . 38) is the van't Hoff equation for osmotic pressure. 

The striking formal analogy between the van't Hoff equation and the ideal gas law 
should not go unnoticed. In the van't Hoff equation, nz is the number of moles of solute. 
The solute molecules dispersed in the solvent are analogous to the gas molecules dispersed 
in empty space. The solvent is analogous to the empty space between the gas molecules. In 
the experiment shown in Fig. 13 .7, the membrane is attached to a movable piston. As the 
solvent diffuses through the membrane, the piston is pushed to the right ; this continues 
until the piston is flush against the right-hand wall. The observed effect is the same as if the 
solution exerted a pressure against the membrane to push it to the right. The situation is 
comparable to the free expansion of a gas into vacuum. If the volume ofthe solution doubles 
in this experiment, the dilution will reduce the final osmotic pressure by half, just as the 
pressure of a gas is halved by doubling its volume. 

In spite of the analogy, it is deceptive to consider the osmotic pressure as a sort of 
pressure that is somehow exerted by the solute. Osmosis, the passage of solvent through 
the membrane, is due to the inequality of the chemical potential on the two sides of the 
membrane. The kind of membrane does not matter, but it must be permeable only to the 
solvent. Nor does the nature of the solute matter ; it is necessary only that the solvent 
contain dissolved foreign matter which is not passed by the membrane. 

The mechanism by which the solvent permeates the membrane may be different for 
each different kind of membrane. A membrane could conceivably be like a sieve that allows 
small molecules such as water to pass through the pores while it blocks larger molecules. 
Another membrane might dissolve the solvent and so be permeated by it, while the solute is 
not soluble in the membrane. The mechanism by which a solvent passes through a 
membrane must be examined for every membrane-solvent pair using the methods of 
chemical kinetics. Thermodynamics cannot provide an answer, because the equilibrium 
result is the same for all membranes. 

Semipermeable membrane 
. . . . . .  

. . . . . . .  
. . . . . 

Solution : 
(gas) 

Pure solvent 
- (vacuum) 

Piston 

F i g u re 1 3 . 7  Osmotic ana fog 
of the Jou l e  exper i ment.  
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The measurement of osmotic pressure is useful for determining the molar masses of 
materials that are only slightly soluble in the solvent, or which have very high molar masses 
(for example, proteins, polymers of various types, colloids). These are convenient measure
ments because of the large magnitude of the osmotic pressure. 

At 25 °C, the product RT ::::::: 2480 J/mo!. Thus, for a 1 moljL solution (c = 1000 
moljm3), we have 

n = cR T = 2.48 X 106 Pa = 24.5 atm. 

This pressure corresponds to a height of a column of water of the order of 800 ft: Simply to 
keep the experiment in the laboratory, the solutions must be less than 0.01 molar, and are 
preferably of the order of 0.001 molar. This assumes that we are using an apparatus of the 
type shown in Fig. 1 3 .6 .  Very precise measurements of osmotic pressures up to several 
hundred atmospheres have been made by H. N. Morse and J. C. W. Frazer, and by Lord 
Berkeley and E. G. J. Hartley using special apparatus of different design. 

In a molar mass determination, if W2 is the mass of solute dissolved in the volume, V, 
then n = w2 RTIM2 V, or 

Even when W2 is small and M 2 large, the value of n is measurable and can be translated into 
a value of M2 • 

Osmosis plays a significant role in the function of organisms. A cell that is immersed in 
pure water undergoes plasmolysis. The cell wall permits water to flow into it ; thereupon the 
cell becomes distended, the wall stretches until it ultimately ruptures or becomes leaky 
enough to allow the solutes in the cellular material to escape from the interior. On the 
other hand, if the cell is immersed in a concentrated solution of salt, the water from the cell 
flows into the more concentrated salt solution and the cell shrinks. A salt solution which is 
just concentrated enough so that the cell neither shrinks nor is distended is called an 
isotonic solution. 

Osmosis might be called the principle of the prune. The skin of the prune acts as a 
membrane permeable to water. The sugars in the prune are the solutes. Water diffuses 
through the skin and the fruit swells until the skin ruptures or becomes leaky. Only rarely 
are plant and animal membranes strictly semipermeable. Frequently, their function in the 
organism requires that they pass other materials, as well as water. Medicinally, the osmotic 
effect is utilized in, for example, the prescription of a salt-free diet in some cases of ab
normally high fluid retention by the body. 

Q U ESTI O N S  

13.1 Is the lowering of the chemical potential of a solvent in an ideal solution, Eq. ( 13 . 5), an enthalpy 
effect or an entropy effect ? Explain. 

13.2 Interpret (a) freezing-point depression and (b) boiling point elevation in terms of fl as a measure 
of " escaping tendency." 

13.3 How does the temperature dependence of the solubility of a solid in a liquid illustrate LeChatelier's 
principle ? 

13.4 Reverse osmosis has been suggested as a means of purifying sea water (roughly an NaCl-HzO 
solution). How could this be accomplished with an appropriate membrane, with special attention 
placed on the required pressure on the solution ? 
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P R O B L E M S  

13.1 Twenty grams of a solute are added to 100 g of water at 25 0c. The vapor pressure of pure 
water is 23.76 mmHg ; the vapor pressure of the solution is 22.41 mmHg. 
a) Calculate the molar mass of the solute. 
b) What mass of this solute is required in 100 g of water to reduce the vapor pressure to one

half the value for pure water ? 
13.2 How many grams of sucrose, C1 2H220U,  must be dissolved in 90 g of water to produce a solu

tion over which the relative humidity is 80 %? Assume the solution is ideal. 
13.3 Suppose that a series of solutions is prepared using 180 g of H20 as a solvent and 10 g of an 

involatile solute. What will be the relative vapor pressure lowering if the molar mass of the solute 
is : 100 g/mol, 200 g/mol, 10,000 g/mol? 

13.4 a) For an ideal solution plot the value of p/po as a function of X2 , the mole fraction of the 
solute. 

b) Sketch the plot of p/po as a function of the molality of the solute, if water is the solvent. 
c) Suppose the solvent (for example, toluene) has a higher molar mass. How does this affect the 

plot of p/po versus m? How does it affect p/po versus X2 ? 
d) Evaluate the derivative of (po - p )/po with respect to m, as m --+ O. 

13.5 A stream of air is bubbled slowly through liquid benzene in a flask at 20.0 °C against an ambient 
pressure of 100. 56 kPa. After the passage of 4.80 L of air, measured at 20.0 °C and 100.56 kPa 
before it contains benzene vapor, it is found that 1 .705 g of benzene have been evaporated. 
Assuming that the air is saturated with benzene vapor when it leaves the flask, calculate the 
equilibrium vapor pressure of the benzene at 20.0 0c. 

13.6 Two grams of benzoic acid dissolved in 25 g of benzene, K f "" 4.90 K kg/mol, produce a freezing
point depression of 1 .62 K. Calculate the molar mass. Compare this with the molar mass obtained 
from the formula for benzoic acid, C6HsCOOH. 

13.7 The heat of fusion of acetic acid is 1 1 .72 kJ/mol at the melting point 16.61 0c. Calculate K f for 
acetic acid. 

13.8 The heat of fusion of water at the freezing point is 6009 .5 J/mol. Calculate the freezing point of 
water in solutions having a mole fraction of water equal to : 1 .0, 0.8, 0.6, 0.4, 0.2. Plot the values 
of T versus x. 

13.9 Ethylene glycol, C2HiOHh , is commonly used as a permanent antifreeze ; assume that the 
mixture with water is ideal. Plot the freezing point of the mixture as a function of the volume 
percent of glycol in the mixture for 0 %, 20 %,  40 %,  60 %, 80 % .  The densities are : H20, 
1 .00 g/cm3, glycol, 1 . 1 1  g/cm3• �Hfus(H20) = 6009.5 J/mol. 

13.10 Assume that �Hfus is independent of the temperature and that the thermometer available can 
measure a freezing-point depression to an accuracy of ± 0.01 K. The simple law for freezing
point depression, Of = Krm, is based on the limiting condition that m = O. At what molality 
will this approximation no longer predict the result within the experimental error in water ? 

13. 1 1  If the heat offusion depends on temperature through the expression 

�Hfus = �Ho + �Cp(T - To), 

where �C p is constant, then the value of Of can be expressed in the form Of = am + bm2 + . . .  , 
where a and b are constants. Calculate the values of a and b. [Hint: This is a Taylor series, so 
evaluate (EPO/8m2) at m = 0.] 

13.12 For CCI4 , Kb = 5 .03 K kg/mol and K r = 3 1 .8 K kg/mol. If 3 .00 g of a substance in 100 g CCl4 
raises the boiling point by 0.60 K, calculate the freezing-point depression, the relative vapor 
pressure lowering, the osmotic pressure at 25 °C, and the molar mass of the substance. The 
density of CCl4 is 1 .59 g/cm3 and the molar mass is 1 53 .823 g/mol. 
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13.13 Calculate the boiling-point elevation constant for each of the following substances. 

Substance tbtc illivap/(J/g) 

Acetone, (CH3hCO 56. 1 520.9 

Benzene, C6H6 80.2 394.6 

Chloroform, CHCl3 61 . 5  247 

Methane, CH4 - 1 59 577 

Ethyl acetate, CH3C02C2H5 77.2 426.8 

�lot the values of Kb versus the product MTb .  
�nce the boiling point of the liquid depends on the pressure, Kb is a function of pressure. 

Calculate the value of Kb for water at 750 mmHg and at 740 mmHg pressure. Use the data in 
the text. Assume illivap is constant. 

13.15 a) For p-dibromobenzene, C6H4Br2 , the heat of fusion is 85 .8 Jig ; the melting point is 86 °C. 
Calculate the ideal solubility at 25 °C. 

b) For p-dichlorobenzene, C6H4C12 , the heat of fusion is 124.3 Jig ; the melting point is 52.7 dc. 
Calculate the ideal solubility at 25 °C. 

13.16 The melting point of iodine is 1 1 3 .6  °C and the heat of fusion is 15 .64 kJ/mol. 
a) What is the ideal solubility of iodine at 25 °C? 
b) How many grams of iodine dissolve in 100 g hexane at 25 °C? 

13.17 In 100.0 g benzene, 70.85  g naphthalene, Cl OHs , dissolve at 25 °C and 103.66 g dissolve at 
35 °C. Assume the solution is ideal. Calculate illifus and Tm for naphthalene. 

13.18 If 6.00 g of urea, (NH2hCO, is dissolved in 1 .00 L of solution, calculate the osmotic pressure 
of the solution at 27 °C. �onsider a vertical tube with a cross-sectional area of 1 .00 cm2 • The bottom of the tube is 

'�osed with a semipermeable membrane and 1 .00 g of glucose, C6H1 206 , is placed in the tube. 
The closed end of the tube is immersed in pure water. What will be the height of the liquid 
level in the tube at equilibrium? The density of the solution may be taken as 1 .00 g/cm2 ; the 
sugar concentration is assumed to be uniform in the solution. What is the osmotic pressure at 
equilibrium? (t = 25° C ; assume a negligible depth of immersion.) 

13.20 At 25 °C a solution containing 2.50 g of a substance in 250.0 cm3 of solution exerts an osmotic p��ressure of 400 Pa. What
.
is the molar �ass of the �ub�tance ? 

. _  � The complete expressiOn for osmotIc pressure IS gIven by Eq. ( 13 .36). Smce c = n21V and 
V = nVo + n2 V1 , where VO and V1 are constants, the mole numbers n and n2 can be ex
pressed in terms of V, yo, V2 , and c. Compute the value of �= nj(n + n.J in these terms. 
Then evaluate (8rcl8ch at c = 0 and show that it is e9.,ual to R T. 

b) By evaluating (82rcl8czh at c = 0, show that rc =(c;RT(1 + V'C), where V' = V2 - tva. 
Note that this is equivalent to writing a modified van der Waals equation, rc = n2R TI(V 
nz V'), and expanding it in a power series. 

1 -f � �------
i +  
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S o l u t i o n s  

I I .  M o re t h a n  O n e  Vo l at i l e  
C o m p o n e nt ; t h e  I d ea l 
D i l ute S o l ut i o n  

1 4 . 1  G E N E RA L  C H A RACT E R I ST I C S  O F  T H E I D EA L  S O L U TI O N  

The discussion in Chapter 1 3  was restricted to those ideal solutions in which the solvent 
was the only volatile constituent present. The concept of an ideal solution extends to 
solutions containing several volatile constituents. As before, the concept is based on a 
generalization of the experimental behavior of real solutions and represents a limiting 
behavior that is approached by all real solutions. 

Consider a solution composed of several volatile substances in a container that is 
initially evacuated. Since the components are all volatile, some of the solution evaporates 
to fill the space above the liquid with vapor. When the solution and the vapor come to 
equilibrium at the temperature T, the total pressure within the container is the sum of the 
partial pressures of the several components of the solution : 

P = P l + P2 + . . . + Pi + . . . . (14. 1)  
These partial pressures are measurable, as are the equilibrium mole fractions X l ' . . .  , Xi '  . . .  , 
in the liquid. Let one of the components, i, be present in a relatively large amount com
pared with any of the others. Then it is found experimentally that 

(14.2) 
where pi is the vapor pressure of the pure liquid component i. Equation (14.2) is Raoult's 
law, and experimentally it is followed in any solution as Xi approaches unity regardless 
of which component is present in great excess. When any solution is dilute in all com
ponents but the solvent, the solvent always follows Raoult's law. Since all ofthe components 
are volatile, any one of them can be designated as the solvent. Therefore the ideal solution 
is defined by the requirement that each component obey Raoult's law, Eq. (14.2), over the 
entire range of composition. The significance of the symbols is worth reiterating : Pi is the 
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partial pressure o f  i in the vapor phase ; pf i s  the vapor pressure o f  the pure liquid i ; and Xi 
is the mole fraction of i in the liquid mixture. 

The ideal solution has two other important properties : The heat of mixing the pure 
components to form the solution is zero, and the volume of mixing is zero. These properties 
are observed as the limiting behavior in all real solutions. If additional solvent is added to a 
solution that is dilute in all of the solutes, the heat of mixing approaches zero as the 
solution becomes more and more dilute. In the same circumstances the volume of mixing 
of all real solutions approaches zero. 

1 4 . 2  T H E C H E M I CA L  P OT E NTIAL  I N  I D EA L  S O L U TI O N S  

Consider an ideal solution in equilibrium with its vapor at a fixed temperature T. For each 
component, the equilibrium condition is tti = tti(vap) , where tti is the chemical potential 
of i in the solution, tti(vap) is the chemical potential of i in the vapor phase. If the vapor is 
ideal, then by the same argument as in Section 1 3 .3 ,  the value of tti is 

tti = ttf(T, p) + RT In Xi ' (14.3) 

where ttf(T, p) is the chemical potential of the pure liquid i at temperature T and under 
pressure p. The chemical potential of each and every component of the solution is given 
by the expression in Eq. (14.3) . Figure 14. 1 shows the variation of tti - ttf as a function of 
Xi . As Xi becomes very small, the value of tti decreases very rapidly. At all values of Xi ' 
the value of tti is less than that of ttf. 

Since Eq. (14.3) is formally the same as Eq. ( 1 1 . 1 4) for the tt of an ideal gas in a gas 
mixture, by the same reasoning as in Section 1 1. 6  it follows that in mixing 

.1.Gmix = nRT I Xi In X; ,  ( 14.4) 

.1.Smix = - nR I Xi In X; , (14 .5) 

.1.Hmix = 0, (14.6) 

where n is the total number of moles in the mixture. The three properties of the ideal 
solution (Raoult's law, zero heat of mixing, and zero volume of mixing) are intimately 
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F i g u re 1 4. 1  (/1i - /17) versus Xi " 
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related. If Raoult's law obtains for every component, then the heat and volume of mixing 
will be zero. (This statement cannot be reversed ; if the volume of mixing and heat of 
mixing are both zero, it does not follow that Raoult's law will be obeyed.) 

1 4 . 3  B I N A R Y  S O L U TI O N S  

We turn our attention now t o  the consequences of Raoult's law in binary solutions in 
which both components are volatile. In a binary solution Xl + X2 = 1. We have 

and 
P2 = X2P� = (1 - Xl)P� · 

If the total pressure over the solution is p, then 

P = Pi + P2 = xlPi + (1 - Xl)P� 
P = p� + (Pi - P�)Xl ' 

(14.7) 

(14.8) 

( 14.9) 

which relates the total pressure over the mixture to the mole fraction of component 1 in the 
liquid. It shows that P is a linear function of Xl (Fig. 14.2a). It is clear from Fig. 14.2(a) 
that the addition of a solute may raise or lower the vapor pressure of the solvent depending 
on which is the more volatile. 

The total pressure can also be expressed in terms of Yl ' the mole fraction of component 
1 in the vapor. From the definition of the partial pressure, 

Pi Yl = -. P 
Using the values of Pi and P from Eqs. (14.7) and (14.9), we obtain 

p 

o 

T= constant 

Yl = a (po 0) P2 + 1 - P2 X l 

p 

P� 

1 o 

T= constant 

Vapor 

(a) (b) 
F i g u re 1 4. 2  Vapor pressu re a s  a fu nction  o f  composit io n .  

(14. 10) 

1 
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Solving for X l  yields, 

Xl = pi + (P'2 - P1)YI . (14. 1 1) 

Using the value of X l  from Eq. (14. 1 1) in Eq. (14.9), we obtain, after collecting terms, 

p = pi + (P'2 - P'l)YI . 
P'lP'2 (14. 12) 

Equation (14 . 12) expresses p as a function of Yb the mole fraction of component 1 in the 
vapor. This function is plotted in Fig. 14.2(b). The relation in Eq. (14. 12) can be rearranged 
to the more convenient, symmetrical form 

� = YI 
+ Yz . p pi P'2 

(14. 12a) 

To describe a two-component system, the phase rule shows, since C = 2, that F = 
4 - P. Since P is 1 or greater, three variables at most must be specified to describe the 
system. Since Fig. 14.2(a) and (b) are drawn at a specified temperature, only two additional 
variables are required to describe completely the state of the system. These two variables 
may be (p, Xl) or (p, YI) . As a consequence, the points in Fig. 14.2(a) or (b) describe states 
of the system. 

There is a difficulty here. The variable X l ' being a mole fraction in the liquid, is not 
capable of describing states of the system that are completely gaseous. Similarly, YI is 
incapable of describing a completely liquid state of the system. Hence, only liquid states 
and those states on the line in which liquid and vapor coexist are described by Fig. 14.2(a). 
Similarly, only gaseous states and those states, on the curve, in which vapor and liquid 
coexist are described by Fig. 14.2(b). The completely liquid states are those at high pres
sures, that is, those above the line in Fig. 14.2(a). The completely gaseous states are stable 
at low pressures, those below the curve in Fig. 14.2(b). These regions of stability have been 
so labeled on the diagrams. 

Life would be much simpler if we could represent all the states on one diagram. If 
only liquid is present, Xl describes the composition of the liquid and also the composition 
of the entire system. If only vapor is present, YI describes the composition of the vapor 
and at the same tim� the composition of the entire system. In view of that, it seems reason
able to plot the pressure against X b the mole fraction of component 1 in the entire system. 
In Fig. 14.3(a), p is plotted against X I ;  the two curves of Fig. 14.2(a) and (b) are drawn in. 
The upper curve is called the liquid curve ; the lower curve is the vapor curve. The system 
is neatly represented by one diagram : The liquid is stable above the liquid curve ; the 
vapor is stable below the vapor curve. What significance is attributed to the points that lie 
between the curves? The points lying just above the liquid curve correspond to the lowest 
pressures at which liquid can exist by itself, since vapor appears if the point lies on the 
curve. Liquid cannot be present alone below the liquid curve. By the same argument vapor 
cannot be present alone above the vapor curve. The only possible meaning to the points 
between the curves is that they represent states of the system in which liquid and vapor 
coexist in equilibrium. The enclosed region is the liquid-vapor region. 

Consider the point a in the liquid�vapor region (Fig. 14.3b). The value Xl cor
responding to a is the mole fraction of component 1 in the entire system, liquid + vapor. 
What composition of liquid can coexist with vapor at the pressure p in question? The 
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F i g u re 1 4.3 I nterpretat ion of the p-X d iagram.  

intersection of a horizontal line, a tie line, at constant pressure, with the liquid curve at 1 
yields the value of X l > which describes the composition of the liquid ; its intersection with 
the vapor curve at v yields the value of Yl > which describes the composition of the vapor. 

If two phases-liquid and vapor-are present in equilibrium, the variance of the 
system is F = 4 - 2 = 2. Since the temperature is fixed, one other variable, any one of 
p, Xl '  Yl > suffices to describe the system. So far we have used Xl or Yl to describe the 
system ; since Xl + X2 = 1, and Yl + Y2 = 1, we could equally well have chosen X2 and Y2 · 
If the pressure is chosen to describe the two-phase system, the intersections of the horizon
tal line at that pressure with the liquid and vapor curves yield the values of Xl and Yl 
directly. If  Xl i s  the describing variable, the intersection of the vertical line at X l  with the 
liquid curve yields the value of p ;  from p the value of Yl is obtained immediately. 

1 4 .4  T H E LEVE R R U LE 

In any two-phase region, such as L-V in Fig. 14.3(b), the composition of the entire system 
may vary between the limits Xl and Yl > depending on the relative amounts of liquid and 
vapor present. If the state point a is very near the liquid line, the system would consist 
of a large amount of liquid and a relatively small amount of vapor. If a is near the vapor 
line, the amount of liquid present is relatively small compared with the amount of vapor 
present. 

The relative amounts of liquid and vapor present are calculated by the lever rule. 
Let the length of the line segment between a and 1 in Fig. 14 .3(b) be (al) and that between 
a and v be (av) ; then let nl (liq) and nl (vap) be the number of moles of component 1 in the 
liquid and in the vapor, respectively ; let nl = nl (liq) + nl (vap) . If nliq and nvap are the total 
number of moles of liquid and vapor present, respectively, and if n = nliq + nvap ' then 
from Fig. 14.3(b), we have 

(-l) - X - nl nl (liq) a - 1 - Xl - - - -- , n nliq 
( -) X 

nl (vap) n l  av = Yl - 1 = -- - - . nvap n 
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Multiply (al) by  nliq and (av) by nvap and subtract : 

Therefore 

or nliq (av) 
nvap 

= (al) · (14. 1 3) 

This is called the lever rule, point a being the fulcrum of the lever ; the number of moles 
of liquid times the length (eil) from a to the liquid line is equal to the number of 
moles of vapor times the length, (av), from a to the vapor line. The ratio of the number 
of moles of liquid to the number of moles of vapor is given by the ratio of lengths of the 
line segments connecting a to v and l. Thus if a lies very close to v, (av) is very small 
and n1iq � nvap ; the system consists mainly of vapor. Similarly when a lies close to 
l, nvap � n1iq ; the system consists mainly of liquid. 

Since the derivation of the lever rule depends only on a mass balance, the rule is 
valid for calculating the relative amounts of the two phases present in any two-phase 
region of a two-component system. If the diagram is drawn in terms of mass fraction 
instead of mole fraction, the level rule is valid and yields the relative masses of the two 
phases rather than the relative mole numbers. 

1 4 . 5  C H A N G ES I N  STATE AS T H E P R ES S U R E  I S  
R E D U C E D  I S OT H E R M A l lY 

The behavior of the system is now examined as the pressure is reduced from a high to 
a low value, keeping the overall composition constant at a mole fraction of component 
1 equal to X. At point a, Fig. 14.4, the system is entirely liquid and remains so as the 
pressure is reduced until the point l is reached ; at point l, the first trace of vapor appears, 
having a composition y. Note that the first vapor to appear is considerably richer in 1 
than the liquid ; component 1 is the more volatile. As the pressure is reduced further, the 
point reaches a

'
; during this reduction of pressure, the composition of the liquid moves 

along the line U', while the composition of the vapor moves along vv
'
. At a'

, liquid has the 

p 

o 

a 

a ' v 
v ' I 

v " I I I I I I 
I I 
I I 
I I 

a ll I I I I I I I I 
I I 
I I 
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composition x' while vapor has the composition y'. The ratio of number of moles of liquid 
to vapor at point a' is (a'v')j(a' l'), from the lever rule. Continued reduction of pressure 
brings the state point to v" ; at this point, only a trace of liquid of composition x" remains ; 
the vapor has the composition X. Note that the liquid which remains is richer in the less 
volatile component 2 .  As the pressure is reduced, the state point moves into the vapor 
region, and the reduction of pressure from v" to a" simply corresponds to an expansion of 
the vapor. In the final state, a", the vapor has, of course, the same composition as the 
original liquid. 

The vapor that forms over a liquid as the pressure is reduced is richer in a particular 
component than the liquid. This fact is the basis of a method of separation : isothermal 
distillation. The method is useful for those mixtures that would decompose if distilled by 
the ordinary method ; it is sufficiently inconvenient so that it is used only if other methods 
are not suitable. 

The system described above is an ideal solution. If the deviations from ideality are not 
very large, the figure will appear much the same except that the liquid composition curve 
is not a straight line. The interpretation is precisely the same as for the ideal solution. 

1 4 . 6  T E M P E R AT U R E-CO M PO S I TI O N  D IAG R A M S  

In the diagrams shown in Section 14.5 , the temperature was constant. The equilibrium 
pressure of the system was then a function of either X l or Yv according to Eqs. (14.9) or 
(14. 12). In those equations, the values of pi and pz are functions of temperature. If, in 
Eqs. (14.9) and (14. 12), we consider the total pressure p to be constant, then the equations 
are relations between the equilibrium temperature, the boiling point, and either Xl or Yl ' 
The relations T = !(Xl) and T = g(Yt) are not such simple ones as between pressure and 
composition, but they may be determined theoretically through the Clapeyron equation 
or, ordinarily, experimentally through determination of the boiling points and vapor 
compositions corresponding to liquid mixtures of various compositions. 

The plot at constant pressure of boiling points versus compositions for the ideal 
solution corresponding to that in Fig. 14.3 is shown in Fig. 14 .5 .  Neither the liquid nor 
the vapor curve is a straight line ; otherwise, the figure resembles Fig. 14 .3 .  However, the 
lenticular liquid-vapor region is tilted down from left to right. This corresponds to the fact 
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that component 1 had the higher vapor pressure ; therefore i t  has the lower boiling point. 
Also in Fig. 14 .5 the liquid region is at the bottom of the diagram, since under a constant 
pressure the liquid is stable at low temperatures. The lower curve describes the liquid 
composition ; the upper curve describes the vapor composition. The regions in the p-X 
diagram are sometimes thoughtlessly confused with those in the T -X diagram. A little 
common sense tells us that the liquid is stable at low temperatures, the lower part of the 
T -X diagram, and under high pressures, the upper part of the p-X diagram. Attempting 
to memorize the location of the liquid or vapor regions is -foolish when it is so easy to 
figure it out. 

The principles applied to the discussion of the p-X diagram can be applied in much 
the same way to the T -X diagram. The pressure on the system is constant ; from the phase 
rule, two additional variables at most are needed to describe the system. Every point in 
the T-X diagram describes a state of the system. The points in the uppermost portion 
of the diagram are gaseous states of the system ; those points in the lowest part are liquid 
states. The points in the middle region describe states in which liquid and vapor coexist 
in equilibrium. The tie line in the liquid-vapor region connects the composition of vapor 
and the composition of liquid that coexist at that temperature. The lever rule applies to 
the T -X diagram, of course. 

1 4. 7  C H A N G E S  I N  STATE WITH I N C R EAS E I N  T E M P E RATU R E  

We examine now the sequence of events as a liquid mixture under a constant pressure 
is heated from a low temperature, corresponding to point a, Fig. 14.5, to a high tempera
ture corresponding to point a". At a, the system consists entirely of liquid ; as the tempera
ture rises, the system remains entirely liquid until point l is reached ; at this temperature 
Tl the first trace of vapor appears, having composition y. The vapor is much richer than 
the liquid in component 1, the lower boiling component. This fact is the basis for the 
separation of volatile mixtures by distillation. As the temperature is raised, the state point 
moves to a', and the liquid composition changes continuously along line [[' ; the vapor 
composition changes continuously along line vv'. At a', the relative number of moles of 
liquid and vapor present is given by the ratio (a'v')/(a'l'). If the temperature is raised 
further, at v" the last trace of liquid, of composition x", disappears. At a" the system 
exists entirely as a vapor. 

1 4 . 8  F R ACTI O N A L  D I STI L LATI O N  

The sequence of events described in Section 14.7 is observed if no material is removed 
from the system as the temperature is increased. If some of the vapor formed in the early 
stages of the process is removed from the system and condensed, the condensate, or 
distillate, is enriched in the more volatile constituent, while the residue is improverished 
in the more volatile constituent. Suppose that the temperature of a mixture M is increased 
until half the material is present as vapor and half remains as liquid (Fig. 14.6a). The 
vapor has the composition v ;  the residue R has the composition l. The vapor is removed 
and condensed, yielding a distillate D of composition v. Then the distillate is heated until 
half exists as vapor and half as liquid (Fig. 14.6b). The vapor is removed and condensed, 
yielding distillate D' with composition v' and residue R' with composition l'. The original 
residue R is treated in the same way to yield distillate D" and residue R". Since D" and R' 
have about the same composition, they are combined ; the process is now repeated on the 
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three fractions, R", (D" + R'), and D' ; continuation of this process ultimately yields a 
distillate that approaches the composition of the more volatile liquid and a residue close 
to the composition of the less volatile liquid, together with a series of fractions of inter
mediate composition. 

The time and labor involved in this batch type of separation is prohibitive and is 
eliminated through the use of a continuous method using a fractionating column (Fig. 
14.7). The type of column illustrated is a bubble-cap column. The column is heated at the 
bottom ; there is a temperature gradient along the length of the column, the top being 
cooler than the bottom. Let us suppose that the temperature at the top of the column is 
Tb and the vapor issuing at this point is in equilibrium with the liquid held up on the top 
plate, plate 1 ;  the compositions of liquid and vapor are shown in Fig. 14.8 as lb and Vi . 
On the next plate, plate 2, the temperature is slightly higher, T2 , and the vapor issuing 
from it has the composition V2 . As this vapor passes upward to plate 1, it is cooled to 
temperature Tb to point a. This means that some of the vapor V2 condenses to form ll ; 
since II is richer in the less volatile constituent, the remaining vapor is richer in the more 
volatile constituent and at equilibrium attains the composition Vi . This happens at every 
plate in the column. As the vapor moves up the column, it cools ; this cooling condenses 
the less volatile component preferentially, so the vapor becomes increasingly enriched in 
the more volatile component as it moves upward. If at each position in the column the 
liquid is in equilibrium with vapor, then the composition of the vapor will be given by the 
vapor composition curve in Fig. 14 .8 .  It is understood that the temperature is some 
function of the position in the column. 

As the liquid li on the top plate flows down to the next plate, the temperature rises to 
T2 , and the state point of the liquid reaches b (Fig. 14.8). Some of the more volatile com
ponent vaporizes to yield V2 ; the liquid shifts to the composition l2 . As it flows downward 
through the column, the liquid becomes richer in the less volatile component. 

As vapor moves up the column and the liquid moves down, there is a continuous 
redistribution of the two components between the liquid and vapor phases to establish 
equilibrium at each position (that is, each temperature) in the column. This redistribution 
must take place quickly if the equilibrium is to be established at every position. There 
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must be efficient contact between the liquid and vapor. In the bubble-cap column, efficient 
contact is obtained by forcing the ascending vapor to bubble through the liquid on each 
plate. In the laboratory Hempel column, the liquid is spread out over glass beads and the 
vapor is forced upward through the spaces between the beads ; intimate contact is achieved 
in this way. Industnal stills use a variety of packings, saddle-shaped pieces of ceramic 
being frequently used. Packing materials or arrangements that permit the liquid to 
channel, that is, to flow downward through the column along special paths, must be 
avoided. The aim is to spread liquid evenly in relatively thin layers so that redistribution of 
the components may occur quickly. 

It should be noted that if a certain portion of the column is held at a particular 
temperature, then, at equilibrium, the composition of liquid and vapor have the values 
appropriate to that temperature. Under constant pressure, the variance of the system is 
F = 3 - P ;  since two phases are present, F = 1. Consequently, fixing the temperature 
at every position in the column fixes the liquid and vapor composition at every position 
in the column at equilibrium. Therefore, by imposing an arbitrary temperature distribu
tion along the column, an equally arbitrary composition distribution of vapor and liquid 
along the column results " at equilibrium." 

The phrase " at equilibrium" or " in equilibrium" is commonly used to describe a 
distilling column that is not in equilibrium at all but rather in a steady state. Since there 
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are inequalities of temperature along the column, the system cannot be truly in equilibrium 
in the thermodynamic sense. For this reason, the phase rule does not apply rigorously to 
this situation. It can be used as a guide, however. Other difficulties occur as well : the 
pressure is higher at the bottom of the column than at the top ; the countercurrent flow 
of liquid and vapor is an additional nonequilibrium phenomenon. 

In practice, equilibrium is not established at every position of the column, but rather 
the vapor at any position has a composition in equilibrium with the liquid at a slightly 
lower position. If the distance between these two positions is h, the column is said to have 
one theoretical plate in the length h. The number of theoretical plates in a column depends 
on its geometry, the kind and arrangement of the packing, and the manner in which the 
column is operated. It must be determined experimentally for a given set of operating 
conditions. 

If the individual components have boiling points that are far apart, a distilling column 
with only a few theoretical plates suffices to separate the mixture. On the other hand, if the 
boiling points are close together, a column with a large number of theoretical plates is 
required. 

1 4. 9  AZ E OT R O P E S  

Mixtures that are ideal o r  depart only slightly from ideality can b e  separated into their 
constituents by fractional distillation. On the other hand, if the deviations from Raoult's 
law are so large as to produce a maximum or a minimum in the vapor pressure curve, 
then a corresponding minimum or maximum appears in �he boiling point curve. Such 
mixtures cannot be completely separated into the constituents by fractional distillation. 
It can be shown that if the vapor pressure curve has a maximum or minimum, then at that 
point the liquid and vapor curves must be tangent to one another and the liquid and vapor 
must have the same composition (Gibbs-Konovalov theorem). The mixture having 
the maximum or minimum vapor pressure is called an azeotrope (from the Greek : to boil 
unchanged). 

Consider the system shown in Fig. 14.9, which exhibits a maximum boiling point. 
If a mixture described by point a, having the azeotropic composition, is heated, the 
vapor will first form at temperature t ;  that vapor has the same composition as the liquid ; 
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consequently, the distillate obtained has exactly the same composition a s  the original 
liquid ; no separation is effected. If a mixture described by b in Fig. 14.9 is heated, the first 
vapor forms at tf, and has a composition uf . This vapor is richer in the higher boiling 
component. Fractionation would separate the mixture into pure component 1 in the 
distillate and leave the azeotropic mixture in the pot. A mixture described by c would 
boil first at t" ; the vapor would have the composition u" . Fractionation of this mixture 
would yield pure component 2 in the distillate and azeotrope in the pot. 

The behavior of minimum boiling azeotropes shown in Fig. 14. 10  is analogous. 
The azeotrope itself distills unchanged. A mixture described by b boils first at tempera
ture t, the vapor having a composition v. Fractionation of this mixture produces azeo
trope in the distillate ; pure component 1 remains in the pot. Similarly, fractionation of a 
mixture described by c will produce azeotrope in the distillate and leave pure component 
2 in the pot. 

In Table 14. 1 ,  a number of azeotropic mixtures are listed, together with their properties. 
The azeotrope resembles a pure compound in the property of boiling at a constant tempera
ture' while ordinary mixtures boil over a range of temperatures. However, changes in 
pressure produce changes in the composition of the azeotrope, as well as changes in the 
boiling point, and so it cannot be a pure compound. The constant boiling hydrochloric 
acid is a case in point. The variation in composition with pressure is illustrated by the 
data in Table 14.2. These compositions have been determined accurately enough that a 
standard Hel solution may be prepared by dilution of the constant boiling acid. 

Tab le 1 4. 1 (a )  
M i n im u m  boi l i ng azeotropes ( 1  atm) 

Azeotrope 

Component A t b;aC Component B tb;aC Mass % A  tb;aC 

H2O 100 C2HsOH 78.3 4.0 78 . 1 74 
H2O 100 CH3COC2Hs 79.6 1 1 . 3  73.41 
CC14 76.75 CH30H 64.7 79.44 55 .7 
CS2 46.25 CH3COCH3 56. 1 5  67 39.25 
CHC13 6 1 .2 CH30H 64.7 87.4 53 .43 

Tab le  1 4. 1  ( b )  
M axi mum bo i l i ng  azeotropes ( 1  atm) 

Azeotrope 

Component A tb;aC Component B tb;aC Mass % A  tb;aC 

H2O 100 HCl - 80 79.778 108.584 
H2O 100 HN03 86 32 120.5 
CHC13 6 1 .2 CH3COCH3 56 .10 78 .5 64.43 
C6HsOH 182.2 C6HSNH2 1 84.35 42 1 86.2 

By permission from Azeotropic Data ; Advances in Chemistry Series No. 6. Washington, 
D .C . : American Chemical Society, 1 952. 
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Dependence of azeotropic temperature and 
composit ion on  pressure 

Pressure/mmHg Mass % HCI t btc 

500 20.916 97.578 
700 20.360 106.424 
760 20.222 108.584 
800 20. 1 55  1 10.007 

W. D. Bonner, R. E .  Wallace, J. Amer. Chern. Soc. 
52 : 1 747 (1 930). 

1 4 . 1 0 T H E I D EA L  D I LUTE S O LUTI O N  

The rigid requirement of the ideal solution that every component obey Raoult's law over 
the entire range of composition is relaxed in the definition of the ideal dilute solution. To 
arrive at the laws governing dilute solutions, we must examine the experimental behavior 
of these solutions. The vapor-pressure curves for three systems are describeq below. 

1 4 . 1 0 . 1  B e nzene-To l uene 

Figure 14. 1 1  shows the vapor pressure versus mole fraction of benzene for the benzene
toluene system, which behaves ideally to a good degree of accuracy over the entire range 
of composition. The partial pressures of benzene and toluene, also shown in the figure, 
are linear functions of the mole fraction of benzene, since Raoult's law is obeyed. 

1 4 . 1 0 . 2  Acetone-Carbon D is u l f i d e  

Figure 14. 12(a) shows the partial-pressure curves and the total vapor pressure o f  mixtures 
of carbon disulfide and acetone. In this system the individual partial-pressure curves fall 
well above the Raoult's law predictions indicated by the dashed lines. The system ex
hibits positive deviations from Raoult's law. The total vapor pressure exhibits a maximum 
that lies above the vapor pressure of either component. 

29 . 1 

o 
Toluene 

94. 7  

1 F i g u re 1 4. 1 1 Vapor pressu res i n  
Benzene t h e  benzene-to luene system. 



308 So lut ions I I  

600 

400 
� S 
.@ Q., 

0 
Acetone 

Xes 1 2 
CS2 (a) 

600 " Henry's law 
I 

I 
I 
I / 
I // 

400 I / 
b.O I / / ::r: I / 
S I / 
..§ 

/ 
I / 

Q., I " 
I '" / 

200 
I '" I "," Raoult 's law I 

, '" 
� '" 

",'" 
/ 

'" / '" 

0 Xes 2 
Acetone 

(b) 

F i g u re 1 4. 1 2 Vapor p ressu re i n  the aceton e-carbon d isu lf ide system (35 . 1 7  ·C) . 
[J . v. Zawidski ,  Z. physik Chem. ,  35 : 1 29 ( 1 900) . ]  

/ 

1 
CS2 

Figure 14. 12(b) displays another interesting feature of this system. In this figure 
only the partial pressure of carbon disulfide is shown ; in the region near Xes2 = 1 ,  when 
CS2 is the solvent, the partial-pressure curve is tangent to the Raoult's law line. However, 
in the region near X eS2 = 0, when CS2 is the solute present in low concentration, the 
partial-pressure curve is linear. 

Pes2 = Kes2 X CS2 ' (14 . 14) 

where Kes2 is a constant. The slope of the line in this region is different from the Raoult's 
law slope. The solute obeys Henry's law, Eq. (14. 14), where KCS2 is the Henry's law constant. 
Inspection of the partial-pressure curve of the acetone discloses the same type of behavior : 

Pacetone = Xacetone P�cetone near X acetone = 1 ;  

Pacetone = Kacetone X acetone near X acetone = O. 
Note that if the solution were ideal, then K would equal pO and both Henry's law and 
Raoult's law would convey the same information. 

1 4 . 1 0 . 3  Acetone-C h l o rofo rm 

In the acetone-chloroform system shown in Fig. 14. 1 3, the vapor pressure curves fall 
below the Raoult's law predictions. This system exhibits negative deviations from Raoult's 
law. The total vapor pressure has a minimum value that lies below the vapor pressure of 
either of the pure components. The Henry's law lines, the fine dashed lines in the figure, 
also lie below the Raoult's law lines for this system. 

Algebraically, we can express the properties of the ideal dilute solution by the following 
equations : 

Solvent (Raoult's law) : 

Solutes (Henry's law) : 

(14. 1 5) 

(14 . 1 6) 
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F i g u re 1 4. 1 3 Vapor p ressu re i n  
the aceton e-ch loroform system 
(35 . 1 rC ) .  [J . v. Zawidski ,  Z. 

Chloroform physik Chem., 35 : 1 29 ( 1 900) . ]  

where the subscript j denotes any of the solutes, and the subscript 1 denotes the solvent. 
All real solutions approach the behavior described by Eqs. (14. 1 5) and (14. 1 6), provided 
that the solution is sufficiently dilute. The same is true if several solutes are present, but 
the solution must be dilute in all solutes ; each solute has a different value of Kj . 

1 4 . 1 1 T H E C H E M I CA L  P OT E N TI A LS I N  T H E I D EA L  D I LUTE S O LUTI O N  

Since the solvent follows Raoult's law, the chemical potential of the solvent is given by 
Eq. (14.3), repeated here for easy comparison : 

111 = I11(T, p) + R T  In X l ' 

For the solutes we require, as usual, equality of the chemical potential in the liquid, 
11/1), with that in the gas phase, l1/g) : 

11/l) = l1/g) = I1j(g) + R T ln pj .  

Using Henry's law, Eq. (14. 1 6), for Pj ' this becomes 

l1il) = I1j(g) + R T ln Kj + RT ln Xj 

We define a standard free energy, I1j(1), by 

11j(l) = I1j(g) + R T ln Kj (14. 17) 

where I1j is a function of temperature and pressure but not of composition. The final 
expression for I1j in the liquid is 

(14 . 1 8) 

According to Eq. (14. 1 8), 11]' is the chemical potential the solute j would have in the 
hypothetical state in which Xj = 1 if Henry's law were obeyed over the entire range, 
O s  Xj S 1 .  
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The concept o f  the ideal dilute solution i s  extended t o  include nonvolatile solutes by 
requiring that the chemical potential of such solutes also have the form given by Eq. 
(14. 1 8). 

The mole fractions, Xj ' often are not convenient measures for the concentration of 
solutes in dilute solution. Molalities, mj ' and molarities, Cj ' are more commonly used. 
We can use Eq. (14. 1 8) to obtain expressions for the chemical potential in terms ofmj or Cj . 
To do this we must write xj in terms ofmj or Cj . 

By definition, Xj = ni(n + L.j nj), where n is the number of moles of solvent. Also by 
definition, the molality of j is the number of moles of j per unit mass (1 kg) of solvent. 
Thus, if M is the molar mass (kg/mol) of the solvent, we have 

n ·  m · = _l 
1 nM 

or (14. 19) 

Using this result for nj in the expression for Xj ' we obtain 
Mm · 

Xj = 
1 + �m '  

(14.20) 

where m = L.j mj ' the total molality of all the solutes. In dilute solution as m approaches 
zero, we have 

so that near m = 0, 

m - = 1m = M  li (Xl') l ' 
M 

m = O mj m = O  1 + mM ' 

This can be written in the form 
(14.21) 

(14.22) 

where mO is the standard molal concentration, mO = 1 moljkg. This value for Xj may be 
used in Eq. (14 . 1 8), which becomes 

Ilj = Ilj + RT ln MmO + R T ln (:�) 
Defining 1l1* = Ilj + RT ln Mmo, this becomes 

Ilj = 1l1* + RT In mj (1'4.23) 

in which we understand mj as an abbreviation for the pure number, mi(1 moljkg). 
Equation (14.23) expresses the Ilj in a dilute solution as a convenient function of mj ' The 
standard value, 1l1* , is the value Ilj would have in the hypothetical state of unit molality 
if the solution had the properties of the ideal dilute solution in the entire range, ° ::;; mj ::;; 1 .  

To express Ilj i n  terms o f  Cj ' we first establish the relation between mj and Cj ' the 
concentration in SI units, moljm3 . By definition 

� nj nMmj c · = - = --
1 V V 

If Ps is the density of the solution, then V = w/p. , where the mass of the solution, 
w = nM + L.j njMj = nM + L.j nMmjMj . Thus 

V = :� (1 + � mjMj) 
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(14.24) 

As all the mj approach zero we have 

where p is the density of the pure solvent. Thus, in dilute solution, 

or 
c ·  

m . = ...l. J p 
(14.25) 

Rewriting to introduce the dimensionless ratios, Eq. (14.25) becomes 
m ·  CO (c . ) J _ J 
mO - pmo CO or 

since cico = cico. Putting this value of mimo in Eq. (14.23) yields 

This can be written 

( -0 ) _ * *  
C Cj J1.j - J1.j + RT ln -0 + RT ln o ' pm C 

J1.j = J1.P + RT  ln cj ' (14.26) 
in which we understand Cj as an abbreviation for the pure number, ci(1 mol/L). In Eq. 
(14.26) we have set 

J1.r;J = J1."f* + RT  In ( CO ) . (14.27) J J pmo 

Equation (14.26) relates J1.j in dilute solution to Cj ' the concentration in mol/L. It 
is not as commonly used as Eq. (14.23) ; J1.P is the chemical potential the solute would have 
at a concentration of 1 mol/L if the solution behaved ideally up to that concentration. 

The difference between J1.P and J1.j* is not very large. Since CO = 1 mol/L, the cor
responding value of CO = 103 mOl/m3 . Also, mO = 1 moljkg, and for water at 25 °C, 
p = 997.044 kg/m3. Then 

103 mOl/m3 

(997.044 kg/m3)(1 mol/kg) 
= 1 .002965. 

The second term in Eq. (14.27) becomes (8.3 14 J/K mol)(298. 1 5  K) In (1 .002965) = 
7 .339 J/mol. In most cases, this is less than the uncertainties in the experimental values so 
that the difference between the mj and Cj standard states can be ignored. 

1 4. 1 2 H E N RY'S LAW A N D T H E S O L U B I L ITY O F  GASES 

Henry's law, Eq. (14. 16), relates the partial pressure of  the solute in  the vapor phase to  the 
mole fraction of the solute in the solution. Viewing the relation in another way, Henry's 
law relates the equilibrium mole fraction, the solubility of j in the solution, to the partial 
pressure of j in the vapor : 

(14.28) 
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Equation (14.28) states that the solubility Xj of  a volatile constituent i s  proportional 
to the partial pressure of that constituent in the gaseous phase in equilibrium with the 
liquid. Equation (14.28) is used to correlate the data on solubility of gases in liquids .  
If the solvent and gas do not react chemically, the solubility of gases in liquids is usually 
small and the condition of diluteness is fulfilled. Here we have another example of the 
physical significance of the partial pressure. 

The solubility of gases is often expressed as the Bunsen absorption coefficient, (x, 
which is the volume of gas, measured at 0 °C and 1 atm, dissolved by unit volume of solvent 
if the partial pressure of the gas is 1 atm. 

VJ(g) (Xj = V(l) 
, ( 14.29) 

but Vj(g) = njRToIpo , while the volume of the solvent is V(l) = nM/p, where n is the 
number of moles of solvent, M its molar mass, and p, the density. Thus 

njRTo/po (X . = ---"--------'---"--'-
J nM/p · (14.30) 

When the partial pressure of the gas, Pj = pO = 1 atm, the solubility by Henry's law is xJ, 

° 
nj 1 x · = -- = -J n + nj Kj 

If the solution is dilute, nj � n and we have 
n� ---.L 
n Kj 

Using this value of nj/n in Eq. (14.30) brings it to 

(XjKj = (��o)(�) = (0.022414 m3/mol) � ,  
(14. 3 1 )  

(14.32) 

which is the relation between the Henry's law constant Kj and the Bunsen absorption 
coefficient (Xj ; knowing one, we can calculate the other. The solubility of the gas in moles 
per unit volume of solvent, nj/(nM/p), is directly proportional to (Xj ' Eq. (14.30) ; this makes 
(Xj more convenient than Kj for the discussion of solubility. 

Some values of (X for various gases in water are given in Table 14 .3 .  Note the increase 
in IX with increase in boiling point of the gas. 

Tab le  1 4.3 
B u nsen a bsorpt ion  coeff ic ients 

in water at 25'C 

Gas tb;oC C( 

Helium - 268.9 0.0087 
Hydrogen - 252.8 0.0175 
Nitrogen - 195.8 0 .0143 
Oxygen - 182.96 0.0283 
Methane - 161 . 5  0.0300 
Ethane - 88 .3 0.0410 
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1 4. 1 3 D I ST R IB U TI O N  O F  A S O LUTE B ETWE E N  TWO S O LV E N TS 

If a dilute solution of iodine in water is shaken with carbon tetrachloride, the iodine is 
distributed between the two immiscible solvents. If fl and fl' are the chemical potentials 
of iodine in water and carbon tetrachloride, respectively, then at equilibrium fl = fl' . 
If both solutions are ideal dilute solutions, then, choosing Eq. (14. 1 8) to express fl and fl', 
the equilibrium condition becomes fl* + R T In x = fl'* + RT In x', which can be 
rearranged to 

x' 
RT In - = - (fl'* - fl)· x 

Since both fl'* and ,u* are independent of composition, it follows that 

x' 
- = K, x 

(14.33) 

(14.34) 

where K, the distribution coefficient or partition coefficient, is independent of the con
centration of iodirle in the two layers. The quantity fl'* - fl* is the standard Gibbs energy 
change I1G* for the transformation 

Equation (14.33) becomes 
12 (in H20) -------+ 12 (in CCI4). 

RT In K = -I1G*, (14. 35) 

which is the usual relation between the standard Gibbs energy change and the equilibrium 
constant of a chemical reaction. 

If the solutions are quite dilute, then the mole fractions are proportional to the 
molalities or the molarities ; so we have 

K, =
m' 

m 
and K" = � 

c 
, (14 .36) 

where K' and K" are independent of the concentrations in the two layers. Equation (14 .36) 
was originally proposed by W. Nernstand is called the Nernst distribution law. 

1 4. 1 4 C H E M I CA L  E Q U I LI B R I U M  I N  T H E  I D EA L  S O LU TI O N  

In Section 1 1 .7 it was shown that the condition of chemical equilibrium is 

(L Vi fli) = 0, 
, eq 

(14 .37) 

the Vi being the stoichiometric coefficients .  To apply this condition to chemical equilibrium 
in the ideal solution, we simply insert the proper form of the fli from Eq. (14. 3). This yields 
directly 

L Vifli' + RT L In (Xi);' = 0, i 
which can be written in the usual way 

I1Go = -RT In K, (14. 38) 

where I1Go is the standard Gibbs energy change for the reaction, and K is the equilibrium 
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quotient o f  mole fractions. Thus, in an ideal solution, the proper form of the equilibrium 
constant is a quotient of mole fractions. 

If the solution is an ideal dilute solution, then for a reaction between solutes only, each 
J-Lj is given by Eq. (14. 1 8), 

J-Lj = J-Lj + R T ln xj ' 
so that the equilibrium condition is 

AG* = - R T In K, (14.39) 

K being again a quotient of equilibrium mole fractions. Obviously, we could equally well 
have chosen either Eq. (14.23) or (14.26) to express J-Lj . In that event we would obtain 

AG** = - R T 1TI. K' or AGo = - R T In Kif ; (14.40) 

K' is a quotient of the equilibrium molalities ;  Kif is a quotient of equilibrium molarities ; 
AG** and AGo are the appropriate standard Gibbs energy changes .  

Values of standard Gibbs energy changes are obtained from the measurement of 
equilibrium constants in the same way as were those for reactions in the gas phase. 
Values of individual standard Gibbs energies of solutes in solution are obtained, as they 
are for gaseous reactions, by combining the Gibbs energy changes for several reactions. 

The temperature dependence is the same for these equilibrium constants as for any 
others ; for example, for K' and Kif, 

(a In K') 
aT p 

AH** 
RT2 and 

(a In Kif) 
= 

AHO 
aT p RT2 (14.41) 

where AH** and ABo are the appropriate standard enthalpy changes. 
If the chemical reaction involves the solvent, the equilibrium constant has a slightly 

modified form. For example, suppose the equilibrium 

CH3COOH + C2HsOH � CH3COOC2Hs + H20 

is studied in water solution ; then if the solution is dilute enough to use molarities to 
describe the Gibbs energy of the solutes, the equilibrium constant has the form 

Kif _ CEtAc XH20 
- , 

CHAc CEtOH 
( 14.42) 

since in dilute solution Raoult's law holds for the solvent. In dilute solution XH20 � 1 ,  
so Kif becomes 

Kif = 
CEtAc 

CHAcCEtOH 
(14.43) 

The standard Gibbs energy change for Kif is AGo, by Eq. (14.40), and must include J-LH20 ; 
therefore 

A GO _ ° + 0 ° ° (14 44) Ll - J-LEtAc J-LH20 - J-LHAc - J-LEtHO ' • 

The J-LH20 is the molar Gibbs energy of pure water ; the J-LP are the chemical potentials of 
the solutes in the hypothetical ideal solution of unit molarity. 

Q U ESTI O N S  

14.1 The heat of vaporization increases in the normal alkane series C6H14 , CSH1 S , C1 0H2 2 . 1f octane 
is the solvent, should hexane or decane be added to decrease the vapor pressure ? 
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14.2 If you want to prepare pure methanol distillate by fractional distillation of a CClcCH30H 
solution, should the initial solution consist of more than, exactly, or less than 79.44 wt % CCl4 ? 
[Consult Table 14. 1 (a).] 

14.3 Consider a solution of molecular liquids A and B. If the intermolecular interactions between 
molecules A, between molecules B, and between molecules A and B are all comparable, the ideal 
solution conditions, Eqs. ( 14.4)-(14.6), are usually satisfied. Why? On this basis suggest why the 
solution benzene-toluene exhibits nearly ideal behavior (Fig. 14. 1 1) . 

14.4 Fairly strong hydrogen bond interactions exist between acetone and chloroform molecules, 
but are absent in the pure liquids. What is a molecular explanation for the negative deviations 
displayed in Fig. 14. 1 3 ?  

14.5 Dissolving a gas in a liquid i s  an exothermic process. Assuming an ideal gas, account for this in 
terms of molecular forces. Suggest a molecular explanation of the Bunsen coefficient IX increase 
with increasing gas boiling point . 

14.6 Many organic reactions are effected between dilute solutions of reactants in inert organic solvents. 
Which of the relations ( 14.38) or (14.39) is appropriate to describe equilibria in such reactions ? 

P R O B LE M S  

14.1 Benzene and toluene form nearly ideal solutions. At 300 K, P�oluene = 32.06 mmHg and 
P�enzene = 103 .01 mmHg. 
a) A liquid mixture is composed of 3 mol of toluene and 2 mol of benzene. If the pressure over 

the mixture at 300 K is reduced, at what pressure does the first vapor form? 
b) What is the composition of the first trace of vapor formed? 
c) If the pressure is reduced further, at what pressure does the last trace of liquid disappear ? 
d) What is the composition of the last trace of liquid ? 
e) What will be the pressure, the composition of the liquid, and the composition of the vapor 

when 1 mol of the mixture has been vaporized ? (Hint : Lever rule.) 
14.2 Two liquids, A and B, form an ideal solution. At the specified temperature, the vapor pressure of 

pure A is 200 mmHg while that of pure B is 75 mmHg. If the vapor over the mixture consists of 
50 mol percent A, what is the mole percent A in the liquid ? 

14.3 At - 3 1 .2 DC, we have the data 
Compound 
Vapor pressure, pOjmmHg 

Propane 
1200 

n-butane 
200 

a) Calculate the mole fraction of propane in the liquid mixture that boils at - 3 1 .2 °C under 
760 mmHg pressure. 

b) Calculate the mole fraction of propane in the vapor in equilibrium with the liquid in (a). 
14.4 At - 47 °C the vapor pressure of ethyl bromide is 10 mmHg, while that of ethyl chloride is 

40 mmHg. Assume that the mixture is ideal. If there is only a trace of liquid present and the 
mole fraction of ethyl chloride in the vapor is 0.80, 
a) What is the total pressure and the mole fraction of ethyl chloride in the liquid ? 
b) If there are 5 mol of liquid and 3 mol of vapor present at the same pressure as in (a), 

what is the overall composition of the system? 
14.5 A gaseous mixture of two substances under a total pressure of 0.8 atm is in equilibrium with an 

ideal liquid solution. The mole fraction of substance A is 0.5 in the vapor phase and 0.2 in the 
liquid phase. What are the vapor pressures of the two pure liquids ? 

14.6 The composition of the vapor over a binary ideal solution is determined by the composition of 
the liquid. If X l and Yl are the mole fractions of 1 in the liquid and vapor, respectively, find the 
value of X l for which Y l  - X l has a maximum. What is the value of the pressure at this composi
tion ? 
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14.7 Suppose that the vapor over an ideal solution contains n l mol o f  1 and nz mol o f  2 and 
occupies a volume V under the pressure P = PI + Pz . Ifwe define V� = RT;'p� and V� = RTlp� ,  
show that Raoult's law implies V = n1 V� + nz V� . 

14.8 Show that, while the vapor pressure in a binary ideal solution is a linear function of the mole 
fraction of either component in the liquid, the reciprocal of the pressure is a linear function of 
. the mole fraction of either component in the vapor. 

14.9 Given the vapor pressures of the pure liquids, and the overall composition of the system, what 
are the upper and lower limits of pressure between which liquid and vapor coexist in equilibrium? �) The boiling points of pure benzene and pure toluene are 80. 1 °C and 1 10.6 °C under 1 atm. � Assuming the entropies of vaporization at the boiling points are the same, 90 J/K mol, by 

applying the Clausius-Clapeyron equation to each, derive an implicit expression for the 
boiling point of a mixture of the two liquids as a function of the mole fraction of benzene, Xb . 

b) What is the composition of the liquid that boils at 95 °C? 
14.1 1  Some nonideal systems can be represented by the equations PI = x�p� and pz = X2P� .  Show 

that if the constant a is greater than unity, the total pressure exhibits a minimum, while if a is 
less than unity, the total pressure exhibits a maximum. 

14.12 a) In an ideal dilute solution, if Pl is the vapor pressure of the solvent and Kh is the Henry's 
law constant for the solute, write the expression for the total pressure over the solution 
as a function of xz , the mole fraction of the solute. 

b) Find the relation between Yl and the total pressure of the vapor. 
14.13 The Bunsen absorption coefficients of oxygen and nitrogen in water are 0.0283 and 0.0143, 

respectively, at 25 °C. Suppose that air is 20 % oxygen and 80 % nitrogen. How many cubic 
centimetres of gas, measured at STP, will be dissolved by 100 cm3 of water in equilibrium with 
air at 1 atm pressure ? How many will be dissolved if the pressure is 10 atm? What is the mole 
ratio, NzIOz , of the dissolved gas ? 

14.14 The Henry's law constant for argon in water is 2. 1 7  x 104 at 0 °C and 3 .97 x 104 at 30 °C. 
Calculate the standard heat of solution of argon in water. 

14.15 Suppose that a 250-cm3 bottle of carbonated water at 25 °C contains COz under 2 atm pressure. 
If the Bunsen absorption coefficient of COz is 0.76, what is the total volume of COz , measured 
at STP, that is dissolved in the water ? 

14.16 At 25 °C, for COz(g), /lO(g) = - 394.36 kJ/mol and /l* *(aq) = - 386.02 kJ/mol, while HO(g) = 
- 393 .5l kJ/mol and H**(aq) = -413.80 kJ/moL For the equilibrium, COz(g) � COz(aq), 
calculate 
a) the molality of COz in water under 1 atm pressure at 25 °C and at 35 °C ; 
b) the Bunsen absorption coefficient for COz in water at 25 °C and 35 °C ; PH20 = 1 .00 g/cm3• 

14.17 At 25 °C, the standard Gibbs energies of formation of the inert gases in aqueous solution at 
unit molality are 

Gas He Ne Ar Kr Xe 

/lj* I(kJ Imol) 19 .2 1 9.2 16.3 1 5 . 1  1 3 .4 

Calculate the Buns�n adsorption coefficient for each of these gases ; PH20 = 1 .00 g/cm3 • 
14.18 The Bunsen adsorption coefficient for hydrogen in nickel at 725 °C is 62. The equilibrium is 

Hz(g) � 2 H(Ni) 
a) Show that the solubility of hydrogen in nickel follows Sieverts's law, XH = Kspi!.,z ; calculate 

the Sieverts's law constant, Ks . 
b) Calculate the solubility of hydrogen in nickel (atoms H per atom Ni) at PH2 = 1 atm and 

4 atm ; PNi = 8 .7 g/cm3 • 



Problems 31 7 

14.19 At 800 °C, 1 .6  X 10- 4 mole Oz dissolves in 1 mole of silver. Calculate the Bunsen adsorption 
coefficient for oxygen in silver ; p(Ag) = 10.0 g/cm3 

14.20 The distribution coefficient of iodine between CCl4 and H20 is CCCl.lCH20 = K = 85, where Cs is 
the concentration (moljL) of iodine in the solvent S. 
a) If90 % of the iodine in 100 cm3 of aqueous solution is to be extracted in one step, what volume 

of CCl4 is required? 
b) What volume of CCl4 is required if two extractions, using equal volumes, are permitted ? 
c) If /3 is the fraction of the original amount of Iz that is to remain in the water layer after n 

extractions using equal volumes of CCI4 , show that the limiting total volume of CCl4 
needed as n --> (fJ is K - 1  In (1//3) per unit volume of the aqueous layer. 

14.21 The equilibrium constant for the reaction at 25 °C 
COiaq) + HzO(l) � HZC03(aq) 

is K = 2.58 X 10- 3 . If LlGj(C02 , aq) = - 386.0 kJ/mol and LlGj(HzO, I) = - 237. 1 8 kJ/mol, 
calculate LlGj(HzC03 , aq). 

14.22 Evaluate the difference, 11'}'* - 11}, in aqueous solution at 25 °C. 
14.23 Suppose we were to use for a solute in the ideal dilute solution, I1j = 11't + RT In Cj ' where 

Cj is the abbreviation for c/(l moljm3). Find the difference between I1jO and 11'/ and evaluate it 
at 25 °C for aqueous solutions. 





Eq u i l i b r i a  B etwee n 
Co n d e n sed P h ases 

1 5 . 1  l IQU I D-U Q U I D  E QU I LI B R IA 

If small amounts of toluene are added to a beaker containing pure benzene we observe that, 
regardless of the amount of toluene added, the mixture obtained remains as one liquid 
phase. The two liquids are completely miscible. In contrast to this behavior, if water is 
added to nitrobenzene, two separate liquid layers are formed ; the water layer contains 
only a trace of dissolved nitrobenzene, while the nitrobenzene layer contains only a trace 
of dissolved water. Such liquids are immiscible. If small amounts of phenol are added to 
water, at first the phenol dissolves to yield one phase ; however, at some point in the addi
tion the water becomes saturated and further addition of phenol yields two liquid layers, 
one rich in water, the other rich in phenol. Such liquids are partially miscible. It is these 
systems that presently engage our attention. 

Consider a system in equilibrium that contains two liquid layers, two liquid phases. 
Let one of these liquid layers consist of pure liquid A, the other layer is a saturated solution 
of A in liquid B. The thermodynamic requirement for equilibrium is that the chemical 
potential of A in the solution, !lA , be equal to that in the pure liquid, !lA ' SO !lA = !lA , or 

!lA - !lA = O. ( 15 . 1) 

First, we ask whether Eq. ( 15 . 1 )  can be satisfied for an ideal solution. In an ideal 
solution, by Eq. (14.3), 

( 15 .2) 

It is clear from Eq. (1 5 .2) that RT In XA is never zero unless the mixture of A and B has 
XA = 1, that is, unless the mixture contains no B. In Fig. 1 5 . 1 ,  !lA - !lA is plotted against 
XA for the ideal solution (full line). The value of!lA - !l� is negative for all compositions of 
the ideal solution. This implies that pure A can always be transferred into an ideal solution 
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with a decrease in Gibbs energy. Consequently, substances that form ideal solutions are 
completely miscible in each other. 

For partial miscibility the value for flA - flA must be zero at some intermediate 
composition of the solution ; thus flA - flA must follow some such curve as the dashed line 
in Fig. 1 5 . 1 .  At the point xl.. , the value of flA - flA is zero, and the system can exist as a 
solution having mole fraction of A = xl.. and a separate layer of pure liquid A. The value 
xl.. is the solubility of kin B expressed as a mole fraction. If the mole fraction of A in B 
were to exceed this value, then Fig. 1 5. 1  shows that flA - flA would be positive, that is 
flA > flA ' In this circumstance, A would flow spontaneously from the solution into the pure 
liquid A, thus reducing XA until it reached the equilibrium value xl.. . 

Liquids that are only partially miscible form solutions which are far from ideal, as the 
curves in Fig. 1 5 . 1  show. Rather than explore the mathematical side of this situation in 
great detail, we restrict ourselves to a description of the experimental results interpreted in 
the light of the phase rule. 

Suppose that at a given temperature T1 , small amounts of liquid A are added succes
sively to liquid B. The first amount of A dissolves completely, as do the second and the 
third ; the state points can be represented on a T -X diagram such as Fig. I S.2(a), which is 
drawn at constant pressure. The points a, b, c represent the composition after the addition 
of three amounts of A to pure B. Since all the A dissolves, these points lie in a one-phase 
region. After a certain amount of A has been added, the solubility limit is reached, point 11 ' 
If more A is added, a second layer forms, since no more A will dissolve. The region to the 
right of point 11 is therefore a two-phase region. 

The same could be done on the right side by adding B to A. At first B dissolves to yield 
a homogeneous (one-phase) system, points d, e,f The solubility limit of B in A is reached 
at 12 , Points to the left of 12 represent a two-phase system. In the region between Ii and 12 
two liquid layers, called conjugate solutions, coexist. Layer 11 is a saturated solution of A in 
B in equilibrium with layer 12 , which is a saturated solution ofB in A. If the experiment were 
done at a higher temperature, different values of the solubility limits, 1'1 and I� , would be 
obtained. 

The T versus X diagram for the system phenol-water is shown in Fig. l S.2(b). As the 
temperature increases, the solubility of each component in the other increases. The 
solubility curves join smoothly at the upper consolute temperature, also called the critical 
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solution temperature, te ' Above to water and phenol are completely miscible. Any point a 
under the loop is the state point of a system consisting of two liquid layers : Ll of compo
sition 11 and L2 of composition 12 , The relative mass of the two layers is given by the lever 
rule, by the ratio of the segments of the tie line (1 1 12)' 

moles of 11 (aI2) 
moles of 12 (all) 

If the temperature of this system is raised, the state point follows the dashed line aa' ; Ll 
becomes richer in phenol, while L2 becomes richer in water. As the temperature increases, 
the ratio (aI2)/(all) becomes larger ; the amount of L2 decreases. At point a' the last trace 
of L2 disappears and the system becomes homogeneous. 

Systems are known in which the solubility decreases with increase in temperature. 
In some of these systems, a lower consolute temperature is observed ; Fig. 15 .3(a) shows 
schematically the triethylamine-water system. The lower consolute temperature is at 
18 . 5  0c. The curve is so flat that it is difficult to determine the composition of the solution 

Water Triethylamine 

(a) (b) 

F ig u re 1 5 .3  (a) Lower consolute temperatu re. (b) U pper and 
lower consolute temperatu re. 

Nicotine 
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corresponding to the consolute temperature ; it seems to be about 30 % by weight of 
triethylamine. If a solution having a state point a is heated, it remains homogeneous until 
the temperature is slightly above 18 . 5  °C ; at this point, a

'
, it splits into two layers. At a 

higher temperature a"
, the solutions have the compositions given by 11 and 12 . In view of 

the lever rule, 11 will be present in somewhat greater amount than 12 • As a rule, the liquid 
pairs that have solubility diagrams of this type tend to form loosely bound compounds with 
each other ; this enhances solubility at low temperatures .  As the temperature is increased, 
the compound is dissociated and the mutual solubility is diminished. 

Some substances exhibit both upper and lower consolute temperatures. The diagram 
for the system nicotine-water is shown schematically in Fig. 1 5. 3(b). The lower consolute 
temperature is about 6 1 °C, the upper one about 210 0c. At all points in the closed loop 
two phases are present, while the points outside the loop represent homogeneous states of 

. the system. 
The phase rule for a system at constant pressure is F' = C - P + 1, in which F' is 

the number of variables in addition to the pressure needed to describe the system. For 
two-component systems, F' = 3 - P. If two phases are present, only one variable is 
required to describe the system. In the two-phase region, if the temperature is described, 
then the intersections of the tie line with the curve yield the compositions of both conjugate 
solutions. Similarly, the composition of one of the conjugate solutions is sufficient to 
determine the temperature and the composition of the other conjugate solution. If only 
one phase is present, F' = 2 and both the temperature and the composition of the solution 
must be specified. 

1 5 . 2  D I STI L LATI O N  O F  PARTIA LLY M I S C I B L E  A N D 
I M M IS C I B LE L IQU I DS 

The discussion in Section 1 5 . 1  assumed that the pressure is high enough so that vapor 
does not form in the temperature range of interest. For this reason the liquid-vapor curves 
were omitted from the diagrams. A typical situation at lower pressures is shown in 
Fig. 1 5 .4(a) in which the liquid-vapor curves are also shown, still with the assumption that 
the pressure is fairly high. Figure 1 5.4(a) presents no new problem in interpretation. 
The upper and lower portions of the diagram can be discussed independently using the 
principles described before. Partial miscibility at low temperatures usually, though not 
always, implies a minimum boiling azeotrope, as is shown in Fig. 1 5.4(a). The partial 
miscibility implies that when mixed the two components have a greater escaping tendency 
than in an ideal solution. This greater escaping tendency may lead to a maximum in the 
vapor pressure-composition curve, and correspondingly to a minimum in the boiling 
point-composition curve. 

If the pressure on the system shown in Fig. 1 5.4(a) is lowered, the boiling points will 
all be shifted downward. At a low enough pressure, the boiling point curves will intersect 
the liquid-liquid solubility curves. The result is shown in Fig. 1 5.4(b), which represents 
schematically the system water-n-butanol under 1 atm pressure. 

Figure 1 5 .4(b) presents several new features. If the temperature of a homogeneous 
liquid, point a, is increased, vapor having the composition b forms at tA o This behavior is 
ordinary enough ; however, if this vapor is chilled and brought to point c, the condensate 
will consist of two liquid layers, since c lies in the two-liquid region. So the first distillate 
produced by the distillation of the homogeneous liquid a will separate into two liquid 
layers having compositions d and e. Similar behavior is exhibited by mixtures having 
compositions in the region L1 . 
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As the temperature of the two-liquid system of overall composition c is increased, the 
compositions of the conjugate solutions shift slightly. The system is univariant, F' = 
3 - P = 1 in this region. At the temperature t', the conjugate solutions have the compo
sitionsjand g, and vapor, composition h, appears. Three phases are present, liquidsjand 
g, and vapor h. Then F' = 0 ; the system is invariant. As long as these three phases remain, 
their compositions and the temperature are fixed. For example, the flow of heat into the 
system does not change the temperature, but simply produces more vapor at the expense 
of the two solutions. The vapor, h, that forms is richer in water than the original composi
tion c ;  therefore the water-rich layer evaporates preferentially. After the water-rich layer 
disappears, the temperature rises and the vapor composition changes along the curve hb. 
The last liquid, which has the composition a, disappears at tA o 

If a two-phase system in the composition range between j and h is heated, then at t' 
liquids j and g are present, and vapor h appears. The system at t' is invariant. Since the 
vapor is richer in butanol than the original overall composition, the butanol-rich layer 
evaporates preferentially, leaving liquid j and vapor h. As the temperature rises, the liquid 
is depleted in butanol ;  finally only vapor remains. 

The point h has the azeotropic property ; a system of this composition distills un
changed. It cannot be separated into its components by distillation. 

The distillation of immiscible substances is most easily discussed from a different 
st�ndpoint. Consider two immiscible liquids in equilibrium with vapor at a specified 
temperature (Fig. 1 5. 5) . The barrier only keeps the liquids apart ; since they are immiscible, 
removing the barrier would not change anything. The total vapor pressure is the sum of the 

Vapor 
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vapor pressures of the pure liquids : p = p'J... + p� .  The mole fractions YA and YB in the 
vapor are 

p'J... 
YA = P 

If nA and nB are the number of moles of A and B in the vapor, then 

nA YA p'J.../p p'J... 
nB YB 

= 
p�/p 

= 
p� ' 

The masses of A and B are WA = nAMA , and WB = nBMB , so that 

( 15 .3) 

which relates the relative masses of the two substances present in . the vapor to their 
molar masses and vapor pressures. If this vapor were condensed, Eq. ( 15 .3) would express 
the relative masses of A and B in the condensate. Suppose we choose the system aniline 
(A)-water (B) at 98 .4 0c. The vapor pressure of aniline at this temperature is about 
42 mmHg, while that of water is about 7 1 8  mmHg. The total vapor pressure is 7 1 8  + 42 
= 760 mmHg, so this mixture boils at 98.4 °C under 1 atm pressure. The mass of aniline 
that distills for each 100 g of water which comes over is 

WA = 100 g (94 g/mol) (42 mmHg) 
� 3 1 . 

( 1 8  g/mol) (7 1 8  mmHg) 
g 

Equation (1 5 .3) can be applied to the steam distillation of liquids. Some liquids that 
decompose if distilled in the ordinary way can be steam distilled if they have fair volatility 
near the boiling point of water. In the laboratory, steam is passed through the liquid to be 
steam distilled. Since the vapor pressure is greater than that of either component, it follows 
that the boiling point is below the boiling points of both liquids. Furthermore, the boiling 
point is an invariant temperature so long as the two liquid phases and the vapor are 
present . .  

If the vapor pressure of the substance is known over a range of temperatures near 
100 °C, measurement of the temperature at which the steam distillation occurs and the 
mass ratio in the distillate yield, through Eq. ( 15 . 3), a value of the molar mass of the 
substance. 

1 5 .3  S O LI D-LI QU I D  E Q U I LI B R IA ; T H E S I M P L E  E UT E CTI C D IAG R A M  

If a liquid solution o f  two substances A and B i s  cooled t o  a sufficiently low temperature, 
a solid will appear. This temperature is the freezing point of the solution, which depends 
on the composition. In the discussion of freezing-point depression, Section 13 .6, we ob
tained the equation 

In XA = _ f1Hfus, A (! _ _ 1_) , 
R T TOA 

( 15 .4) 

assuming that pure solid A is in equilibrium with an ideal liquid solution. Equation 
(15 .4) relates the freezing point of the solution to XA , the mole fraction of A in the solution. 
A plot of this function is shown in Fig. 1 5.6(a). The points above the curve represent liquid 
states of the system ; those below the curve represent states in which pure solid A coexists 
in equilibrium with solution. The curve is called the liquidus curve. 
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A point such as  a represents solution of  composition b in  equilibrium with solid of 
composition c, that is, pure A. By the lever rule, the ratio of the number of moles of 
solution to the number of moles of solid A present is equal to the ratio of segments of the 
tie line ac/ab. The lower the temperature, the greater the relative amount of solid for a 
specified overall composition. 

This curve cannot represent the situation over the entire range of composition. As 
XB -+ 1 ,  we would expect solid B to freeze out far above the temperatures indicated by the 
curve in this region. If the solution is ideal, the same law holds for substance B :  

In x = _ 
AHrus,B (! _ _ 1 ) ( 15 .5) B R T TOB ' 

where T is the freezing point of B in the solution. This curve is drawn in Fig. 15 .6(b) 
together with the curve for A from Fig. 15 .6(a). The curves intersect at a temperature T",  
the eutectic temperature. The composition Xe i s  the eutectic composition. The line GE 
is the freezing point versus composition curve for B. Points such as a below this curve 
represent states in which pure solid B is in equilibrium with solution of composition b. 
A point on EF represents pure solid B in equilibrium with solution of composition Xe ' 

However, a point on DE represents pure solid A in equilibrium with solution of composi
tion Xe ' Therefore the solution having the eutectic composition xe is in equilibrium with both 
pure solid A and pure solid B. If three phases are present, then F' = 3 - P = 3 - 3 = 0 ;  
the system is invariant at this temperature. If heat flows out of such a system, the tempera
ture remains the same until one phase disappears ; thus the relative amounts of the three 
phases change as heat is withdrawn. The amount of liquid diminishes while the amounts 
of the two solids present increase. Below the line DEF are the states of the system in which 
only the two solids, two phases, pure A and pure B, are present. 

1 5 . 3 . 1  The Lead-A nt i m o ny System 

The lead-antimony system has the simple eutectic type of phase diagram (Fig. 1 5 .7). The 
regions are labeled ; L signifies liquid, Sb or Pb signifies pure solid antimony or pure solid 
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lead. The eutectic temperature is 246 °C ; the eutectic composition is 87 mass percent lead. 
In the lead-antimony system, the values of te and Xe calculated from Eqs. ( 15 .4) and (15 . 5) 
agree satisfactorily with the experimental values. This implies that the liquid is nearly an 
ideal solution. 

Consider the isothermal behavior of the system at 300 °C, the horizontal line, abcdfg. 
The point a represents pure solid antimony at 300 °C. Suppose sufficient solid lead is 
added to bring the composition to point b. This point b lies in the region Sb + L, therefore 
solid antimony coexists with liquid of composition c. All the added lead melts and the 
molten lead dissolves enough of the solid antimony to bring the liquid to the composition 
c. The lever rule shows that the relative amount of liquid present at point b is quite small, 
so the liquid may not be visible ; nonetheless it is present at equilibrium. On further addi
tion of lead, the lead continues to melt and dissolve more of the solid antimony to form 
solution c ;  meanwhile the state point moves from b to c. When the state point reaches c, 
sufficient lead has been added to dissolve all of the original antimony present to form the 
saturated solution of antimony in lead. Further addition of lead simply dilutes this 
solution as the state point moves through the liquid region c to d. At d the solution is 
saturated with lead ; further addition of lead produces no change. The state point mean
while has moved to f If we had reached f by starting with pure lead at g and adding 
antimony, all of the antimony would have melted, 330 °C below its melting point, and 
dissolved sufficient lead to form the solution d. 

An isopleth is a line of constant composition such as hijk in Fig. 1 5.7 . At h, the system 
is entirely liquid. As the system cools, solid antimony appears at i ;  as the antimony 
crystallizes out, the saturated liquid becomes richer in lead, and the liquid composition 
moves along the curve ice. At j the solution has the eutectic composition e and is saturated 
with respect to lead also, so lead begins to precipitate. The temperature remains constant 
even though heat flows out since, in this condition, the system is invariant. The amount of 
liquid diminishes and the amounts of solid lead and antimony increase. Finally the liquid 
solidifies, and the temperature of the mixed solids decreases along the line jk . If the process 
is done in reverse, heating a mixture of solid lead and solid antimony from k, the state 
point moves from k to j. At j, liquid forms having the composition e. Note that the liquid 
formed has a different composition than the solid mixture. The system is invariant, so the 
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temperature remains at 246 °C until all of the lead melts ; since the liquid was richer in 
lead than the original mixture, the lead melts completely leaving a residue of solid anti
mony. After the lead has melted the temperature rises, and the antimony that melts moves 
the liquid composition from e to i. At i the last bit of antimony melts and the system is 
homogeneous above i. 

The eutectic (Greek : easily melted) point gets its name from the fact that the eutectic 
composition has the lowest melting point. The eutectic mixture melts sharply at te to form 
a liquid of the same composition, while other mixtures melt over a range of temperature. 
Because of the sharp melting point, the eutectic mixture was originally thought to be a 
compound. In aqueous systems, this " compound " was called a cryohydrate ; the eutectic 
point was called the cryohydric point. Microscopic examination of the eutectic under 
high magnification discloses its heterogeneous character ; it is a mixture, not a compound. 
In alloy systems, such as the lead-antimony system, the eutectic is often particularly 
fine-grained ; however, under the microscope the separate crystals of lead and antimony 
can be discerned. 

1 5 . 3 . 2  Therma l  Ana lys is  

The shape of  the freezing point curves can be  determined experimentally by thermal 
analysis. In this method, a mixture of known composition is heated to a high enough 
temperature so that it is homogeneous. Then it is allowed to cool at a regulated rate. 
The temperature is plotted as a function of time. The curves obtained for various com
positions are shown schematically for a system A-B in Fig. 1 5.8 .  In the first curve the 
homogeneous liquid cools along the curve ab ; at b the primary crystals of component A 
form. This releases the latent heat of fusion : the rate of cooling slows, and a kink in the 
curve appears at b. The temperature t 1 is a point on the liquidus curve for this composition. 
The cooling continues along bc ; at c the liquid has the eutectic composition, and solid B 
appears. Since the system is invariant, the temperature remains constant at the eutectic 
temperature until all the liquid solidifies at d. The horizontal plateau cd is called the 
eutectic halt. Mter the liquid solidifies the two solids cool quickly along the curve df The 
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Time -

F i g u re 1 5 . 8  Cool i n g  cu rves. 
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F i g u re 1 5 .9  

second curve is for a liquid somewhat richer in B; the interpretation is the same ; however, 
the eutectic halt is longer ; t2 is the point on the liquidus curve. The third curve illustrates 
the cooling of the eutectic mixture ; the eutectic halt has its maximum length. The fourth 
and fifth curves are for compositions on the B-rich side of the eutectic point ; t4 and t5 are 
the corresponding points on the liquidus curve. The length of the eutectic halt diminishes 
as the composition departs from the eutectic composition. The temperatures t 1, t2 , t4 , 

t5 , and te are plotted against composition in Fig. 1 5.9(a). The eutectic composition can be 
determined as the intersection of the two solubility curves if sufficient points are taken ; 
otherwise the length (in time) of the eutectic halt is plotted as a function of composition, 
Fig. 1 5.9(b). The intersection of the two curves yields the maximum value of the eutectic 
halt, and thus the eutectic composition. 

* 1 5 .3 .3  Other  S i m p l e  E utect i c  Systems 

Many binary systems, both ideal and nonideal, have phase diagrams of the simple eutectic 
type. The phase diagram, water-salt, is the simple eutectic type if the salt does not form a 
stable hydrate. The diagram for H20-NaCl is shown in Fig. 15 . 10. The curve ae is the 
freezing-point curve for water, while efis the solubility curve, or the freezing-point curve, 
for sodium chloride. 
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o 23 .3 100 F igu re 1 5 . 1 0  Freez ing  poi nts 
mass % NaCl in the H 20-NaCI  system. 
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Table  1 5 . 1  

Eutectic Mass percent 
temperature anhydrous salt 

Salt °C in eutectic 

Sodium chloride -2 1 . 1  23.3 
Sodium bromide - 28.0 40.3  
Sodium sulfate - 1 . 1  3 .84 
Potassium chloride - 10.7 19 .7 
Ammonium chloride - 15.4 19 .7 

By permission from A.  Findlay, A. N .  Campbell, and N.  O. 
Smith, The Phase Rule and Its Applications, 9th ed.  New 
York : Dover, 1 9 5 1 ,  p. 1 4 1 .  

The invariance of  the system at  the eutectic point allows eutectic mixtures to be used 
as constant temperature baths. Suppose solid sodium chloride is mixed with ice at 0 °C in 
a vacuum flask. The composition point moves from 0 % NaCI to some positive value. 
However, at this composition the freezing point of ice is below 0 °C ; hence, some ice 
melts. Since the system is in an insulated flask, the melting of the ice reduces the tempera
ture of the mixture. If sufficient NaCI has been added, the temperature will drop to the 
eutectic temperature, - 2 1 . 1  dc. At the eutectic temperature, ice, solid salt, and saturated 
solution can coexist in equilibrium. The temperature remains at the eutectic temperature 
until the remainder of the ice is melted by the heat that leaks slowly into the flask. 

The action of rock salt or calcium chloride in melting ice on sidewalks and streets 
can be interpreted by the phase diagram. Suppose sufficient solid salt is added to ice at 
- 5 °C to move the state point of the system to c (Fig. 15 . 10). At c the solution is stable ; 
the ice will melt completely if the system is isothermal. If the system were adiabatic, the 
temperature would fall until the state point reached d. The eutectic temperatures of a few 
ice-salt systems are given in Table 1 5 . 1 .  

1 5 . 4  F R E EZ I N G - PO I NT D IAG R A M  WITH C O M PO U N D  FO R M ATI O N  

If two substances form one or more compounds, the freezing-point diagram often has the 
appearance of two or more simple eutectic diagrams in juxtaposition. Figure 1 5. 1 1  is the 
freezing-point -composition diagram for the system in which a compound, AB2 , is formed. 
We can consider this diagram as two simple eutectic diagrams joined at the position of the 
arrows in Fig. 1 5 . 1 1 .  If the state point lies to the right of the arrows, the interpretation is 
based on the simple eutectic diagram for the system AB2-B ;  if it lies to the left of the arrows, 
we discuss the system A-AB2 . In the composite diagram there are two eutectics :  one of 
the A-AB2-liquid ; the other of AB2-B-liquid. The melting point of the compound is a 
maximum in the curve ; a maximum in the melting-point-composition curve is almost 
always indicative of compound formation. Only a few systems are known in which the 
maximum occurs for other reasons. The first solid deposited on cooling a melt of any com
position between the two eutectic compositions is the solid compound. 

It is conceivable that more than one compound is formed between the two substances ; 
this is often the case with salts and water. The salt forms several hydrates. An extreme 
example of this behavior is shown by the system ferric chloride-water ; Fig. 1 5. 12. This 
diagram could be split into five simple eutectic diagrams. 
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1 5 . 5  C O M PO U N D S H AVI N G  I N CO N G R U E N T  M E LTI N G  P O I NTS 

In the system in Fig. 1 5. 1 1 , the compound has a higher melting point than either com
ponent. In this situation the diagram always has the shape shown in Fig. 1 5. 1 1 ; two 
eutectics appear on the diagram. However, if the melting point of the compound lies below 
the melting point of one of the constituents, two possibilities arise. The first of these is 
illustrated in Fig. 1 5. 12 ; each part of the diagram is a simple eutectic diagram just as in the 
simpler case in Fig. 1 5. 1 1 .  The second possibility is illustrated by the alloy system potas
sium-sodium shown schematically in Fig. 1 5 . 1 3 .  In this system, the solubility curve of 
sodium does not drop rapidly enough to intersect the other curve between the composition 
of NazK and pure Na. Instead it swings to the left of the composition NazK and intersects 
the other solubility curve at point c, the peritectic point. For the system Na-K it is at 
7 °C. 

First we examine the behavior of the pure solid compound. If the temperature is raised, 
the state point moves along the line abo At b liquid having the composition c forms. Since 
this liquid is richer in potassium than the original compound, some solid sodium d is left 
unmelted. Thus, on melting, the compound undergoes the reaction 

NazK(s) � Na(s) + c(1). 
This is a peritectic reaction or a phase reaction. The compound is said to melt incongruently, 
since the melt differs from the compound in composition. (The compounds illustrated in 
Figs. 1 5. 1 1  and 15 . 12 melt congruently, without change in composition.) Since three 
phases, solid NazK, solid sodium and liquid are present, the system is invariant ; as heat 
flows into the system, the temperature remains the same until the solid compound melts 
completely. Then the temperature rises ; the state point moves along the line bef and the 
system consists of solid sodium plus liquid. At f the last trace of solid sodium melts, and 
abovefthe system consists of one liquid phase. Cooling the composition g reverses these 
changes. At f solid sodium appears ; the liquid composition moves alongfc. At b liquid of 
composition c coexists with solid sodium and solid NazK. The reverse of the phase 
reaction occurs until liquid and solid sodium are both consumed simultaneously ; only 
NazK remains and the state point moves along ba. 
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If a system of composition i is cooled, primary crystals of sodium form at j; the liquid 
composition moves alongjc as more sodium crystallizes. At k solid Na2K forms because 
of the peritectic reaction. 

c(l) + Na(s) ------+ Na2K(s). 

The amount of sodium in the composition i is insufficient to convert the liquid c completely 
into compound. Hence the primary crystals of sodium are consumed completely. Mter the 
sodium is consumed, the temperature drops, Na2K crystallizes, and the liquid composition 
moves along cm ; at 1, the tie line shows that Na2K, n, coexists with liquid m. When the 
temperature reaches 0, pure potassium begins to crystallize ; the liquid has the eutectic 
composition p; the system is invariant until the liquid disappears, leaving a mixture of 
solid potassium and solid Na2K. 

If liquid of composition q is cooled, primary crystals of sodium form at r ;  continued 
cooling crystallizes more sodium, the liquid composition moves along rc. At s, solid 
Na2K forms by the peritectic reaction. The liquid is consumed entirely, and the state point 
drops to t, the system consisting of a mixture of solids, Na2K and sodium. Because the 
compound is formed by the reaction of liquid with the primary crystals of sodium, the 
structure of the solid mixture is unusua1. The steps in the reaction are illustrated in 
Fig. 15 . 14. The final mixture has kernels of the primary sodium crystals within a shell of 
the compound. Since the phase reaction occurs between the primary crystal, which is 
shielded from the liquid by a layer of compound, it is difficult to establish equilibrium in a 
system such as this unless the experiments are prolonged to allow time for one reactant 
or the other to diffuse through the layer of compound. An interesting sidelight on this 
particular system is the wide range of composition in which the alloys of sodium and 
potassium are liquid at room temperature. 

* 1 5. 5 . 1  The Sod i u m  S IJ lfate-Water System 

The sodium sulfate-water system forms an incongruently melting compound, 
Na2S04 · 10H20 (Fig. 1 5 . 1 5a). The line eb is the solubility curve for the decahydrate, 
while the line ba is the solubility curve for the anhydrous salt. The figure shows that the 
solubility of the decahydrate increases, while that of the anhydrous salt decreases with 
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temperature. The peritectic point is at b. On the line be, three phases coexist : NaZS04 , 
NaZS04 · lO HzO, saturated solution ; the system is invariant and the peritectic tempera
ture, 32 .383 °C, is fixed. This temperature is frequently used as a calibration point for 
thermometers. If a small amount of water is added to anhydrous NaZS04 in a vacuum 
bottle at room temperature, the salt and water react to form the decahydrate ; this reaction 
is exothermic so that the temperature of the system rises to 32. 383 °C and remains at that 
temperature as long as the three phases are present. 

If an unsaturated solution of composition g is heated, anhydrous salt will crystallize 
at j; if it is cooled, the decahydrate will crystallize at h. It is possible to supercool the 
solution to a temperature below h ; then the heptahydrate will crystallize at i ;  Fig. 15-1 5(b). 
The curve e'b' is the solubility curve for the heptahydrate, NaZS04 · 7 HzO.  The peritectic 
temperature for anhydrous salt-heptahydrate-saturated solution is at 24.2 0c. In Fig. 
1 5 . 1 5(b), the dashed lines are the curves for the decahydrate. The solubility curve for the 
heptahydrate lies for the most part in the region of stability of solid decahydrate-saturated 
solution. Therefore the equilibrium between solid heptahydrate and its saturated solution 
is a metastable one ; the system in such a state can precipitate the less soluble decahydrate 
spontaneously. 

* 1 5 .6  M I S C I B I LITY I N  T H E S O LI D  STATE 

In the systems described so far, only pure solids have been involved. Many solids are 
capable of dissolving other materials to form solid solutions. Copper and nickel, for 
example, are soluble in each other in all proportions in the solid state. The phase diagram 
for the copper-nickel system is shown in Fig. 1 5. 16 .  

The upper curve in Fig. 15 . 16 is  the liquidus curve ; the lower curve, the solidus curve. 
If a system represented by point a is cooled to b, a solid solution of composition c appears. 
At point d the system consists of liquid of composition b' in equilibrium with solid solution 
of composition c' . The interpretation of the diagram is similar to the interpretation of the 
liquid-vapor diagrams in Section 14.6. An experimental difficulty arises in working with 
this type of system. Suppose the system were chilled quickly from a to e. If the system 
managed to stay in equilibrium, then the last vestige of liquid b" would be in contact with a 
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F i g u re 1 5 . 1 6 The copper-n ickel system. 

solid having a uniform composition e throughout. However, in a sudden chilling there is 
not time for the composition of the solid to become uniform throughout. The first crystal 
had the composition c and layers having compositions from c to e are built up on the 
outside of the first crystal. The average composition of the solid that has crystallized lies 
perhaps at the point f; the solid is richer in nickel than it should be ; it lies to the right of 
e. Hence the liquid is richer in copper than it should be ; its composition point lies perhaps 
at g. Thus some liquid is left at this temperature and further cooling is required before the 
system solidifies completely. This difficulty poses a severe experimental problem. The 
system must be cooled extremely slowly to allow time for the solid to adjust its composi
tion at each temperature to a uniform value. In the discussion of these diagrams we assume 
that equilibrium has been attained and disregard the experimental difficulty which this 
implies. 

Binary systems are known that form solid solutions over the entire range of composi
tion and which exhibit either a maximum or a minimum in the melting point. The liquidus
solidus curves have an appearance similar to that of the liquid-vapor curves in systems 
which form azeotropes. The mixture having the composition at the maximum or minimum 
of the curve melts sharply and simulates a pure substance in this respect just as an azeo
trope boils at a definite temperature and distills unchanged. Mixtures having a maximum 
in the melting-point curve are comparatively rare. 

* 1 5 .7  . F R E EZ I N G - P O I NT E L EVATI O N  

In Section 13 .6  we showed that the addition of a foreign substance always lowered the 
melting point of a pure solid. Figure 1 5 . 1 6  illustrates a system in which the melting point 
of one component, copper, is increased by the addition of a foreign substance. This in
crease in the melting point can only occur if the solid in equilibrium with the liquid is not 
pure but is a solid solution. 

Suppose that the solid solution is an ideal solid solution, defined, in analogy to ideal 
gaseous and ideal liquid solutions, by requiring that for every component, f.1i = f.1i 
+ RT In Xi ' where f.1i is the chemical potential of the pure solid, Xi its mole fraction in the 
solid solution. The equilibrium condition for solid solution in equilibrium with liquid 
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solution for one of the components is fl l (S) = fl l (1). Assuming both solutions are ideal, 
we obtain 

fl�(S) + RT In X l(S) = flW) + RT In xl(l). ( 15 .6) 

Let i1G� = flW) - fl�(S), the Gibbs energy offusion of the pur� component at temperature 
T. Then, Eq. (1 5 .6) becomes 

In (Xl (l» ) = _ i1G� 
\ Xl (s) RT ' (1 5 .7) 

Since i1G� = i1H� - T i1S� ; and at the melting point, TO l , of the pure substance, i1S� = 
i1H�/To l ' this equation becomes 

In 
(Xl(l» ) = _ i1Ho (� _ _ 1 ) . 
xl(s) . R T TO I 

Solving this equation for T, we obtain 

{ i1Ho } T = TO I i1Ho + RTo l ln [x l(S)/X l (l)] 
. (1 5 .8) 

If the pure solid were present, then X l (s) = 1 ;  in this case the second term of the denomi
nator in Eq. (1 5.8) would be positive so that the fraction in the braces would be less than 
unity. The freezing point T is therefore less than TO I ' If a solid solution is present in 
equilibrium then if X l (S) < xl (1), the second term in the denominator will be negative, the 
fraction in the braces will be greater than unity and the melting point will be greater 
than TO I ' 

Figure 1 5 . 1 6  shows that the mole fraction of copper in the solid solution xc/s) is 
always less than the mole fraction of copper in the liquid solution xc/I). Consequently, 
the melting point of copper is elevated. An analogous set of equations can be written for 
the second component, from which we would conclude that the melting point of nickel 
is depressed. In the argument we have assumed that the i1HO and i1So do not vary with 
temperature ; this is incorrect but does not affect the general conclusion. 

* 1 5.8  PARTIAL M I S C I B I LITY I N  T H E S O LI D  STATE 

It is usual to find that two substances are neither completely miscible nor immiscible in 
the solid state, but rather each substance has a limited solubility in the other. For this 
case, the most common type of phase diagram is shown in Fig. 1 5. 17 .  The points in region 
a describe solid solutions of B in A, while those in /3 describe solid solutions of A in B. The 
points in region a + /3 describe states in which the two saturated solid solutions, two 

phases, a and /3, coexist in equilibrium. If we cool a system described by point a, then at point 
b crystals of solid solution a having the composition c appear. As the temperature drops, 
the compositions of solid and liquid shift ; at d compositions f and g are in equilibrium. 
At h the liquid has the eutectic composition e ;  solid /3 appears, a, /3, and liquid coexist, 
and the system is invariant. On cooling to i, two solid solutions coexist : a of composition 
j, /3 of composition k. 

A different type of system in which solid solutions appear is shown in Fig. 1 5. 18 .  
This system has a transition point rather than a eutectic point. Any point on the line abc 
describes an invariant system in which a, /3, and melt of composition c coexist. The 
temperature of abc is the transition temperature. If the point lies between a and b, cooling 
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will cause melt to disappear, r:t. + /3 remaining. If the point lies between b and c, cooling 
first causes r:t. to disappear, /3 + L remaining ; further cooling causes liquid to disappear 
and only /3 remains. If the temperature increases, any point on abc goes into r:t. + L ;  /3 
disappears. 

An interesting example of a system in which many solid solutions occur is the Cu-Zn 
diagram (brass diagram) in Fig. 1 5. 19 .  The symbols r:t., /3, y, b, E, ry refer to homogeneous 
solid solutions, while regions labeled r:t. + /3, /3 + Y indicate regions in which two solid 
s()lutions coexist. Note that there is a whole series of transition temperatures and no 
eutectic temperatures in this diagram. 
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It is usual for phase diagrams to contain several features :  solid solutions, compound 
formation, eutectic points, transition points, and the like. Once the interpretation of the 
individual features is understood, the interpretation of complex diagrams poses no 
difficulty. 

* 1 5. 9  G AS-S O LI D  E QU I LI B R I A ; 
VAP O R  P R ESS U R E  O F  SALT H Y D R AT E S  

In  describing the equilibria between solids and liquids, we  assumed implicitly that the 
pressure on the system was high enough to prevent the appearance of vapor in the system. 
At lower pressures, if one or more of the components of the system is volatile, vapor may 
be present at equilibrium. A common and important example of the equilibrium between 
solid and vapor is the equilibrium between salt hydrates and water vapor. 

We examine the vapor pressure of the system, water-CuS04 , at a fixed temperature. 
Figure 15 .20 shows schematically the vapor pressure as a function of the concentration 
of copper sulfate. As anhydrous CUS04 is added to liquid water, the vapor pressure of the 
system drops (Raoult's law) along the curve abo At b the solution is saturated with respect 
to the pentahydrate, CUS04 · 5 HzO. The system is invariant along be, since three phases 
(saturated solution, solid CUS04 · 5 HzO, and vapor) are present at constant temperature. 
Addition of anhydrous CUS04 does not change the pressure but converts some of the 
solution to pentahydrate. At e all of the water has been combined with CUS04 to form 
pentahydrate. Further addition of CuS04 drops the pressure to the value at de, with the 
formation of some trihydrate : 

2 CUS04 + 3 CUS04 · 5 HzO ------+ 5 CUS04 ' 3 HzO. 

The system is invariant along de ; the three phases present are : vapor, CUS04 ' 5 HzO, 
CUS04 · 3 HzO. At e the system consists entirely of CUS04 · 3 HzO ;  addition of CUS04 
converts some of the trihydrate to monohydrate ; the pressure drops to the value at fg. 
Finally along hi the invariant system is vapor, CUS04 ' HzO, CUS04 '  

The establishment of a constant pressure in a salt hydrate system requires the presence 
of three phases ; a single hydrate does not have a definite vapor pressure. For example, the 
trihydrate can coexist in equilibrium with any water vapor pressure in the range from 
e to f If the pentahydrate and the trihydrate are present, then the pressure is fixed at the 
value de. 

As we have seen in Chapter 1 1 , the equilibrium constant for the reaction 

CuS04 · 5 HzO(s) ------+ CuS04 · 3 HzO(s) + 2 HzO(g) 

a Saturated 

10 

o mass % euso 4 
F ig u re 1 5 . 20 Vapor pressure 
of CuSO rH 20 (25 'C) . 
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vapor pressure of water over the mixture 
dependence of the vapor pressure on is 

-r- -- ' -. � �� combined with the Gibbs-Helmholtz 

1 5 , 1 0 SYST E rv'l S O F  TH A E E  C O M PO i\j Er>.l TS 
In a system of three ,-.r.,mr" Yn the variance is F = 3 - P + 2 = 5 - P. If the 

of one four variables are required to describe the system ; these may 
be taken as T, p, X l ,  Xz . It is not possible to give a complete graphic repre-

sentation of these systems in three much less in two dimensions. Conse-
quently, it is to represent the at constant pressure and at constant 
temperature . The variance then becomes F' = 3 - P, so that the system 
variance of two, and can be represented in the plane. After fixing the 
pressure, the remaining variables are variables X l '  X2 , X 3 , related by Xl + 
X2 + X 3  = 1 .  Specifying any two of them fixes the value of the third. The method of 
Gibbs and Roozeboom uses an equilateral for representation. Figure 
15 .2 1 illustrates the principle of the method. The points B, C at the apices of the triangle 
represent 100 % of 100 % B, 100 % C The lines to AB represent the various 
percentages of C Any on the line AB represents a 0 % C ; any 

on xy represents a system containing 10 % C, etc Point P represents a system COl1-
30 % C The length perpendicular to a given side of the tliangle represents the 
of the component at the vertex opposite to that side, Thus the PM repre-

sents the percent of C, the length PN represents the of the PL represents 
the percent of B. (The lines to AC and CB have been omitted for clarity.) The sum 
of the lengths of these IS equal to the length of the height of the 
triangle which is taken as 100 %. By this method any composition of a 
system can be represented by a within the triangle , 

Two other properties of this are important. The first is illustrated in Fig, 
1 522(a)0 If two with represented P and Q are mixed the 
composi.tion of the mixture obtained will be represented by a point x somewhere on the 
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line connecting points P and Q. It follows immediately that if three systems, represented by 
points P, Q, R, are mixed, the composition of the mixture will lie within the triangle 
PQR. The second important property is that all systems represented by points on a line 
through a vertex contain the other two components in the same ratio. For example, all 
systems represented by points on CM contain A and B in the same ratio. In Fig. 1 5 .22(c), 
by erecting the perpendiculars from two points P and P' and using the properties of similar 
triangles, we obtain : 

PS CP and PN CP 
-- = -

P'S' CP' P'N' CP" 
Therefore 

PS PN PS P'S' 
P'S' P'N' or PN P'N" 

which was to be proved. This property is important in discussing the addition or removal 
of a component to the system without change in the amount of the other two components 
present. 

* 1 5 . 1 1 L I Q U I D-LI QU I D  E Q U I LI B R IA 

Among the simplest examples of the behavior of three-component systems is the chloro
form-water-acetic acid system. The pairs chloroform-acetic acid and water-acetic acid 
are completely miscible. The pair chloroform-water is not. Figure 1 5 .23 shows schemati
cally the liquid-liquid equilibrium for this system. Points a and b represent the conjugate 
liquid layers in the absence of acetic acid. Suppose that the overall composition of the 
system is c so that by the lever rule there is more of layer b than layer a. If a little acetic acid 
is added to the system, the composition moves along the line connecting c with the acetic 
acid apex to the point c'. The addition of acetic acid changes the composition of the two 
layers to a' and b' .  Note that the acetic acid goes preferentially into the water-rich layer b', 
so that tie line connecting the conjugate solutions a' and b'  is not parallel to abo The relative 
amounts of a' and b'  are given by the lever rule ; that is, by the ratio of the segments of the 
tie line a'b'. Continued addition of acetic acid moves the composition farther along the 
dashed line cC ; the water-rich layer grows in size while the chloroform-rich layer 

A L-----<It-+-___ ........ ___ �...). B 
CHCl3 a d e b  H20 

F i g u re 1 5 . 23 Two part ia l l y  m isc ib le  l i q u ids .  
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diminishes. At e" only a trace of the chloroform-rich layer remains, while above e" the 
system is homogeneous. 

Since the tie lines are not parallel, the point at which the two conjugate solutions have 
the same composition does not lie at the top of the binodal curve but off to one side at the 
point k, the plait point. If the system has the composition d and acetic acid is added, the 
composition will move along dk ; just below k the two layers will both be present in 
comparable amounts ; at k the boundary between the two solutions vanishes as the system 
becomes homogeneous. Compare this behavior with that at e" where only a trace of one 
of the conjugate layers remained. 

If the temperature is increased, the shape and extent of the two-phase region alters. 
A typical example for a system in which increase in temperature increases the mutual 
solubility is shown in Fig. 15 .24. If temperature were plotted as a third coordinate, the 
two-phase region would be a loaf-shaped region. In the figure, P is the consolute tempera
ture for the two-component system A-B. The line PQ connects the plait points at the 
various temperatures. 

If two of the pairs A-B and B-C are partially miscible, the situation becomes more 
complex. Two binodal curves can appear as in Fig. 1 5.25(a). At lower temperatures, the 
two binodal curves in Fig. 1 5.25(a) may overlap. If they do so in such a way that the plait 
points join one another, then the two-phase region becomes a band, as in Fig. 1 5 .25(b). 
If the binodal curves do not join at the plait points, the resultant diagram has the form 
shown in Fig. 1 5 .25(c). Points within the triangle abc represent states of the system in 
which three liquid layers having compositions a, b, and e coexist. Sueh a system is iso
thermally invariant. 

* 1 5 . 1 2 S O LU B I L ITY O F  SA LTS ; C O M M O N - I O N  E F F E CT 

Systems that contain two salts with a common ion and water have great interest from a 
practical standpoint. Each salt influences the solubility of the other. The schematic 
diagram for NH4CI, (NH4hS04 , H20 at 30 DC is shown in Fig. 1 5.26. Point a represents 
the saturated solution of NH4CI in water in the absence of (NH4hS04 ' Points between 
A and a represent various amounts of solid NH4CI in equilibrium with saturated solution 
a. Points between a and C represent the unsaturated solution of NH4Cl. Similarly, b 
represents the solubility of (NH4)2S04 in the absence of NH4Cl. Points on Cb represent 
the unsaturated solution, while those on bB represent solid (NH4hS04 in equilibrium 
with saturated solution. The presence of (NH4hS04 changes the solubility of NH4CI 
along the line ae, while the presence of NH4Cl changes the solubility of (NH4hS04 
along the line be. Point e represents a solution that is saturated with respect to both 
NH4Cl and (NH4hS04 ' The tie lines connect the composition of the saturated solution 
and the solid in equilibrium with it. The regions of stability are shown in Table 1 5.2. 
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eacb 
Aac 
Bbc 
AcB 

Tab le  1 5 . 2  

System 

Unsaturated solution 
NH4CI + saturated solution 

(NH4)2S04 + saturated solution 
NH4CI + (NH4)2S04 + saturated solution c 

Variance 

2 

o 

Suppose an unsaturated solution represented by P is evaporated isothermally ; 
the state point must move along the line PdeJ, which has been drawn through the apex C 
and the point P. At d, NH4CI crystallizes ;  the composition of the solution moves along 
the line dc. At point e, the solution composition is c, and (NH4)2S04 begins to crystallize. 
Continued evaporation deposits both NH4Cl and (NH4)2S04 until the pointfis reached, 
where the solution disappears completely. 

* 1 5 . 1 3 D O U B L E - SA LT FO R M ATI O N  

If it happens that the two salts can form a compound, a double salt, then the solubility 
of the compound may also appear as an equilibrium line in the diagram. Figure 15 .27 
shows two typical cases of compound formation. In both figures, ab is the solubility of A ;  
bc that of the compound AB, cd that of B. The regions and what they represent are tabu
lated in Table 1 5.3 .  

The difference in behavior of the two systems can be demonstrated in two ways. First 
begin with the dry solid compound and add water ; the state point moves along the line 
DC. In Fig. l S.27(a), this moves the point into the region of the compound plus saturated 
solution of the compound. Hence, this compound is said to be congruently saturating. 
Addition of water to the compound AB in Fig. 1 5 .27(b) moves the state point along DC 
into the region of  stability of  A + AB + saturated solution b. The addition of  water, 
therefore, decomposes the compound into solid A and a solution. This compound is said 
to be incongruently saturating. Similarly the compound in Fig. 1 5.27(b) cannot be prepared 
by evaporating a solution containing A and B in the equimolar ratio. Evaporation 
crystallizes solid A at point e ;  at pointfthe solid A reacts with the solution b to precipitate 
AB. When D is reached, all of A has disappeared and only the compound remains. If the 
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A L----+-"----d....----"' B e AB f A =------,L------"' B 

(a) 
F ig u re 1 5 .21 ( a )  Congru ently satu rat ing  compo u n d .  
(b)  I ncongruent!y satu rat ing compound .  

Tab l e  1 5 .3 

Region System Variance 

Cabcd Unsaturated solution 2 
abA A + saturated solution 1 
AbD A + AB + saturated solution b 0 
Dbc AB + saturated solution 
DeB AB + B + saturated solution c 0 
cdB B + saturated solution 1 

solids are filtered off when the state point is between f and D, the crystals of compound 
will be mixed with crystals of A. It is understandable how annoying this is in the laboratory. 
A knowledge of the phase diagram or the double-salt system is very helpful in preparative 
problems. 

If one of the salts forms a hydrate of composition D, then the diagram will have the 
appearance shown in Fig. 1 5.28(a). The interesting feature of this diagram is that if the 
state point lies in the triangle ADB, the system consists exclusively of the three solids, 
D, B, A . Under appropriate conditions, usually at a higher temperature, the anhydrous 
salt may make its appearance on the diagram as in Fig. 1 5 .28(b). 

A L---------"""""""" B A """'-----------= B 
(a) (b) 

F i g u re 1 5 .28 Hyd rate format ion .  
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c 

A iL....-------..::!I.------.Jl. B D 
F i g u re 1 5 .29 The method 
of wet res id ues .  

* 1 5 . 1 4 T H E M ET H O D  O F  " WET R ES I D U ES " 

The determination of equilibrium curves in three-component systems in some respects 
is simpler than in two-component systems. Consider the diagram in Fig. 1 5.29. Suppose 
that the system consists of a solution in equilibrium with solid and that the state point is 
at a. We do not know the location of a, but we do know that it lies on a tie line connecting 
the solid composition with the liquid composition. We proceed as follows : some of the 
saturated liquid is removed and analyzed for A and B. This fixes the point s on the equi
librium line. After the removal of some of the saturated solution, the state point of the 
remainder of the system must lie at point r. So the remainder, that is, the solids -together 
with the supernatant liquid, called the "wet residue," is analyzed for two of the com
ponents. This analysis determines the point r. A tie line is drawn through s and r. The 
procedure is repeated on a system that contains a slightly different ratio of two of the 
components. The solution analysis yields the point S', while the analysis of the wet residue 
yields a point r' . The tie line is drawn through s' and r'. These two tie lines must intersect 
at the composition of the solid that is present. In this system, they would intersect at point 
D. This intersection point yields the composition of the solid phase D, which is in equi
librium with the liquid. 

The method of wet residues is superior to the procedure necessary in two-component 
systems, where the liquid and solid phase must be separated and analyzed individually. 
It is a practical impossibility to separate the solid phase from the liquid without some of 
the liquid adhering to the solid and thus contaminating it. For this reason, it is frequently 
easier to add a third substance to a two-component system, determine the equilibrium 
lines, as well as the composition of the solid phases by the method of wet residues, and 
infer the composition of the solid in the two-component system from the features of the 
triangular diagram. 

* 1 5 . 1 5 " SA LT I N G  O UT "  

In the practice of organic chemistry, it is common procedure to separate a mixture of an 
organic liquid in water by adding salt. For example, if the organic liquid and water are 
completely miscible, addition of salt to the system may produce a separation into two 
liquid layers-one rich in the organic liquid, the other rich in water. The phase relations 
may be illustrated as in Table 1 5.4 and by the diagram for K2C03-H20-CH30H, 
Fig. 15 . 30, which is typical of the system salt -water-alcohol. 



Region 

Aab 
Aed 
bed 
Abd 

Tab le  1 5 .4  

System 
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K2C03 in equilibrium with water-rich saturated solution 
K2C03 in equilibrium with alcohol-rich saturated solution 
two conjugate liquids joined by tie lines 
K2C03 in equilibrium with conjugate liquids b and d 

A���==============elx�,�B 
K2C03 CHpH F i g u re 1 5 .30 S alt-a lcoho l-water d iag ra m .  

The system is distinguished by the appearance of the two-liquid region bcd. Suppose 
that solid K2C03 is added to a mixture of water and alcohol of composition x. The state 
point will move along the line xyzA. At y two layers form ; at z K2C03 ceases to dissolve 
so that solid K2C03 and liquids b and d coexist. The liquid d is the alcohol-rich layer and 
may be separated from b, the water-rich layer. Note that addition of salt after the solid 
ceases to dissolve does not produce any change in the composition of the layers b and d ;  
this must be s o  since the system i s  isothermally invariant in the triangle Abd. 

This diagram can also be used to show how additional salt may be precipitated by 
the addition of alcohol to a saturated solution ; the state point moves from a, let us say, 
along a line connecting a and B. Since, in this particular case, only a little more salt is 
precipitated before two liquid layers form, the trick is not particularly useful. This system 
is curious in the effect of the addition of water to an unsaturated solution of K2C03 in 
alcohol of composition x' . The line x'y'z' connecting x' and C shows that K2C03 will 
precipitate at y' if water is added to the alcoholic solution. Further addition of water will 
redissolve the K2C03 at z'. 

QU ESTI O N S  

15.1 Describe the similarities of the solution upper consolute point and the liquid-gas critical point. 
15.2 Will there be a lower or an upper consolute point if the solution process for two liquids is exo

thermic ? For an endothermic process ? 
15.3 The hardness of an alloy is greater the more fine grained the alloy is. Why should eutectic alloys 

be especially hard? 
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15.4 Cu and Ni have nearly the same atomic radius and crystallize in the same solid lattice structure. 
With this information and the solid solution analogue of Eq. (14.6), suggest why Cu and Ni 
form a nearly ideal solid solution. 

15.5 Interpret the freezing-point elevation in solid solutions in terms of the " escaping tendency " 
of the solid in the solid solution. 

P R O B LE M S  

15.1 The vapor pressures of chlorobenzene and water at different temperatures are 

ttC 

poe .pCl)/mmHg 
pO(H20)/mmHg 

90 

204 
526 

a) At what pressure will .pCI steam-distill at 90 DC ? 

100 

289 
760 

1 10 

402 
1075 

b) At what temperature will .pCI steam-distill under a total pressure of 800 mmHg? 
c) How many grams of steam are required to distill 10.0 g of .pCI (a) at 90 °C and (b) under 

800 Torr total pressure ? 
15.2 A mixture of 100 g water and 80 g of phenol separates into two layers at 60 °C. One layer, L j ,  

consists of  44.9 % water by mass ; the other, Lz , consists of 83 .2 % water by mass. 
a) What are the masses of Lj and Lz ? 
b) What are the total number of moles in Lj and Lz ? 

15.3 The melting point and heats of fusion of lead and antimony are 

tmtC 
L'l.Hrus/(kJ/mol) 

Pb Sb 

327.4 
5 . 10  

630. 5 
20. 1 

Calculate the solid-liquid equilibrium lines ; estimate the eutectic composition graphically ; 
then calculate the eutectic temperature. Compare the result with the values given by Fig. 1 5.7 . 

15.4 From the melting points of the mixtures of Al and Cu, sketch the melting-point curve. 

a) 
mass % Cu 0 20 40 60 80 100 

ttc 660 600 540 610 930 1083 

b) For copper, TmlK = 1356 and L'l.HFusCCu) = 13 .05 kllmol ; for aluminum, TmlK = 933, and 
L'l.HFusCAI) = 10.75 kllmo!. Sketch the ideal solubility curves and compare with the experi
mental curve in (a). 

15.5 The solubility of KBr in water is 

ttc 0 20 40 60 80 100 

g KBr/g HzO 0.54 0.64 0.76 0.86 0.95 1 .04 
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. In a one molal solution, KBr depresses the freezing point of water by 3.29 0c. Estimate the 
eutectic temperature for the system KBr-H20 graphically. 

15.6 KBr is recrystallized from water by saturating the solution at 100 °C, then cooling to 20 °C ; 
the crystals obtained are redissolved in water and the solution evaporated until it is saturated 
at 100 °C. Cooling to 20 °C produces a second crop of crystals. What is the percent yield of 
pure KBr after these two crystallizations ? Use data in Problem 1 5.5 .  

15.7 Two crops of KBr crystals are obtained as follows. A solution saturated at 100 °C is cooled to 
20 °C ; after filtering off the first crop, the mother liquor is evaporated until the solution is 
saturated at 100 °C ; cooling to 20 °C produces the second crop. What fraction of the KBr is 
recovered in the two crops by this method ? (Use data in Problem 1 5.5 .) 

15.8 Figure 15 . 16  shows the equilibrium between liquid and solid solutions in the copper-nickel 
system. If we suppose that both the solid and liquid solutions are ideal, then the equilibrium 
conditions lead to two equations of the form of Eq. ( 1 5 .8) ; one of these applies to copper, the 
other to nickel. If we invert the equations they become 

and 
I ( 1 ) [ ( R ) (x�;;)J 

- = - l + -- ln -

T TNi �SNi XNi ' 

where x' is the mole fraction in the solid solution, x that in the liquid. In addition we have the 
relations, xCu + XNi = 1, and XCu + XNi = 1. There are four equations with five variables, 
T, xcu , XNi ' XCu ,  XNi . Suppose that XCu = 0.1 ; calculate values for all the other variables. Tcu = 
1 356.2 K, TNi = 1 728 K ; assume that �Scu = �SNi = 9 .83 J/K mol. (Hint: Use value of XCu 
in the first two equations, then eliminate T between them. By trial and error solve the resulting 
equation for either xCu or XNi . Then T is easily calculated. Repetition of this procedure for other 
values of XCu would yield the entire diagram.) 

15.9 In Fig. 15 . 1 8, what is the variance in each region of the diagram? Keep in mind that the pressure 
is constant. What is the variance on the line abc ? 

15.10 What is the variance in each region of Fig. 1 5.30? 
15.11  a) Using Fig. 1 5.30, what changes will be observed if water is added to a system containing 

50 % K2C03 and 50 % CH30H? 
b) What is observed i f  methanol is added to a system containing 90 % water and 10 % K2C03 ? 

(or 30 % water and 70 % K2C03 ?) 
15.12 a) What is the variance in each of the regions of Fig. 1 5 . 1 5(a) ? 

b) Describe the changes that occur if an unsaturated solution of Na2S04 is evaporated at 
25 °C ; at 35 0C. 

15.13 Describe the changes that occur if water is evaporated isothermally along the line aj from the 
system in Fig. 1 5. 12. 





1 6  
Eq u i l i b r i a i n 
N o n i d ea l  Syste ms 

1 6 . 1  T H E CO N C E PT O F  ACTIVITY 

The mathematical discussions in the preceding chapters have been limited to systems 
that behave ideally ; the systems were either pure ideal gases, or ideal mixtures (gaseous, 
liquid, solid). Many of the systems described in Chapter 15 are not ideal ; the question that 
arises is how are we to deal mathematically with nonideal systems. These systems are 
handled conveniently using the concepts of fugacity and activity first introduced by 
G. N. Lewis. 

The chemical potential of a component in a mixture is in general a function of 
temperature, pressure, and the composition of the mixture. In gaseous mixtures we write 
the chemical potential of each component as a sum of two terms : 

J.li = J.lf(T) + RT ln .f; .  (16 . 1 )  

The first term, J.lf, is a function of temperature only, while the fugacity /; in the second 
term may depend on the temperature, pressure, and composition of the mixture. The 
fugacity is a measure of the chemical potential of the gas i in the mixture. In Section 10.9 
a method of evaluating the fugacity for a pure gas was described. 

Now we will confine our attention to liquid solutions, although most of what is said 
can be applied to solid solutions as well. For any component i in any liquid mixture, we 
write 

J.li = gi(T, p) + RT In ai ' (16 .2) 

where g;(T, p) is a function only of temperature and pressure while ai ' the activity of i, 
may be a function of temperature, pressure, and composition. As it stands, Eq. (16 .2) is 
not particularly informative ; however, it does indicate that at a specified temperature and 
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pressure an increase in the activity of a substance means an increase in the chemical 
potential of that substance. The equivalence of the activity to the chemical potential, 
through an equation having the form of Eq. (16.2), is the fundamental property of the 
activity. The theory of equilibrium could be developed entirely in terms of the activities 
of substances instead of in terms of chemical potentials . 

To use Eq. (16.2), the significance of the function g i(T, p) must be accurately described ; 
then ai has a precise meaning. Two ways of describing glT, p) are in common use ; each 
leads to a different system of activities. In either system the activity of a component is 
still a measure of its chemical potential. 

1 6 . 2  T H E R ATI O N A L  SYST E M  O F  ACTIVITI E S  

In  the rational system of  activities, gi(T, p)  i s  identified with the chemical potential o f  the 
pure liquid, pi(T, p) : 

glT, p) = lli(T, p). (16.3) 
Then Eq. ( 16.2) becomes 

Ili = Ili + RT In ai ' ( 16.4) 

As Xi -+ 1, the system comes nearer to being pure i, and Ili must approach Ili, so that 

Pi - Ili = 0 as Xi -+ 1 .  
Using this fact in  Eq. (16 .4), we  have In ai = 0 ,  a s  Xi -+ 1 , or 

ai = 1 as Xi -+ 1 .  

Therefore the activity o f  the pure liquid i s  equal t o  unity. 
If we compare Eq. (16.4) with the Ili in an ideal liquid solution, 

Il:d = Ili + R T In Xi ; 

by subtracting Eq. (16 .6) from Eq. ( 16.4), we obtain 

id ai 
Pi - Ili = RT ln - . 

The rational activity coefficient of i, Y b is defined by 

With this definition, Eq. ( 16 .7) becomes 

ai 
Yi = - . Xi 

Xi 

Ili = Il:d + RT  In Yi , 

( 16 .5) 

( 16.6) 

(16 .7) 

(16 .8) 

( 16.9) 

which shows that In Yi measures the extent of the deviation from ideality. From the relation 
in Eq. (16 .5), and the definition of Yi , we have 

Yi = 1 as Xi -+ 1 .  ( 16. 10) 

The rational activity coefficients are convenient for those systems in which the mole 
fraction of any component may vary from zero to unity ; mixtures of liquids such as acetone 
and chloroform, for example .  
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1 6 . 2 . 1  R a t i o n a l  Act iv i t ies ; Vo l at i l e  S u bsta n ces 

The rational activity of volatile constituents in a liquid mixture can be readily measured 
by measuring the partial pressure of the constituent in the vapor phase in equilibrium 
with the liquid. Since at equilibrium the chemical potentials of each constituent must be 
equal in the liquid and the vapor phase, we have lli(1) = Illg). Using Eq. (16.4) for lli(1) 
and assuming the gas is ideal, component i having a partial pressure Pi >  we can write 

lli'O) + RT In ai = Il�(g) + RT In Pi ' 
For the pure liquid, 

lli'O) = Il�(g) + R T In P�, 

where P� is the vapor pressure of the pure liquid. Subtracting the last two equations and 
dividing by RT, we obtain In ai = In (Pi/Pf), or 

Pi ai = o' Pi ( 16. 1 1) 

which is the analogue of Raoult's law for a nonideal solution. Thus a measurement of Pi 
over the solution together with a knowledge of p� yields the value of ai . From measure
ments at various values of Xi , the value of ai can either be plotted or tabulated as a function 
of Xi . Similarly, the activity coefficient can be calculated using Eq. (16 .8) and plotted as 
function of Xi . In Figs. 16 . 1 and 16.2, plots of ai and Yi versus Xi are shown for binary 
systems that exhibit positive and negative deviations from Raoult's law. If the solutions 
were ideal, then ai = Xi ' and Yi = 1, for all values of Xi . 

Depending on the system, the activity coefficient of a component may be greater or 
less than unity. In a system showing positive deviations from ideality, the activity co
efficient, and therefore the escaping tendency, is greater than in an ideal solution of the 
same concentration. In a solution exhibiting negative deviations from Raoult's law, the 
substance has a lower escaping tendency than ill an ideal solution of the same concentra
tion, Y is less than unity. 

o 

F i g u re 1 6 . 1  Activity versus mole 
fract ion .  

Yi 

1 .6 

1 .4 

1 .2  

1 
1 

0 .8 

0 .6  

0 .4 

F i g u re 1 6 .2  Activity coeff ic ient versus 
mole fractio n .  
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1 6 . 3  C O l li G ATIVE P R O P E RTI ES  

The colligative properties of  a solution of  in  volatile solutes are simply expressed in  terms 
of the rational activity of the solvent. 

1 6 . 3 . 1  Va p o r  P ress u re 

If the vapor pressure of the solvent over the solution is p, and the activity of the solvent 
is a, then from Eq. (16 . 1 1), 

(16 . 1 1a) 

If a is evaluated from measurements of vapor pressure at various concentrations, these 
values can be used to calculate the freezing-point depression, boiling-point elevation, and 
osmotic pressure for any concentration. 

1 6 . 3 . 2  F reezi ng - Po i nt Depress i o n  

If pure solid solvent i s  in equilibrium with solution, the equilibrium condition ,u(l) = ,u°(s) 
becomes, using Eq. (16 .4), ,110(1) + RT In a = ,u°(s) ; or, 

In a = _ �G�us . RT 
Repetition of the argument in Section 13 .6  yields, finally, 

In a = _ �H�us (� _ �) 
R T To ' (16 . 12) 

which is the analogue of Eq. ( 1 3 . 1 5) for the ideal solution. Knowing a from vapor pressure 
measurements, the freezing point can be calculated from Eq. (16 . 12) ;  conversely, if the 
freezing point T is measured, a can be evaluated from Eq. (16 . 12). 

1 6 . 3 . 3  B o i l i n g - Po i nt E l evat i o n  

The analogous argument shows that the boiling point i s  related t o  �H�ap and To ,  the heat 
of vaporization and the boiling point of the pure solvent, by 

In a = �H�ap (� - �) (16 . 1 3) R T To ' 

which is the analogue of Eq. ( 13 .29) for the ideal solution. 

1 6 . 3 . 4  Osmot i c  P ress u re 

The osmotic pressure is given by 
VOn = -RT In a, (16 . 14) 

which is the analogue of Eq. (13 .36). 
In Eqs. ( 16. 1 1 a), (16 . 12), (16 . 1 3), and (16 . 14), a is the rational activity of the solvent. 

Measurements of any colligative property yield values of a through these equations. 
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The practical system of activities and activity coefficients is useful for solutions in which 
only the solvent has a mole fraction near unity ; all of the solutes are present in relatively 
small amounts. For such a system we use the rational system for the solvent and the 
practical system for the solutes. As the concentration of solutes becomes very small, the 
behavior of any real solution approaches that of the ideal dilute solution. Using a subscript 
j to identify the solutes, then in the ideal dilute solution (Section 14. 1 1) 

For a solute, Eq. (16.2) becomes 
/lid = /1'1'* + RT In m . r"J r"J J '  

/1j = g/T, p) + RT In aj . 

If we subtract Eq. ( 16. 1 5) from Eq. (16 . 16) and set g/T, p) = /1}*, then 

( 1 6 . 1 5) 

(16 . 1 6) 

(16 . 17) 

The identification of g iT, p) with /1}* defines the practical system of activities ;  the practical 
activity coefficient rj is defined by 

(16 . 1 8) 

Equations ( 16. 17) and (16 . 18)  show that In rj is a measure of the departure of a solute 
from its behavior in an ideal dilute solution. Finally, as mj -+ 0, the solute must behave in 
the ideal dilute way so that 

as ( 16 . 19) 

It follows that aj = mj as mj = O. Thus, for the chemical potential of a solute in the 
practical system, we have 

(16.20) 

The /1j* is the chemical potential the solute would have in a 1 molal solution if that 
solution behaved according to the ideal dilute rule. This standard state is called the ideal 
solution of unit molality. It is a hypothetical state of a system. According to Eq. (16 .20) 
the practical activity measures the chemical potential of the substance relative to the 
chemical potential in this hypothetical ideal solution of unit molality. Equation ( 16.20) 
is applicable to either volatile or involatile solutes. 

1 6 .4 . 1  Vo l at i l e  S o l ute 

The equilibrium condition for the distribution of a volatile solute j between solution and 
vapor is /1ig) = /1/1). Using Eq. ( 16.20) and assuming that the vapor is ideal, we have 

/1) + RT In Pj = /1}* + RT In aj . 

Since /1) and /1}* depend only on T and P and not on composition, we can define a con
stant Kj , which is independent of composition, by 

RT In Kj = - (/1) - /1}*). 
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The relation between Pj and aj becomes 

Pj = Kjaj . (16 .21) 

The constant Kj is a modified Henry's law constant. If Kj is known, values of aj can be 
computed immediately from the measured values of Pj ' Dividing Eq. (16 .21) by mj , we 
obtain 

(16.22) 

Measured values of the ratio pimj are plotted as a function ofmj . The curve is extrapolated 
to mj = O. The extrapolated value of pimj is equal to Kj , since aimj = 1 as mj --+ O. Thus 

Having obtained the value of Kj , the values of aj are computed from the measured Pj by 
Eq. (16�21) . 

1 6 .4 .2  I nvo l at i l e  S o l ute ; Co i l i gat ive P ro pe rt i es 
a n d  t h e  Act iv i ty of  the  S o l ute 

In Section 16 .3 we related the colligative properties to the rational activity of the solvent. 
These properties can also be related to the activity of the solute. Symbols without sub
scripts refer to the solvent ; symbols with a subscript 2 refer to the solute, except that the 
molality m of the solute will not bear a subscript. For simplicity we assume that only one 
solute is present. The chemical potentials are 

Solvent : 

Solute : 

fl = flo + RT In a, 

flz = fl'i* + RT In az · 

These are related by the Gibbs-Duhem equation, Eq. ( 1 1 .97), 

(T, P constant). 

Differentiating fl and flz , keeping T and P constant, we obtain 

dfl = R T  d In a and dflz = R T d ln az · 

Using these values in the Gibbs-Duhem equation, we have 

nz d In a = - - d In az . n 
But nz/n = Mm, where M is the molar mass of the solvent, and m is the molality of the 
solute. Therefore 

d ln a = - Mm d ln az , (16.23) 

which is the required relation between the activities of solvent and solute. 
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1 6 .4 .3  F reezi n g - P o i nt Depress i o n  

Differentiating Eq. (16 . 12) and using the value for d In a given by  Eq. (16.23), we  obtain 

d I I1H�us d 
de n a2 = - MRT2m T = Kfm(l _ ejTo)2 ' 

where Kf = MRT6!I1Hfus , and the freezing-point depression, e = To - T, de = - dT, 
have been introduced. If ejTo � 1, then 

de 
d In a2 = -- . ( 16.24) 

Kfm 

A similar equation could be derived for the boiling-point elevation. 
As is, Eq. (16 .24) is not very sensitive to deviations from ideality. To arrange it in terms 

of more responsive functions, we introduce the osmotic coefficient, 1 - j, defined by 

(16 .25) 

In an ideal dilute solution, e = K f m, so that j = O. In a nonideal solution, j is not zero. 
Differentiating Eq. (16.25), we have 

de = Kf[(1 - j) dm - m dj] .  

Using Eq. ( 16 . 1 8), we  set a2 = y2 m ; and differentiate In a2 : 
dm 

d in a2 = d in Y2 + d In m = d In Y2 + 
-

. m 
Using these two relations in Eq. ( 16.24), it becomes 

d In Y2 = - dj - (�) dm. 
This equation is integrated from m = 0 to m ;  at m = 0, Y2 = 1, and j = 0 ;  we obtain fin Y2 

o
d In Y2 = 

In Y2 = 

- { dj - 1m (�) dm, 

-j - 1m (�) dm. (16.26) 

The integral in Eq. (16 .26) is evaluated graphically. From experimental values of e and 
m, j is calculated from Eq. ( 16.25) ; jjm is plotted versus m ;  the area under the curve is the 
value of the integral. After obtaining the value of Y2 , the activity a2 is obtained from the 
relation a2 = y2 m. 

We have assumed that I1Hrus is independent of temperature and that e is much less 
than To .  In precision work, more elaborate equations not restricted by these assumptions, 
are used. Any of the colligative properties can be interpreted in terms of the activity of 
the solute. 

1 6 . 5  ACTIVITI ES A N D R EACTI O N  EQU I LI B R I U M  

If a chemical reaction takes place in a nonideal solution, the chemical potentials in the 
form given by Eq. (16.4) or ( 16.20) must be used in the equation of reaction equilibrium. 
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The practical system, Eq. (16.20), is more commonly used. The condition of equilibrium 
becomes 

LlG** = -RT In Ka , (16.27) 

where LlG** is the standard Gibbs energy change, and Ka is the proper quotient of 
equilibrium activities. Since LlG** is a function only of T and p, Ka is a function only of 
T and p, and is independent of the composition. Since each activity has the form ai = Yimi , 
we can write 

(16.28) 

where Ky and Km are proper quotients of activity coefficients and of molalities, respectively. 
Since the y's depend on composition, Eq. (16.28) shows that Km depends on composition. 
In dilute real solutions all the y's approach unity, Ky approaches unity, and Km approaches 
Ka . Except when we are particularly interested in the evaluation of activity coefficients, 
we shall treat Km as if it were independent of composition ; doing so greatly simplifies the 
discussion of equilibria. 

In most elementary treatments of equilibria in solution, the equilibrium constant is 
usually written as a quotient of equilibrium concentrations expressed as molarities, Kc . 
It is possible to develop an entire system of activities and activity coefficients using molar 
rather than molal concentrations. We could write a =. Yc c, where c is the molar concen
tration and Yc the corresponding activity coefficient ; as c approaches zero, Yc must 
approach unity. We will not dwell on the details of this system except to show that in 
dilute aqueous solution the systems based on molarity and on molality are nearly the 
same. We have seen, Eq. (14.25), that in dilute solution, Cj = pmj , or cj = pmi(lOOO L/m3), 
where p is the density of the pure solvent. At 25 °C the density of water is 997.044 kg/m3 . 
The error made by replacing molalities by molarities is therefore insignificant in ordinary 
circumstances. The concomitant error in the standard Gibbs energy is well below the 
experimental error. In more concentrated solutions the relation between Cj and mj is not 
so simple, Eq. (14.24), and the two systems of activities are different. 

Ordinarily for purposes of illustration we shall use molar concentrations in the 
equilibrium constant, realizing that to be precise we should use the activities. One mis
understanding that arises because of this replacement of activity by concentration should 
be avoided. The activity is sometimes regarded as if it were an " effective concentration." 
This is a legitimate formal point of view ; however, it is deceptive in that it conveys the 
incorrect notion that activity is designed to measure the concentration of a substance in 
a mixture. The activity is designed for one purpose only, namely to provide a convenient 
measure of the chemical potential of a substance in a mixture. The connection between 
activity and concentration in dilute solutions is not that one is a measure of the other, but 
that either one is a measure of the chemical potential of the substance. It would be better 
to think of the concentration in an ideal solution as being the effective activity. 

1 6 . 6  ACTIVIT I E S  I N  E LECT R O LYTI C  S O L U TI O N S  

The problem of defining activities is somewhat more complicated in electrolytic solutions 
than in solutions of nonelectrolytes. Solutions of strong electrolytes exhibit marked 
deviations from ideal behavior even at concentrations well below those at which a solution 
of a nonelectrolyte would behave in the ideal dilute way. The determination of activities 
and activity coefficients has a correspondingly greater importance for solutions of strong 
electrolytes .  To simplify the notation as much as possible a subscript s will be used for the 
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properties of the solvent ; symbols without subscript refer to the solute ; subscripts + and 
- refer to the properties of the positive and negative ions. 

Consider a solution of an electrolyte that is completely dissociated into ions. By the 
additivity rule the Gibbs energy of the solution should be the sum of the Gibbs energies 
of the solvent, the positive and the negative ions : 

(16.29) 

If each mole of the elegtrolyte dissociates into v + positive ions and v _ negative ions, then 
n+ = v + n, and n _  = v _ n, where n is the number of moles of electrolyte in the solution. 
Equation ( 16.29) becomes 

(16 .30) 

If 11 is the chemical potential of the electrolyte in the solution, then we should also have 

G = nsl1s + nil· 
Comparing Eqs. (16 .30) and (16 .3 1), we see that 

11 = v + 11+ + v - 11- . 

( 16. 3 1 )  

(16 .32) 

Let the total number of moles of ions produced by one mole of electrolyte be v = v + + v _ . 
Then the mean ionic chemical potential l1± is defined by 

(16 .33) 

Now we can proceed in a purely formal way to define the various activities. We write* 

11 = 11° + RT In a ;  (16 .34) 

11± = 11± + RT In a± ; 
11+ = 11"t- + RT In a+ ; 
11- = 11"- + RT In a_ . 

(16 .35) 
(16 .36) 

(16 .37) 

In these relations, a is the activity of the electrolyte, a± is the mean ionic activity, and a+ 
and a_  are the individual ion activities. To define the various activities completely we 
require the additional relations 

11° = V + I1"t- + V - I1"- ; 
VI1± = v + 11"t- + V - I1"- · 

(16 .38) 
(16.39) 

First we work out the relation between a and a± . From Eqs. (16 .32) and (16 .33) we 
have 11 = VI1± . Using the values for 11 and 11± from Eqs. ( 16.34) and (16 .35), we get 

11° + RT In a = VI1± + vRT In a± . 
Using Eqs. (16 .38) and (16 .39) this reduces to 

a = ai: . (16.40) 

Next we want the relation between a± , a + , and a_ . Using the values of 11± , 11+ , and 
11- given by Eqs. (16 .35), (16 .36), and (16 .37) in Eq. (16 .33), we obtain 

VI1± + vRT In a± = V+ I1"t- + V- I1"- + RT(v + In a+ + v_ In a_ ). 

* Since we are using molalities, for consistency we should write /<**  for the standard value of /<, but this would 
make the symbolism too forbidding. 
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From this equation we subtract Eq. (16.39) ; then it reduces to 

The mean ionic activity is the geometric mean of the individual ion activities. 
The various activity coefficients are defined by the relations 

(16 .41) 

( 16.42) 

(16.43) 

(16 .44) 

where y ±  is the mean ionic activity coefficient, m ±  is the mean ionic molality, and so on. 
Using the values of a ± , a + , and a_ from Eqs. (16.42), (16 .43), and ( 16.44) in Eq. ( 16.41), 
we obtain 

We then require that 
(16.45) 

( 16.46) 

These equations show that y ± and m± are also geometric means of the individual ionic 
quantities .  In terms of the molality of the electrolyte we have 

and m _ = v_ m, 

so that the mean ionic molality is 

(16.47) 

Knowing the formula of the electrolyte, we obtain m± immediately in terms of m. 

l1li EXAMPLE 1 6 . 1  

MgS04 
In a 1 : 1 electrolyte such as NaC!, or in a 2 : 2 electrolyte such as 

v = 2, 

In a 1 :  2 electrolyte such as Na2S04 
v = 3, 

The expression for the chemical potential in terms of the mean ionic activity, from 
Eqs. (16 .34) and (16 .40), is 

Jl = Jlo + R T  In a,± . 

Using Eqs. ( 16.42) and (16.47) this becomes 

Jl = Jlo + RT ln [y,± (v'e+ v�-)mV] , 

which can be written in the form 

Jl = Jlo + RT In (v'e+ v�- ) + vR T  In m + vRT In y ± . 

(16.48) 

(16.49) 

In Eq. ( 16.49), the second term on the right is a constant, evaluated from the formula of 
the electrolyte ; the third term depends on the molality ; the fourth can be determined from 
measurements of the freezing point, or any other colligative property of the solution. 
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* 1 6 . 6 . 1  F reez i ng - Po i nt Depress i o n  a n d  t h �  
M ea n  I o n i c  Act iv i ty Coeff ic ient 

The relation between the freezing-point depression e and the mean ionic activity co
efficient is obtained easily. Writing Eq. (16 .24) using a for the activity of the solute, we 
have 

But from Section 16 .6, we have 

Then 

de d ln a = -K . 
Jm 

d In a = v d In m + v d In y ± . 
So that Eq. (16 .50) becomes 

v dm de 
-� + v d ln y ± = -� .  m KJm 

For an ideal solution, y ± = 1 ,  and Eq. (16 .52) becomes 

de = vKJ dm, 
e = vKJm, 

(16 .50) 

(16 .5 1 )  

(16 .52) 

(16 .53) 

which shows that the freezing-point depression in a very dilute solution of an electrolyte 
is the value for a nonelectrolyte multiplied by v, the number of ions produced by the 
dissociation of one mole of the electrolyte. 

The osmotic coefficient for an electrolytic solution is defined by 

(16 .54) 

With this definition of j, Eq. (16 .52) becomes, after repetition of the algebra in Section 
16.4.3, 

In y ± = �j � 1ni (�) dm, (16 . 55) 

which has the same form as Eq. (16.26). 
Values of the mean ionic activity coefficients for several electrolytes in water at 25 °C 

are given in Table 1 6. 1 .  Figure 16.3 shows a plot of y ± versus m1/2 for different electrolytes 
in water at 25 °C. 

The values of y ± are nearly independent of the kind of ions in the compound so long 
as the compounds are of the same valence type. For example, KCI and NaBr have nearly 
the same activity coefficients at the same concentration, as do K2S04 and Ca(N03)2 '  In 
Section 16 .7 we shall see that the theory of Deby:e and Hiickel predicts that in a sufficiently 
dilute solution 1:he mean ionic activity coefficient should depend only on the charges on 
the ions and their concentration, but not on any other individual characteristics of the 
IOns. 

Any of the colligative properties could be used to determine the activity coefficients 
of a dissolved substance whether it is an electrolyte or nonelectrolyte. The freezing-point 
depression is much used, because this experiment requires somewhat less elaborate 
equipment than any of the others. It has the disadvantage that the values of y can be 
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Tab le  1 6 . 1  
M ean  ion ic  activity coeff ic ients of strong e lectro lytes 

m 0.001 0.005 0.Q1 0.05 0. 1 0 .5 

HCI 0.966 0.928 0.904 0.830 0.796 0.758 
NaOH - - - 0.82 - 0.69 
KOH - 0.92 0.90 0.82 0.80 0.73 
KCI 0.965 0.927 0.901 0.8 1 5  0.769 0.65 1 
NaBr 0.966 0.934 0.914 0.844 0.800 0.695 
H2SO4 0.830 0.639 0.544 0.340 0.265 0. 1 54 
K2S04 0.89 0.78 0.7 1  0.52 0.43 -

Ca(N03)z 0.88 0.77 0.71 0.54 0.48 0.38 
CUS04 0.74 0.53 0.41 0.21 0. 1 6  0.068 
MgS04 - - 0.40 0.22 0. 1 8  0.088 
La(N03h - - 0.57 0.39 0.33 -

In2(S04)3 - - 0. 142 0.054 0.035 -

1 .0 

0.809 
0.68 
0.76 
0.606 
0.686 
0. 1 30 

-

0.35 
0.047 
0.064 

-

-

By permission from Wendell M .  Latimer, The Oxidation States of the Elements and Their 
Potentials in Aqueous Solutions, 2d ed. Englewood Cliffs, N.J . : Prentice-Hall, 1 952, 
pp. 354-356 .  

1 

y ±  

0 .2 

o 
F i g u re 1 6 .3 Mean ion ic  act ivity 
coeff ic ients as funct ions of m ' / 2 . 

obtained only near the freezing point of the solvent. The measurement of vapor pressure 
does not have this drawback, but is more difficult to handle experimentally. In Chapter 17  
the method of  obtaining mean ionic activity coefficients from measurements of  the 
potentials of electrochemical cells is described. The electrochemical method is easily 
handled experimentally, and it can be used at any convenient temperature. 

1 6 . 7  T H E D E BYE-H U C K E l  T H E O R Y  O F  T H E 
STR U CT U R E  O F  D I LUTE I O N I C  S O L U TI O N S  

At this stage it is worthwhile to describe the constitution of ionic solutions in some detail. 
The solute in dilute solutions of non electrolytes is adequately described thermo-



dynamically by the equation, 
fl = flo + RT In m. 
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(16 .56) 
The chemical potential is a sum of two terms : the first, flo, is independent of composition, 
and the second depends on the composition. Equation ( 16. 56) is fairly good for most 
nonelectrolytes up to concentrations as high as 0. 1 m, and for many others it does well at 
even higher concentrations. The simple expression in Eq. (16 .56) is not adequate for 
electrolytic solutions ; deviations are pronounced even at concentrations of 0.001 m. This 
is true even if Eq. (16 .56) is modified to take into account the several ions produced. 

To describe the behavior of an electrolyte in a dilute solution, the chemical potential 
must be written in the form, see Eq. ( 16.49), 

fl = flO + vRT In m + vRT In y ± . ( 16.57) 
In Eq. (16.57) the second term on the right of Eq. ( 16.49) has been absorbed into the flO. 
The flO is independent of the composition ; the second and third terms depend on the 
composition. 

The extra Gibbs energy represented by the term vRT In y ± in Eq. ( 16. 57) is mainly 
the result of the energy of interaction of the electrical charges on the ions ; since in one 
mole of the electrolyte there are vN A ions, this interaction energy is, on the average, 
kT In y ± per ion, where the Boltzmann constant k = R/NA • The van der Waals forces 
acting between neutral particles of solvent and nonelectrolyte are weak and are effective 
only over very short distances, while the coulombic forces that act between ions and those 
between ions and neutral molecules of solvent are much stronger and act over greater 
distances. This difference in range of action accounts for the large deviations from ideality 
in ionic solutions even at high dilutions where the ions are far apart. Our object is to 
calculate this electrical contribution to the Gibbs energy. 

For a model of the electrolyte solution we imagine that the ions are electrically 
charged, conducting spheres having a radius a, immersed in a solvent of permittivity f .  
Let the charge on the ion be q. If  the ion were not charged, q = 0, i t s  fl could be represented 
by Eq. (16 .56) ; since it is charged, its fl must incorporate an extra term, kT In y ± . The 
extra term, which we are trying to calculate, must be the work expended in charging the 
ion, bringing q from zero to q. Let the electrical potential at the surface of the sphe-re be 
CPa ' a function of q. By definition, the potential of the sphere is the work that must be 
expended to bring a unit positive charge from infinity to the surface of the sphere ; if we 
bring a charge dq from infinity to the surface, the work will be dW = CPa dq. Integrating 
from zero to q, we obtain the work expended in charging the ion : 

W = I: CPa dq, (16 .58) 

where W is the extra energy possessed by the ion in virtue of its charge ; the Gibbs energy 
of an ion is greater than that of a neutral particle by W. This additional energy is made up 
of two contributions : 

W = W. + W;. (16 .59) 
The energy required to charge an isolated sphere immersed in a dielectric medium is the 
self-energy of the charged sphere, tv. .  Since tv. does not depend on the concentration of 
the ions, it will be absorbed in the value of flO. The additional energy beyond tv. needed 
to charge the ion in the presence of all the other ions is the interaction energy W; ,  whose 
value depends very much on the concentration of the ions. It is W; which we identify with 
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the term, kT In y ± : 
kT In y ± = W; = w - w. . ( 16 .60) 

The potential of an isolated conducting sphere immersed in a medium having a 
permittivity £ is given by the formula from classical electrostatics : CPa = q/4nw. Using 
this value in the integral of Eq. (16 .58), we obtain for W. 

rq q q2 
W. = J o 4nw dq = 8nw · ( 16.61) 

Having this value of HI, , we can obtain a value for W; if we succeed in calculating W. To 
calculate W we must first calculate CPa ; see Eq. ( 16.58). Before doing the calculation we can 
guess reasonably that W; will be negative. Consider a positive ion : It attracts negative ions 
and repels other positive ions. As a result negative ions will be, on the average, a little 
closer to the positive ion than will be the other positive ions. This in turn gives the ion a 
lower Gibbs energy than it would have if it were not charged ; since we are interested in 
the energy relative to that of the uncharged species, W; is negative. In 1923 P. Debye and 
E. Huckel succeeded in obtaining a value of CPa . The following is an abbreviated version 
of the method they used. 

We locate the origin of a spherical coordinate system at the center of a positive ion 
(Fig. 16 .4). Consider a point P at a distance r from the center of the ion. The potential cP 
at the point P is related to the charge density p, the charge per unit volume, by the Poisson 
equation (for the derivation, see Appendix II) : 

1 d ( 2 dCP) p - - r - = - -r2 dr dr £
. ( 16.62) 

If p can be expressed as a function of either cP or r, then Eq. ( 16.62) can be integrated to 
yield cP as a function of r, from which we can get CPa directly. 

To calculate p we proceed as follows. Let c + and c_ be the concentrations of positive 
and negative ions, respectively. If z + and L are the valences (complete with sign) of the 
ions and e is the magnitude of the charge on the electron, then the charge on one mole of 
positive ions is z + F, and the positive charge in unit volume is c + z + F, in which F is the 
Faraday constant ; F = 96 484.56 Clmol. The charge density, p, is the total charge, 
positive plus negative, in unit volume ; therefore 

(16.63) 
If the electrical potential at P is cP, then the potential energies of the positive and negative 

r 

F i g u re 1 6 .4 
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ions at P are ez+ ¢ and eL ¢, respectively. Debye and Huckel assumed that the distri
bution of the ions is a Boltzmann distribution (Section 4. 1 3). Then 

and 

where c� and c� are the concentrations in the region where ¢ = 0 ;  but where ¢ = 0, 
the distribution is uniform and the solution must be electrically neutral ; p must be zero. 
This requires that 

Putting the values of c + and c_ in the expression for p yields 

p = F(z+ c� e- z + e"'lkT + z _ c� e- z - e"'lkT). 
Assuming that ze¢lkT � 1, the exponentials are expanded in series ; e - x = 1 - x + . . . . 
This reduces p to 

The condition of electrical neutrality drops out the first two terms ; then, since elk = FIR, 
we have 

(16 .64) 

where the sum is over all the kinds of ions in the solution, in this case, two kinds of ions. 
Using this relation, we have 

- � = (t�� � c�zl )¢ = x2¢, (16.65) 

where we have defined x2 as 

Using this value of - pit, the Poisson equation, Eq. (16 .62), becomes 

� i  (r2 d¢) _ x2¢ = O. 
r2 dr dr 

If we substitute ¢ = vir in Eq. (16 .67), it reduces to 

which has the solution* 

d2v 2 - 0 dr2 - x v - , 

where A and B are arbitrary constants. The value of cjJ is 

(16 .66) 

(16 .67) 

(16.68) 

(16 .69) 

* You should verify this by substitution and work out the transformation ofEq. ( 1 6 . 67) into ( 1 6 . 68) in detail. 
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As r -+ 00, the second term on the right approaches infinity.* The potential must remain 
finite as r -+ 00, so this second term cannot be part of the physical solution ; therefore we 
set B = 0 and obtain 

rP = A e
- "r . r ( 16.70) 

Expanding the exponential in series and retaining only the first two terms, we have 

rP = AC � xr) = � - Ax. ( 16 .71) 

If the concentration is zero, then x = 0, and the potential at point P should be that due 
to the central positive ion only ; rP = z+ el4nfr. But when x = 0, Eq. (16 .71)  reduces to 
rP = Air ; hence, A = z+ el4nf ; Eq. (16 .71) becomes : 

At r = a, we have 

rP = z+ e _ z + ex . 4nfr 4nf 

rP = z+ e _ z+ ex 
a 4nEa 4nf · 

(16 .72) 

( 16.73) 

If, with the exception of our central positive ion, all other ions in the solution are fully 
charged, then the work to charge this positive ion in the presence of all the others is, . 

Eq. ( 16.58), 

w+ = s: rPa dq ; 

but q = z+ e, so that dq = e dz+ . Using Eq. (16.73) for rPa , we obtain 

(16 .74) 

where the first term is the self-energy w., + , and the second is the interaction energy 
W;, + , the extra Gibbs energy of a single positive ion that is due to the presence of the 
others. Using Eq. (16 .60), we have 

For a negative ion we would get 

(L e)2x 
8nf 

The mean ionic activity coefficient can be calculated using Eq. ( 16.45) : 

Taking logarithms, we obtain 

v In y ± = v + In y + + L In y _ . 

* Verify using L'Hopital's rule . 

(16.75) 

(16.76) 
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Using Eqs. (16 .75) and (16.76) this becomes 

Since the electrolyte itself is electrically neutral, we must have 

v + z+ + v _ z_ = 0 :  
Multiplying by Z+ : v + z� = - L Z +  = -
Multiplying by = - : L z=- = - v + Z + = ---�----��----���----Adding : v + z� + v _ z=- = - (v + + L)Z + = - = 

Using this result we obtain finally : 

e2u F2u 
ln y ± = 8nfkT z+ =- = 8nfNART z+ =- , ( 16.77) 

Converting to common logarithms and introducing the value of u from Eq. ( 16.66), we 
obtain 

10gl o y ± = (2.303�8nN A (f�� r/2 (� CfZf y l2 
Z+  = - . ( 16.78) 

The ionic strength, 10 is defined by 

( 16.79) 

where C; is the concentration of the ith ion in moljL. Since cf = (1000 L/m3)c; ,  we have 

I cfZf = (1000 L/m3) I C; Zf = 2(1000 L/m3)Ie · 

Finally, we obtain 

i i 

log " = -- Z Z 1 1/2 [(2000 L/m3) 1/2 ( F2 ) 3/2J 1 0 I ± (2.303)8nN A fRT + - e ( 16. 80) 

The factor enclosed in the brackets is made up of universal constants and the values of f 
and T. For a continuous medium, f = fr fO ' where fr is the dielectric constant of the 
medium. Introducing the values of the constants, we obtain 

_ ( 1 . 8248 X 106 K 3/2 UI2/moI1 /2) 1 /2 log1 0 Y ± - (fr T)3/2 z + =- Ic . 

In water at 25 °C, fr = 78.54 ; then we have 

10gl o Y ± = (0.5092 UI2 /moI 1/2)z + = - n/2 

( 16 .81 ) 

( 16.82) 
Either of Eqs. (16 .8 1) or (16.82) is the Debye-Huckel limiting law. The limiting law 

predicts that the'logarithm of the mean ionic activity coefficient should be a linear function 
of the square root of the ionic strength and that the slope of the line should be proportional 
to the product of the valences of the positive and negative ions. (The slope is negative, 
since Z _ is negative.) These predictions are confirmed by experiment in dilute solutions 
of strong electrolytes. Figure 16 .5 shows the variation of log1 0 Y ± with Ie ;  the solid curves 
are the experimental data ; the dashed lines are the values predicted by the limiting law, 
Eq. (16.82). 
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The approximations required in the theory restrict its validity to solutions that are 
very dilute. In practice, deviations from the limiting law become appreciable in the 
concentration range from 0.005 to 0.01 moljL. More accurate equations have been derived 
that extend the theory to slightly higher concentrations. However, as yet there is no 
satisfactory theoretical equation that can predict the behavior in solutions of concen
tration higher than 0.01 mol/L. 

The Debye-Hiickel theory provides an accurate representation of the limiting 
behavior of the activity coefficient in dilute ionic solutions. In addition, it yields a picture 
of the structure of the ionic solution. We have alluded to the fact that the negative ions 
cluster a little closer to a positive ion than do positive ions, which are pushed away. In 
this sense every ion is surrounded by an atmosphere of oppositely charged ions ; the total 
charge on this atmosphere is equal, but opposite in sign, to that on the ion. The mean 
radius of the ionic atmosphere is given by 1/x, which is called the Debye length. Since x 
is proportional to the square root of the ionic strength, at high ionic strengths the atmo
sphere is closer to the ion than at low ionic strengths. This concept of the ionic atmosphere 
and the mathematics associated with it have been extraordinarily fruitful in clarifying 
many aspects of the behavior of electrolytic solutions. 

The concept of the ionic atmosphere can be made clearer by calculating the charge 
density as a function of the distance from the ion. By combining the final expression for 
the charge density in terms of <p with Eq. (16 .70) and the value of A, we obtain 

z+ ex2 e- '" p = - -- - . 4n r (16 .83) 

The total charge contained in a spherical shell bounded by spheres of radii r and r + dr 
is the charge density multiplied by the volume of the shell, 4nr2dr : 

By integrating this quantity from zero to infinity we obtain the total charge on the atmo
sphere which is - z + e. The fraction of this total charge that is in the spherical shell, per 
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fir) 

o 1 xr 
F i g u re 1 6 .6  Charge d istribut ion 
i n  the ion ic atmosphere.  

unit width dr of the shell, we will callf(r). Then 

fer) = x2re - xr . ( 16.84) 
The functionf(r) is the distribution function for the charge in the atmosphere. A plot of 
fer) versus r is shown in Fig. 16.6 . The maximum in the curve appears at rmax = 1/x, the 
Debye length. In an electrolyte of a symmetrical valence type, 1 : 1, 2 : 2, and so on, we 
may say thatf(r) represents the probability per unit width dr of finding the balancing ion 
in the spherical shell at the distance r from the central ion. In solutions of high ionic 
strength the mate to the central ion is very close, 1/x is small ; at lower ionic strengths 1/x 
is large and the mate is far away. 

1 6 . 8 E Q U I LI B R I A  I N  I O N I C  S O L UTI O N S  

From the Debye-Hlicke1 limiting law, Eq. ( 16.78), we find a negative value of In Y ± , 
which confirms the physical argument that the interaction with other ions lowers the 
Gibbs energy of an ion in an electrolytic solution. This lower Gibbs energy means that 
the ion is more stable in solution than it would be if it were not charged. The extra stability 
is measured by the term, kT In y ± , in the expression for the chemical potential. Now we 
examine the consequences of this extra stability in two simple cases : the ionization of a 
weak acid, and the solubility of a sparingly soluble salt. 

Consider the dissociation equilibrium of a weak acid, HA : 

HA � H+ + A- . 

The equilibrium constant is the quotient of the activities, 

By definition, we have 

so that 

K = aH+aA - . aHA 

K = (y + y -) mH+ mA- = y� mH + mA- , YHA mHA YHA mHA 

(16.85) 

where we have used the relation, Y + Y _ = y� . If the total molality of the acid is m and the 
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degree of dissociation is IX, 

Then, 
mBA = (1 - lX)m. 

Y2 1X2m K = --'...::±'------YBA(1 - IX) (16 .86) 

If the solution is dilute, we may set YBA = 1, since HA is an uncharged species. Also if K 
is small, 1 - IX � 1 .  Then, Eq. (16 .86) yields 

IX = (K) 1 /2 �. (16 .87) m Y±  
If we ignored the ionic interactions, we would set Y ±  = 1 ,  and calculate lX a  = (K/m) 1 /2 . 
Then Eq. (16 .87) becomes 

lXa 
IX = -. Y ±  (16 .88) 

From the limiting law, Y ± < 1 ;  hence the correct value of IX given by Eq. (16 .88) is greater 
than the rough value lXa , which ignored the ionic interactions. The stabilization of the 
ions by the presence of the other ions shifts the equilibrium to produce more ions ; hence 
the degree of dissociation is increased. 

If the solution is dilute enough in ions, Y± can be obtained from the limiting law, 
Eq. (16 .82), which for a 1 : 1 electrolyte can be written as 

where the ionic strength Ie = lXa m. (We have ignored the difference between c and m.) 
The value of lXa can be used to compute In since IX and lXa are not greatly different. Using 
this expression, Eq. (16 .88) becomes 

IX = lXa e1 . 1 7 (�om) 1 /2 = lXa [1 + 1 . 17(lXa m)1 /2] . 
In the last equality, the exponential has been expanded in series .  The computation for 
0. 1 molal acetic acid, K = 1 .75 X 10 - 5 , shows that the degree of dissociation is increased 
by about 4 %. The effect is small because the dissociation does not produce many ions. 

If a large amount of an inert electrolyte, one that does not contain either H + or A -
ions, is added to the solution of the weak acid, then a comparatively large effect on the 
dissociation is produced. Consider a solution of a weak acid in 0.1 m KCI, for example. 
The ionic strength of this solution is too large to use the limiting law, but the value of Y ± . 
can be estimated from Table 16 . 1 .  The table shows that for 1 : 1 electrolytes the value of 
Y ± in 0. 1 molal solution is about 0. 8 .  We may assume that this is a reasonable value for 
H+ and A- ions in the 0. 1 molal KCI solution. Then by Eq. (16 .88), 

lXa 
IX = 

0.8 
= 1 .251Xa · 

Thus the presence of a large amount of inert electrolyte exerts an appreciable influence, 
the salt effect, on the degree of dissociation. The salt effect is larger the higher the concen
tration of the electrolyte. 

Consider the equilibrium of a slightly soluble salt, such as silver chloride, with its 
lOns : 

AgCI(s) � Ag+ + Cl- . 
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The solubility product constant is 

Ksp = aAg + aCl - = (y+ m+ )(y _ m_ ). 
If S is the solubility of the salt in moles per kilogram of water, then m+ = m_ = s, and 

K 2 2 sp = y ± s . 

If So is the solubility calculated ignoring ionic interaction, then s5 = Ksp , and we have 

So 
S = - , y ±  (16.89) 

which shows that the solubility is increased by the ionic interaction. By the same reasoning 
as we used in discussing the dissociation of a weak acid, we can show that in 0. 1 molal solu
tion of an inert electrolyte such as KN03 the solubility would be increased by 25 %. This 
increase in solubility produced by an inert electrolyte is sometimes called " salting in." 
The effect of an inert electrolyte on the solubility of a salt such as BaS04 would be much 
larger because of the larger charges on the Ba 2 + and SO� - ions. The salt effect on solubility 
produced by an inert electrolyte should not be confused with the decrease in solubility 
effected by an electrolyte that contains an ion in common with the sparingly soluble salt. 
In addition to acting in the opposite sense, the " common ion " effect is enormous compared 
to the effect of an inert electrolyte. 

Q U ESTI O N S  

16.1 What is the activity ? How is it related to, but distinguished from, the concentration? 
16.2 What is the direction of the influence of nonideality (for example, positive deviations from 

Raoult's law) on (a) freezing-point depression, (b) boiling-point elevation, and (c) osmotic 
pressure compared to the ideal solution case ? 

16.3 Why do deviations from ideality begin to occur at much lower concentrations for electrolyte 
solutions than for nonelectrolyte solutions ? 

16.4 Discuss and interpret the trends of the Debye length with increasing (a) temperature, (b) dielectric 
constant, and (c) ionic strength. 

16.5 What is the correct order of the following inert electrolytes in terms of increasing enhancement 
of acetic acid dissociation : 0.01 molal NaCI, 0.001 molal KBr, 0.01 molal CuCI2 ? 

P R O B LE M S  

16.1 The apparent value of K I in sucrose (C1 2H2201 1) solutions of various concentrations 

m/(moljkg) 0 . 10 0.20 0.50 1 .00 1 . 50 2.00 

K I/(K kg/mol) 1 . 88  1 .90 1 .96 2.06 2 . 17  2.30 

a) Calculate the activity of water in each solution. 
b) Calculate the activity coefficient of water in each solution. 
c) Plot the values of a and y against the mole fraction of water in the solution. 
d) Calculate the activity and the activity coefficient of sucrose in a 1 molal solution. 
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16.2 The Henry's law constant for chloroform in acetone at 35 . 17  °C is 0.199 if the vapor pressure is 
in atm, and concentration of chloroform is in mole fraction. The partial pressure of chloro
form at several values of mole fraction is : 

XCHC13 0.059 0 .123 0. 1 85  

pCHcl,/mmHg 9.2 20.4 3 1 . 9  

I f  a = 1'X, and l' -> 1 as  x -> 0 ,  calculate the values of  a and l' for chloroform in  the three solutions. 
16.3 At the same concentrations as in Problem 16.2, the partial pressures of acetone are-323.2, 

299.3, and 275.4 mmHg, respectively. The vapor pressure of pure acetone is 344.5 mmHg. 
Calculate the activities of acetone and the activity coefficients in these three solutions (a = 
1'x ; 1' -> l as x ->  1) . 

16.4 The liquid-vapor equilibrium in the system, isopropyl alcohol-benzene, was studied over a 
range of compositions at 25 °C. The vapor may be assumed to be an ideal gas. Let Xl be the 
mole fraction of the isopropyl alcohol in the liquid, and Pl be the partial pressure of the alcohol 
in the vapor. The data are : 

Xl 1 .000 0.924 0.836 

pdmmHg 44.0 42.2 39.5 

a) Calculate the rational activity of the isopropyl alcohol at Xl = 1 .000, Xl = 0.924, and 
Xl = 0.836. 

b) Calculate the rational activity coefficient of the isopropyl alcohol at the three compositions 
in (a). 

c) At Xl = 0.836 calculate the amount by which the chemical potential of the alcohol differs 
from that in an ideal solution. 

16.5 A regular binary liquid solution is defined by the equation 
fli = fl� + R T In Xi + w(1 - X;)2 , 

where w is a constant. 
a) What is the significance of the function flr ?  
b)  Express In 1'i i n  terms o f  w ;  1'i i s  the rational activity coefficient. 
c) At 25 °C, w = 324 llmol for mixtures of benzene and carbon tetrachloride. Calculate y for 

CCl4 in solutions with XCCl4 = 0, 0.25, 0.50, 0.75, and 1 .0. 
16.6 The freezing point depression of solutions of ethanol in water is given by 

ml(moljkg H20) 

0.074 23 

0.095 1 7  

0. 109 44 

elK 

0. 1 37 08 

0 . 175 52 

0.201 72 

ml(moljkg H20) 

0. 134 77 

0. 166 68 

0.230 7 

elK 

0.248 21  

0.306 54 

0.423 53 

Calculate the activity and the activity coefficient of ethanol in 0. 10 and 0.20 molal solution. 



16.7 The freezing-point depression of aqueous solutions of NaCI is : 

m/(moljkg) 0.001 0.002 0.005 0.01 

e/K 0.003676 0.007322 0.0 18 17  0.03606 

a) Calculate the value of j for each of these solutions. 

0.02 

0.07144 
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0.05 0. 1 

0. 1 758 0.3470 

b) Plot jim versus m, and evaluate - logl O Y ± for each solution. K f = 1 .8597 K kg/mol. 
From the Debye-Hiickel limiting law it can be shown that Sg ·00 1 Wm) dm = 0.0226. [G. 
Scatchard and S. S. Prentice, l.A.C.S., 55 : 4355 (1933).J 

16.8 From the data in Table 16 . 1 ,  calculate the activity of the electrolyte and the mean activity of 
the ions in 0. 1 molal solutions of 
a) KCI, b) H2S04 , c) CuS04 , d) La(N03)3 , e) IniS04)3 ' 

16.9 a) Calculate the mean ionic molality, m± , in 0.05 molal solutions of Ca(N03ho NaOH, 
MgS04 , AICI3 · 

b) What is the ionic strength of each of the solutions in (a) ? 
16.10 Using the limiting law, calculate the value of y ± in 10- 4 and 10- 3 molal solutions of HCI, 

CaCI2 , and ZnS04 at 25 °C. 
16. 1 1  Calculate the values of l/x at 25 °C, in 0.01 and 1 molal solutions of KBr. For water, fr = 78 .54. 
16.12 a) What is the total probability of finding the balancing ion at a distance greater than l/x from 

the central ion ? 
b) What is the radius of the sphere around the central ion such that the probability of finding 

the balancing ion within the sphere is 0.5 ?  
16.13 At 25 °C the dissociation constant for acetic acid i s  1 .75 x 10- 5 . Using the limiting law, calculate 

the degree of dissociation in 0.010, 0. 10, and 1 .0 molal solutions. Compare these values with the 
value obtained by ignoring ionic interaction. 

16.14 Estimate the degree of dissociation of 0. 10  molal acetic acid, K = 1 .75 X 10- 5 , in 0.5 molal 
KCl, in 0.5 molal Ca(N03)2 , and in 0.5 molal MgS04 solution. 

16.15 For silver chloride at 25 °C, K,p = 1 .56 X 10- 1 0. Using the data in Table 16 . 1 ,  estimate the 
solubility of AgC! in 0.001 ,  0.0 1 ,  and 1.0 molal KN03 solution. Plot log1 0 s against m1/2 • 

16.16 Estimate the solubility of BaS04 , K,p = 1 .08 X 10- 1 0, in (a) 0. 1 molal NaBr and (b) 0 . 1  molal 
Ca(N03)2 solution. 





1 7  
Eq u i l i b r i a  i n  
E l ectroc h e m i ca l  C e l l s  

1 7 . 1  I NT R O D U CTi O N  

An electrochemical cell is a device that can produce electrical work in the surroundings. 
For example, the commercial dry cell is a sealed cylinder with two brass connecting 
terminals protruding from it. One terminal is stamped with a plus sign and the other with a 
minus sign. If the two terminals are connected to a small motor, electrons flow through the 
motor from the negative to the positive terminal of the cell. Work is produced in the sur
roundings and a chemical reaction, the cell reaction, occurs within the cell. By Eq. (10 . 14), 
the electrical work produced, w,,1 ,  is less than or equal to the decrease in the Gibbs 
energy of the cell reaction, - !1G. 

(17 . 1 )  
Before continuing the thermodynamic development we pause to look at  some fundamentals 
of electrostatics. 

1 7 . 2  D E F I N IT I O N S  

The electric potential of a point in space is defined as the work expended in bringing a unit 
positive charge from infinity, where the electric potential is zero, to the point in question. 
Thus if <P is the electric potential at the point and W the work required to bring a charge Q 
from infinity to that point, then 

<P = 
w. 
Q 

( 17.2) 

Similarly, if <PI and <P2 are the electric potentials of two points in space, and Vfi and W2 
are the corresponding quantities of work required to bring the charge Q to these points, 
then 

(17 .3) 



372 Equ i l i b r ia  in E l ectrochemica l  Ce l l s  

where W1 2 is the work to bring Q from point 1 to point 2. This relation exists since the 
electric field is conservative. Thus the same quantity of work must be expended to bring Q 
to point 2, whether we bring it directly, W2 , or bring it first to point 1 and then to point 2, 
JVi + W12 · Therefore W1 2 = W2 - l'l't, and, from Eq. (17 .2), 

¢ _ ¢ _ 
W12 ( 17.4) 2 1 - Q . 

The difference in electric potential between two points is the work expended in taking a 
unit positive charge from point 1 to point 2. 

Applying Eq. (17. ) to the transfer of an infinitesimal quantity of charge, we obtain the 
element of work expended on the system. 

l'l't2 = -dvv"l = c3' dQ, (17 .5) 

where c3' has been written for the potential difference ¢2 - ¢v and dvv"l is the work 
produced. 

1 7 . 3  T H E C H E M I C A L  P OT E NTIAL O F  C H A R G E D  S P E C I ES 

The escaping tendency of a charged particle, an ion or an electron, in a phase depends on the 
electric potential of that phase. Clearly, if we impress a large negative electric potential on 
a piece of metal, the escaping tendency of negative particles will be increased. To find the 
relation between the electric potential and the escaping tendency, the chemical potential, 
we consider a system of two balls M and M' of the same metal. Let their electric potentials 
be ¢ and ¢' . If we transfer a number of electrons carrying a charge, dQ, from M to M', the 
work expended on the system is given by Eq. (17 .4) : -dvv"l = (¢' - ¢) dQ. The work 
produced is dvv"l . If the transfer is done reversibly, then by Eq. ( 10. 1 3), the work produced 
is equal to the decrease in Gibbs energy of the system ; dWeI = - dG, so that 

dG = (¢' - ¢) dQ. 
But, in terms of the chemical potential of the electrons, fie - , if dn moles of electrons were 
transferred, we have 

dG = fi� - dn � fie - dn. 
The dn moles of electrons carry a negative charge dQ = -F dn, where F is the charge per 
mole of electrons, F = 96 484.56 C/mol. Combining these two equations yields, after 
division by dn, 

fi� - - fie - = -F(4J' - 1» ,  
which rearranges to 

fie - = fi� - + F¢' - F¢. 

Let f1.e - be the chemical potential of the electrons in M when ¢ is zero ; then, f1.e - = 
fi� - + F¢'. Subtracting this equation from the preceding one, we obtain 

fie - = f1.e - - F¢. (17 .6) 

Equation (17 .6) is the relation between the escaping tendency of the electrons, fie - , 
in a phase and the electrical potential of the phase, ¢. The escaping tendency is a linear 
function of ¢. Note that Eq. (17 .6) shows that if ¢ is negative, fie - is larger than when 1> is 
positive. 
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By a similar argument, it may be shown that for any charged species in a phase 

fi; = Ji; + z; Fcp, (17.7) 
where Z; is the charge on the species. For electrons, Ze - = - 1 ,  so Eq. (17 .7) would reduce to 
Eq. (17 .6). Equation (17.7) divides the chemical potential fi; of a charged species into two 
terms. The first term, Ji; , is the " chemical " contribution to the escaping tendency. The 
chemical contribution is produced by the chemical environment in which the charged 
species exists, and is the same in two phases of the same chemical composition since it is a 
function only of T, p, and composition. The second term, ZiFc/J, is the " electrical " con
tribution to the escaping tendency ; it depends on the electrical condition ofthe phase that is 
manifested by the value of c/J. Because it is convenient to divide the chemical potential into 
these two contributions, i1; , the electrochemical potential, has been introduced to preserve 
Ji; for the ordinary chemical potential. 

1 7 .3 . 1 Convent i o n s  for  t h e  C h e m i c a l  
Potent i a l  of  C h a rged S pec ies 

I O N S  i N  AQU E O U S  SO LUTI O N  

For ions in aqueous solution we  assign c/J = 0 in the solution ; then fi ;  = Ji; , and we 
can use the ordinary Jii for these ions. This assignment is justified by the fact that the 
value of c/J in the electrolytic solution will drop out of our calculations ; we have no way 
of determining its value, and so it might as well be zero and save us a little algebraic labor. 

ElECTR O N S  IN M ETALS 

In the metallic parts of our system we cannot throw away the electrical potential, since 
we often compare the electrical potentials of two different wires of the same composition 
(the two terminals of the cell). However, within a single piece of a metal it is evident that 
the division of the chemical potential into a " chemical " part and an " electrical " part is a 
purely arbitrary one, justified only by convenience. Since the " chemical " part of the 
escaping tendency arises from the interactions of the electrically charged particles that 
compose any piece of matter, there is no way to determine in a single piece of matter 
where the " chemical " part leaves off and the " electrical " part begins. 

To make the arbitrary division of fii as convenient as possible, we assign the " chemical " 
part of the fie - the most convenient value, zero, in every metal. Thus in every metal, by 
convention, 

f.1e - = o. (1 7.8) 

Then, for electrons in every metal, Eq. (17.6) becomes 

fie - = - Fc/J. (1 7.9) 

I O N S  IN P U R E  M ETALS 

The arbitrary definition in Eq. (17.9) simplifies the form of the chemical potential of the 
metal ion in a metal. Within any metal there exists an equilibrium between metal atoms 
M, metal ions MZ + , and electrons : 

M � MZ+ + ze - .  
The equilibrium condition is 
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Using Eq. ( 17.7) for /1Mz + and Eq. ( 17.9) for /1e - , we obtain 11M = I1MZ + + zF¢ - zF¢, 
or 11M = I1MZ + ' For a pure metal at 1 atm and 25 DC, we have 11M = I1Mz + ; by our earlier 
convention that 110 = 0 for elements under these conditions, we obtain 

(17 . 10) 
The " chemical " part of the escaping tendency of the metal ion is zero in a pure metal under 
standard conditions ; then using Eq. (17 .7), 

( 17. 1 1) 
Equations ( 17.9) and (17. 1 1) are the conventional values of the chemical potential of the 
electrons and the metal ions within any pure metal. 

TH E STA N DA R D  H Y D R O G E N  ELECT R O D E  

A piece of  platinum in  contact with hydrogen gas a t  unit fugacity and an acid solution in 
which the hydrogen ion has unit activity is called a standard hydrogen electrode (SHE). 
The electric potential of the SHE is assigned the conventional value, zero. 

¢'tJ + , H2 = ¢SHE = O. ( 17. 12) 
As we will show later, this choice implies that the standard Gibbs energy of hydrogen ion 
in aqueous solution is zero. 

11'tJ.+ = o. ( 17. 1 3) 
This gives us a reference value against which we can measure the Gibbs energy of other 
ions in aqueous solution. 

SUMMARY OF CONVENTIONS AND STAN DAR D STATES 

Standard state 
Generalform 
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1 7 . 4  C E l l  D IAG RA M S  

The electrochemical cell is represented by a diagram that shows the oxidized and reduced 
forms of the electro active substance, as well as any other species that may be involved in 
the electrode reaction. The metal electrodes (or inert metal collectors) are placed at the ends 
of the diagram ; insoluble substances and/or gases are placed in interior positions adjacent 
to the metals, and soluble species are placed near the middle of the diagram. In a complete 
diagram the states of aggregation of all the substances are described and the concentra
tions or activities of the soluble materials are given. In an abbreviated diagram some or all 
of this information may be omitted if it is not needed and if no misunderstanding islikely. 
A phase boundary is indicated by a solid vertical bar ; a single dashed vertical bar indicates 
a junction between two miscible liquid phases ; a double dashed vertical bar indicates a 
junction between two miscible liquid phases at which the junction potential has been 
eliminated. (A salt bridge, such as an agar jelly saturated with KCI, is often used between 
the two solutions to eliminate the junction potential.) Commas separate different soluble 
species in the same phase. The following examples illustrate these conventions. 

Complete 
Abbreviated 

Complete 
Abbreviated 

Complete 
Abbreviated 

Ptl(s) IZn(s) I Zn2 + (azn2 + = 0.35) i i Cu2 + (aCu2 + = 0.49) I Cu(s) I Ptu(s) 
Zn 1 Zn2 + i i Cu2 + I Cu 

Pt l Hig, p = 0.80) I H2S04(aq, a = 0.42) I Hg2S04(S) I Hg(l) 
Pt I H2 1 H2S04(aq) I Hg2S04(S) I Hg 

Ag(s) I AgCl(s) I FeCl2(m = 0.540), FeC13(m = 0.22 1) I Pt 
Ag I AgCI(s) I FeCI2(aq), FeC13(aq) I Pt 

1 7 . 5  T H E DAN I E l l  C E l l  

Consider the electrochemical cell, the Daniell cell, shown in Fig. 17 . 1 .  I t  consists o f  two 
electrode systems-two half-cells-separated by a salt bridge, which prevents the two 
solutions from mixing but allows the current to flow between the two compartments. Each 
half-cell consists of a metal, zinc or copper, immersed in a solution of a highly soluble salt 
of the metal such as ZnS04 or CUS04 '  The electrodes are connected to the exterior by 

F i g u re 1 7 . 1  The Dan ie l l  cel l .  
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two platinum leads. The cell diagram is 

Pt.(s) I Zn(s) 1 Zn2 + (aq) ! !  Cu2 + (aq) 1 Cu(s) 1 Ptn(s). 

Assume that the switch in the external circuit is open and that the local electrochemical 
equilibria are established at the phase boundaries and within the bulk phases. At the Ptl 1 Zn 
and the Cu 1 Ptn interfaces the equilibrium is established by the free passage of electrons 
across the interface. The equilibrium conditions at these interfaces are 

'ue - (PtJ = 'ue - (Zn) and 'ue - (Cu) = 'ue - (Ptn). ( 17. 14) 
Using Eq. ( 17 .9), we obtain 

( 17. 1 5) 
where ¢I and ¢n are the potentials of the two pieces of platinum and ¢Zn is the potential of 
the zinc electrode in contact with a solution containing zinc ion. The electric potential 
difference of any cell (the cell potential) is defined by 

t! = ¢right - ¢left · 
For this case, the potential of the cell is 

t! = ¢n - ¢I = ¢cu - ¢Zn ' 

(17 . 16) 

(17 . 1 7) 
The difference ¢n - ¢I is measurable since it is a difference of potential between two phases 
having the same chemical composition (both are platinum). 

Suppose we connect the two platinum wires through an ammeter to a small motor : 
we observe that ( 1) some zinc dissolves, (2) some copper is deposited on the copper elec
trode, (3) electrons flow in the external circuit from the zinc to the copper electrode, and (4) 
the motor runs. The changes in the cell can be summarized as : 

At the left electrode 
In the external circuit 
At the right electrode 

Zn(s) � Zn2 + (aq) + 2e - (Zn) ; 
2e - (Zn) � 2e - (Cu) ; 

Cu2 + (aq) + 2e - (Cu) -------+ Cu(s). 

The overall transformation is the sum of these changes : 

Zn(s) + Cu2 + (aq) � Zn2 + (aq) + Cu(s) . 
This chemical reaction is the cell reaction ; I1G for this reaction is 

I1G = I1Go + RT In 
aZn2 +

. 
aCu2 + 

( 17. 1 8) 

The work expended on the system to move the electrons from the zinc electrode to the 
copper electrode is - w"l , where 

- w"l = Q(¢n - ¢J = - 2Ft!, 

in which Eq. (1 7. 1 7) has been used for ¢n - ¢I ' The work produced is 
w"l = 2Ft!. 

Using this value in Eq. ( 17 . 1 )  for w"i > it becomes 

2Ft! � - I1G, 
where I1G is the change in Gibbs energy for the cell reaction. 

(17 . 1 9) 

(17 .20) 
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If the transformation is done reversibly, the work produced is equal to the decrease in 
the Gibbs energy : w,,1 = - !::J.G. We have then, 

2FC = - !::J.G, 

which in vi�w of Eq. (17 . 1 8) becomes 

2FC = - !::J.Go - RT In 
aZn2 + . aCu2+ 

(17 .21) 

If both electrodes are in their standard states, aZn2 + = 1 and aCu2 + = 1, the cell potential 
is the standard cell potential, fro  Thus, after we divide by 2F, the equation becomes 

C = Co _ RT 
In 

aZn2 + 
2F aCu2 + ' 

(17 .22) 

which is the Nernst equation for the cell. This equation relates the cell potential to a 
standard value and the proper quotient of activities of the substances in the cell reaction. 

1 7 . 6 G I B B S E N E R GY A N D T H E C E LL POTENTIAL 

The result obtained for the Daniell cell in  Eq. ( 17.20) i s  quite general. I f  the cell reaction as 
written involves n electrons rather than two electrons, the relation is 

nFC � - !::J.G. ( 17.23) 
Equation ( 17.23) is the fundamental relation between the cell potential and the Gibbs 
energy change accompanying the cell reaction. 

Observation shows that the value of C depends on the current drawn in the external 
circuit. The limiting value of C measured as the current goes to zero is called the electro
motive force of the cell (the cell emf) or the reversible cell potential, Crev : 

lim C = Crev • 1 -+ 0 
Then Eq. ( 17. 23) becomes 

( 17.24) 
We see that the cell emf is proportional to ( - !::J.G/n), the decrease in Gibbs energy of the cell 
reaction per electron transferred. The cell emf is therefore an intensive property of the system ; 
it does not depend on the size ofthe cell or on the coefficients chosen to balance the chemical 
equation for the cell reaction. 

To avoid a cumbersome notation we will suppress the subscript, rev, on the cell 
potential ; we do so with the understanding that the thermodynamic equality (as distinct 
from the inequality) holds only for the reversible cell potentials (cell emfs). 

The spontaneity of a reaction can be judged by the corresponding cell potential. 
Through Eq. ( 17.24) it follows that if!::J.G is negative, C is positive. Thus we have the criteria : 

I1G & Cell reaction is 

+ Spontaneous 
+ Nonspontaneous 
0 0 At equilibrium 
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1 7 . 7 T H E N E R N ST EQUATI O N  

For any chemical reaction the reaction Gibbs energy is written 

I1G = I1Go + RT In Q, (1 7.25) 

where Q is the proper quotient of activities. Combining this with Eq. (17.24), we obtain 

- nFIff = I1Go + RT In Q. 
The standard potential of the cell is defined by 

- nFlffo = I1Go. 
Introducing this value of I1Go and dividing by - nF, we obtain 

Iff = IffO - RT 
In Q ' 

nF ' 

° 2.303 RT 1 Q ' Iff = Iff - nF og lO , 

0.059 16 V Iff = Iffo - logl o Q n (at 25 0e). 

(17.26) 

(17.27a) 

(17 .27b) 

( 17.27c) 

Equations (17.27) are various forms of the Nernst equation for the cell. The Nernst 
equation relates the cell potential to a standard value, Iffo, and the activities of the species 
taking part in the cell reaction. Knowing the values of IffO and the activities, we can cal
culate the cell potential. 

1 7 .8 T H E H Y D R O G E N  E L E CT R O D E  

The definition of the cell potential requires that we label one electrode as the right-hand 
and the other as the left-hand electrode. The cell potential is defined as in Eq. ( 17. 1 6) by 

Iff = rPright - rPleft · 

It is customary, but not necessary, to place the more positive electrode in the right-hand 
position. As we pointed out, this cell potential is always measurable as a difference in 
potential between two wires (for example, Pt) having the same composition. The measure
ment also establishes which electrode is positive relative to the other ; in our example, the 
copper is positive relative to the zinc. It does not, however, yield any hint as to the absolute 
value of the potential of either electrode. It is useful to establish an arbitrary zero of poten
tial ; we do this by assigning the value zero to the potential of the hydrogen electrode in its 
standard state. 

The hydrogen electrode is illustrated in Fig. 1 7.2. Purified hydrogen gas is passed over 
a platinum electrode which is in contact with an acid solution. At the electrode surface the 
equilibrium 

H + (aq) + e - (pt) � tRig) 

is established. The equilibrium condition is the usual one : 
- 1 f.1H+ (aq) + f.1e - (p1) = Zf.1H2(g) · 

Using Eq. (17.9) for [ie - (Pt) and the usual forms of f.1H+ (aq) and f.1H2(g) we obtain 

f.1i'I +  + RT In aH+  - FrPW/H2 = tf.1i'I2 + tRT In !, 
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F i g u re 1 7 .2  The  hyd rogen e lectrode.  

where j is the fugacity of H2 and aH+ is the activity of the hydrogen ion in the aqueous 
solution. Then 

o 1 0 RT j l /2 
A. _ 

J.LH + - '2J.LH2 
_ - In - . 'l'H+ /H2 - F F aH + (17.28) 

If the fugacity of the gas is unity, and the activity of H+ in solution is unity, the electrode is 
in its standard state, and the potential is the standard potential, 4>'H + /H2 • Letting j = 1 and 
aH + = 1 in Eq. ( 17.28), we obtain 

since J.L'H2 = O. Subtracting Eq. (17.29) from Eq. ( 17.28) yields 

o RT j l /2 
4>H + /H2 = 4>H + /H2 - -F In -, aH + 

( 17.29) 

(17 .30) 

which is the Nernst equation for the hydrogen electrode ; it relates the electrode potential 
to aH + and f. Now the electrons in platinum of the standard hydrogen electrode are in a 
definite standard state. We choose the standard state of zero Gibbs energy for electrons as 
this state in the SHE. Since, by Eq. (1 7.9), ile - = - F4>, we have 

ile - (SHE) = 0 and 4>'H + /H2 = O. ( 17 . 3 1 ) 
The Gibbs energy of the electrons in any metal is measured relative to that in the stan'dard 
hydrogen electrode. The assignment in Eq. (17. 3 1 )  yields the conventional zero of Gibbs 
energy for ions in aqueous solution. Using Eq. ( 17. 3 1 )  in Eq. ( 17.29), we obtain 

J.L'H + = O. (17 .32) 
Standard Gibbs energies of other ions in aqueous solution are measured relative to that of 
the H+ ion, which has a standard Gibbs energy equal to zero. 

The Nernst equation, Eq. ( 17.30), for the hydrogen electrode becomes 

RT j l /2 
4>H + /H2 = - - In - . (17 .33) F aH + 
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Note that the argument of the logarithm is a proper quotient offugacity and activity for the 
electrode reaction if the presence of the electrons is ignored in constructing the quotient. 
From Eq. (17.33) we can calculate the potential, relative to SHE, of a hydrogen electrode 
at which iH2 and aH + have any values. 

1 7 . 9 E LE CT R O D E  P OT E NTIALS 

Having assigned the hydrogen electrode a zero potential, we next compare the potentials 
of all other electrode systems to that of the standard hydrogen electrode. For example, the 
potential of the cell 

PtI I H2(g, j= l) I H + (aH + = 1) i i Cu2 + (acu2 + ) I Cu I Ptn 
is designated by rff Cu2 + ICu : 

rffcu2 + /Cu = <Pn - <PI = <Pcu - <PSHE = <Pcu · (17. 34) 

Note that rff Cu2 + /Cu is equal to the conventional potential of the copper electrode, <Pcu . The 
cell reaction is 

H2(f = 1) + Cu2 + (acu2 + ) :;:::::=:=:::' 2H + (aH +  = 1) + Cu. 

The equilibrium at the SHE is : 

Hii = 1) :;:::::=:=:::' 2H+ (aH+  = 1) + 2eSHE 

( 17. 35) 

(17.36) 

All of the species in this reaction have zero Gibbs energy by our conventional assignments. 
If we subtract the equilibrium in Eq. (17 .36) from that in Eq. (17 .35), we obtain 

(1 7.37) 

which is simply a shorthand way of writing Eq. (17 .35). Equation (17 .37) is called a half-cell 
reaction. Since the potential ofthis cell depends only on the conventional Gibbs energies of 
the copper and the copper ion, it is called the half-cell potential, or the electrode potential of 
the Cu2 + I Cu electrode. 

This half-cell potential is related to the Gibbs energy change in reaction (17 .37) by 

2Frff = - .1G ; 

keep in mind that for electrons in SHE the Gibbs energy is zero . Using Eq. ( 17.37), the 
Nernst equation for the electrode becomes 

.@ 0 RT 1 1 
(O Cu2 + /Cu = rffcu2 + ICu - -2 n -- . F aCu2 + 

(17 .38) 

By measuring the cell potential at various concentrations of Cu 2 + , we can determine 
rffeu2 + ICu = <Peu2 + ICu ' This standard potential is tabulated along with the standard poten
tials of other half-cells in Table 17. 1 .  Such a table of half-cell potentials, or electrode poten
tials, is equivalent to a table of standard Gibbs energies from which we can calculate values 
of equilibrium constants for chemical reactions in solution. Note that the standard poten
tial is the potential of the electrode when all of the reactive species are present with unit 
activity, a = 1 .  

The situation may be  summarized a s  follows : if the half-cell reaction i s  written with the 
electrons in SHE on the reactant side, any electrode system can be represented by 

oxidized species + neSHE :;:::::=:=:::' reduced species. 
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Tab le  1 7. 1  
Standard e lectrode potent ia ls  a t  2 5  · C  

Electrode reaction 

K+ + e- = K 
Na+ + e- = Na 
H2 + 2e- = 2H
AP + + 3e- = Al 
Zn(CN)� - + 2e- = Zn + 4CN
ZnO� - + 2H20 + 2e - = Zn + 40H
Zn(NH3)� + + 2e- = Zn + 4NH3 
Sn(OH)� - + 2e- = HSnOz + H20 + 30H
Fe(OHh + 2e- = Fe + 20H-
2HzO + 2e- = H2 + 20H-
Fe(OHh + 3e- = Fe + 30H-
Zn2 + + 2e - = Zn 
AgzS + 2e - = 2Ag + S2 -
Fez + + 2e- = Fe 
Biz03 + 3H20 + 6e - = 2Bi + 60H
PbS04 + 2e - = Pb + SO�
Ag(CN)z + e- = Ag + 2CN-
Ni2 + + 2e- = Ni 
AgI + e:;;"..= Ag + 1 -

Sn2 + + 2e - = Sn 
Pb2 + + 2e- = Pb 
Cu(NH3)�+ + 2e - = Cu + 4NH3 
Fe3 + + 3e - = Fe 
2H+ + 2e- = H2 
AgBr + e- = Ag + Br -
HgO(r) + H20 + 2e- = Hg + 20H
Sn4+ + 2e - = Sn2 + 
AgCl + e- = Ag + Cl-
Hg2Cl2 + 2e- = 2Hg + 2CI-
Cu2 + + 2e- = Cu 
Ag(NH3)t + e- = Ag + 2NH3 
HgZS04 + 2e- = 2Hg + SO�
Fe3 + + e- = Fez + 
Ag+ + e- = Ag 
O2 + 4H+ + 4e- = 2H20 
PbOz + SO�- + 4H+ + 2e- = PbS04 + 2H20 
03 + 2H+ + 2e- = O2 + H20 

- 2.925 
- 2.714 
- 2.25 
- 1 .66 
- 1 .26 
- 1 .2 16  
- 1 .03 
- 0.90 
- 0.877 
- 0.828 
- 0.77 
- 0.763 
- 0.69 
- 0.440 
- 0.44 
- 0.356 
- 0. 3 1  
- 0.250 
- 0. 1 5 1  
- 0. 1 36 
- 0. 126 
- 0. 12 
- 0.036 

0.000 
+ 0.095 
+ 0.098 
+ 0. 1 5  
+ 0.222 
+ 0.2676 
+0.337 
+ 0.373 
+ 0.6 15 1  
+ 0.771 
+ 0.7991 
+ 1 .229 
+ 1 .685 
+ 2.07 

Values in this table are printed by permission from W. M .  Latimer, The 
Oxidation States of the Elements and Their Potentials in Aqueous Solution, 
2d ed. Englewood Cliffs, N.J . : Prentice-Hall, 1 952. 

Then the following relations obtain : 
iff = r/J ;  

I1G = - nFiff ; 

cp 
= 

cpo _ RT 
In Q .  

nF 

(17 .39) 

(17.40) 

( 1 7.41)  
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III EXAMPLE 1 7 . 1  For the copper ion/copper electrode we have explicitly 

2F¢eu2 + /cu = _/).Go = - (fleu - fleu2 + ) 
Since fleu = 0, this becomes 

Since ¢eu2 + /cu = + 0.337 V, we find 

fleu2 + = 2(96 484 C/mol) ( + 0.337 V) = 65.0 X 103 J/mol = 65 .0 kJ/moL 

III EXAMPLE 1 7 . 2  For the Sn4 +/Sn2 + electrode ¢Sn4 + /Sn2 + = 0. 1 5  V ; for the Sn2 +/Sn 
electrode ¢Sn2 + /Sn = - 0. 136 V. Calculate flsn4 + , flsn2 + , and ¢Sn4 + /Sn ' 
The reactions are : 

Sn4 + + 2 e 
Sn2 + + 2 e  Sn 

2F(O. l 5  V) = - (flsn2 + - flSn4 + ) 
2F( - 0. 1 36 V) = - (flsn - flsn2 +) 

The second equation yields : 

flSn2 + = 2(96 484 J/mol) ( - 0. 136  V) (10- 3 kJ/J) = -26.2 kJ/mol. 

The first equation yields : 

flSn4 + - flSn2 + = 2(96 484 C/mol) (0. 1 5  V) (1O - 3 kJ/J) = 29 kJ/mol. 
Then 

flSn4 + = 29 kJ/mol + flSn2 + = 29 - 26.2 = 3 kJ/mol. 

To find ¢Sn4 +/Sn ' write the half-cell reaction : 

Then 

and 

Sn4 + + 4 e - � Sn. 

4F ¢Sn4 + /Sn = - (flsn - flSn4 + ) = flSn4 + , 

o = 3000 J/mol = 8 ¢Sn4 + /Sn 4(96 484 C/mol) 
0.00 V. 

1 7 . 1 0  TE M P E RATU R E  D E P E N D E N C E  O F  T H E C E ll P OT E NTIAL  

By differentiating the equation, nF tf = -flG with respect to  temperature, we  obtain 

_ (a /). G) = /).S aT p 
, 

/).S 
nF (1 7 .42) 

If the cell does not contain a gas electrode, then since the entropy changes of reactions in 
solution are frequently rather small, less than 50 J/K, the temperature coefficient of the 
cell potential is usually of the order of 10- 4 or 10- 5 V/K. As a consequence, if only 
routine equipment is being used to measure the cell potential and the temperature 
coefficient is sought, the measurements should cover as wide a range of temperature as 
is feasible. 
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The value of!1S is independent oftemperature to a good approximation ; by integrating 
Eq. (17 .42) between a reference temperature To and any temperature T, we obtain 

!1S rff = rffTo + - (T - To) nF or 
!1S rff = rff2 5 'C + - (t - 25) nF 

where t is in 0c. The cell potential is a linear function of temperature. 

( 17.43) 

Through Eq. (17 .42), the temperature coefficient of the cell potential yields the value of 
!1S. From this and the value of rff at any temperature we can calculate I1H for the cell reac� 
tion. Since !1H = !1G + T !1S, then 

!1H = -nF[rff - T(;�)J . (17 .44) 

Thus, by measuring rff and (orffloT)p we can obtain the thermodynamic properties of the 
cell reaction, !1G, !1H, !1S. 

II EXAMPLE 1 7 . 3  For the cell reaction 
HgzClis) + Hi1 atm) ---> 2 Hg(l) + 2 H + (a = 1) + 2CI- (a = 1), 

$�9 8  = +0.2676 V and (orff °loT)p = - 3 . 19 x 10 - 4 V/K. 
Since n = 2, 

!1Go = -2(96 484 Cjmol) (0.2676 V) (10- 3 kJ/J) = - 51 .64 kJ/mol ; 
!1Ho = -2(96 484 C/mol) [0.2676 V - 298 . 1 5  K( - 3 . 1 9  x 10 - 4 V/K)] (10 - 3 kJ/J) 

= - 69.99 kJ/mol ; 
!1So = 2(96 484 Cjmol) ( - 3 . 1 9  x 10- 4 V/K) = - 6 1 .6 J/K mol. 

* 1 7 . 1 0 . 1  H eat Effects i n  the  O perat i o n  of a R evers i b l e  Ce l l 

In Example 17 .3 , we computed the !1HO for the cell reaction from the cell potential and its 
temperature coefficient. If the reaction were carried out irreversibly by simply mixing the 
reactants together, !1HO is the heat that flows into the system in the transformation by the 
usual relation, !1H = Qp . However, if the reaction is brought about reversibly in the cell, 
electrical work in the amount Wei. rev is produced. Then, by Eq. (9.4), the definition of !1S, 

Qp(rev) = T !1S. ( 17.45) 
Using Example 17.3 , we have Qp(rev) = 298 . 1 5  K( - 61 .6 J/K mol) = - 18 350 J/mol. Con
sequently, in the operation of the cell only 18 .35 kJ/mo} of heat flow to the surroundings, 
while if the reactants are mixed directly, 69.99 kJ/mol of heat pass to the surroundings. 
The !1Ho for the transformation is - 69.99 kJ/mol and is independent of the way the 
reaction is carried out. 

1 7 . 1 1 K I N D S  O F  E LECTR O D ES 

At this point we describe briefly some important kinds of electrodes, and present the half
cell reactions and the Nernst equation for each. 

1 7 . 1 1 . 1 Gas-Io n  E l ectrodes 

The gas-ion electrode consists of an inert collector of electrons, such as platinum or graphite, 
in contact with a gas and a soluble ion. The Hz l H + electrode, discussed in detail in Section 
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17 .8 , is one example. Another example is the chlorine electrode, Cl2 1 Cl - I graphite : 

CI2(g) + 2e - ;::::::::=::::: 2 CI- (aq) ¢ = ¢o -
RT 

In aEl - ( 17.46) 
2F PCb 

1 7 . 1 1 .2 M eta l l o n-M eta l E l ectrodes 

The electrode consists of a piece of the metal immersed in a solution containing the metal 
ion. The ZnH 1 Zn and CUH 1 Cu electrodes described earlier are examples. 

( 17.47) 

1 7 . 1 1 .3 M eta l-I nso l u b l e  Sa l t -An i o n  E lectrodes 

This electrode is sometimes called an " electrode of the second kind." It consists of a bar of 
metal immersed in a solution containing a solid insoluble salt of the metal and anions of the 
salt. There are a dozen common electrodes of this kind ; we cite only a few examples. 

The Silver-Silver Chloride Electrode. Cl - I AgCI(s) 1 Ag(s) : (Fig. 1 7 . 3) .  

AgCI( s)  + e - ;::::::::=::::: Ag( s) + Cl- (aq) ¢ = ¢o _ RT In aCl - ( 17.48) 
F 

The activity of Agel-does not appear in the quotient, since AgCI is a pure solid. Since the 
potential is sensitive to the concentration of chloride ion, it can be used to measure that 
concentration. The silver-silver chloride electrode is a very commonly used reference 
electrode. 

A number of commonly used reference electrodes based on mercury belong to this 
class of electrodes. 

The Calomel Electrode. A pool of mercury covered with a paste of calomel (mercurous 
chloride) and a solution of KCl. 

RT 2 
¢ = ¢o - - ln acl -

2F 

The Mercury-Mercuric Oxide Electrode . A pool of mercury covered with a paste of 
mercuric oxide and a solution of a base. 

HgO(s) + H20(l) + 2 e - ;::::::::=::::: Hg(l) + 2 0H- (aq) 

The Mercury-Mercurous Sulfate Electrode. A pool of mercury covered with a paste of 
mercurous sulfate and a solution containing sulfate. 

1 7 . 1 1 .4 " Oxidat ion-R ed u ct i o n " E l ectrodes 

° RT 
¢ = ¢ - 2F 

In asoJ -

Any electrode involves oxidation and reduction in its operation, but these electrodes have 
had that superfluous phrase attached to them. An oxidation-reduction electrode has an 
inert metal collector, usually platinum, immersed in a solution that contains two soluble 
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Ag wire 
� 
Age l  coating 

F i g u re 1 7 .3 S i lver-silver 
ch lor ide e lectrode .  

Pt wire -

Pt sheet 
or gauze 

- - - -- -

-- - --- - -

F i g u re 1 7 .4 The ferric-ferrous 
e lectrode .  

species in different states of oxidation. An example is the ferric-ferrous ion electrode 
(Fig. 17.4) : 

1 7 . 1 2 E QU I LI B R I U M  C O N STAN TS F R O M  
STA N DA R D  H A L F-C E L L  P OT E N T I A LS 

( 17.49) 

Any chemical reaction can be written as a combination of two half-cell reactions so that a 
cell potential can be associated with it. The value of $ is determined by the relation, nF $ = 
- AG. The equilibrium condition for any chemical reaction is AGo = -R T In K. Since 
AGo = - nF $0, we can write 

or at 25 °C n$O 
10gl o  K = 0.059 16 V 

(17 .50) 

Using Eq. (17 .50), we can calculate the equilibrium constant for any reaction from the 
standard cell potential which, in turn, can be obtained from the tabulated values of the 
standard half-cell potentials . The following method and examples illustrate a procedure 
that will ensure obtaining the $0 with both a correct sign and magnitude. 

Step 1. Break the cell reaction into two half-cell reactions . 

a. For the first half-cell reaction (the right-hand electrode) choose the oxidized species 
that appears on the reactant side of the cell reaction and write the equilibrium with the 
appropriate reduced species. 

b.  For the second half-cell reaction (the left-hand electrode) choose the oxidized species 
that appears on the product side of the cell reaction and write the equilibrium with the 
appropriate reduced species. 

Write both half-cell reactions with the electrons on the reactant side . 

Step 2. Balance the half-cell reactions with the same number of electrons, n, in each. 
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Step 3. If the second half-cell reaction is subtracted from the first one, the overall cell 
reaction is regenerated ; check to be sure that it is. Subtract the electrode potentials in the 
same sense (first minus second) to obtain the standard potential of the cell, $0 .  

Step 4. Use Eq. ( 17 . 50) to  calculate K. 

II EXAMPLE 1 7.4 2 Fe3 + + Sn2 + � 2Fez + + Sn4 + 

Step 1 .  Choose the oxidized species, Fe 3 + , on the reactant side for the first half-cell 
reaction ; choose the oxidized species, Sn4 + , on the product side for the second half
reaction. The half-cell reactions are : 

cPo = 0.77 1 V 

cPo = 0. 1 5  V 

Step 2 .  Multiply the first half-cell reaction by 2 so that each will involve the same number 
of electrons . 

Step 3. Subtract the second reaction from the first ; this regenerates the original reaction. 
Subtracting the second potential from the first yields $0. $0 = 0.771 - 0. 1 5  = 0.62 V. 

Step 4. Since n = 2, we find 

K _ n$O _ 2(0.62 V) _ 21 10gl O - 0.059 16 V - 0.059 16 V - so that 

III EXAMPLE 1 7.5 2 MnOi + 6 H + + 5 HzCZ04 :;;=: 2 Mn2 + + 8 HzO + lO COz . 

The half-reactions are (choose the oxidized species, MnOi,  on reactant side for the 
first half-reaction) 

MnOi + 8 H+ + 5 e - � Mn2 + + 4 HzO, $ 0 = 1 . 5 1  V ;  

2 COz + 2 H+ + 2 e - HZCZ04 , $ 0 = - 0.49 V. 

Multiplying the coefficients of the first reaction by 2 and those in the second reaction 
by 5, we obtain 

2MnOi + 1 6 H+ + 10 e 

I O COz + I O H+ + 1 0 e 

Subtracting, we have 

2 Mnz + + 8 HzO, 

5 HzCZ04 , 

$0 = 1 . 5 1  V ;  

$0 = - 0.49 V. 

2 MnOi + 6 H + + 5 HzCZ04 � 2 Mnz + + 8 HzO + 10 COz , 

$0 = 1 . 5 1  V - ( - 0.49 V) = 1 . 5 1  V + 0.49 V = 2.00 V. 

Since n = 10, 

10(2.00 V) 
10g l O K = 0.0591 6  V 

= 338 or 

iii EXAMPLE 1 7 .6 Cd2 + + 4NH3 � Cd(NH3)� + ' 
This reaction is not an oxidation-reduction reaction ; nonetheless, it may be 
decomposed into two half-cell reactions. Choosing Cd z + as the oxidized species for the 
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first half-cell reaction, we suddenly realize that there is no corresponding reduced 
species. The same situation prevails when we select Cd(NH3)� + as the oxidized species 
for the second half-cell reaction. Arbitrarily, we introduce the same reduced species for 
both reactions ; cadmium metal seems a logical choice. Then the half-cell reactions are : 

Cd2 + + 2 e - Cd, go = - 0.40 V ;  
Cd(NH3)� + + 2 e - Cd + 4NH3 , (b0 = - 0.61  V. 

Subtracting, we obtain 

Cdz + + 4NH3 � Cd(NH3)� + ' (b0 = - 0.40 V - ( - 0.61 V) = + 0.21 V, 

2(0.21 V) 
10gl o  K = 

0.059 16 V 
= 7. 1 ,  or 

This is the stability constant of the complex ion . 

• EXAMPLE 1 7.7 Cu(OH)z Cu2 + + 2 OH- , 
Cu(OH)z + 2e - Cu + 2 0H- ,  (b0 = - 0.224 V ;  

Cu2 + + 2 e 
Subtracting, we obtain 

Cu, (b0 = + 0.337 v. 

Cu(OH)z � . Cu2 + + 2 0H- ,  (b0 = - 0.224 V - ( + 0.337 V) = - 0.561 V, 

2( - 0. 561 V) 10gl o  K = 
0.059 16 V = - 18 .97, or K = 1 . 1  X 10- 1 9 . 

This is the solubility product constant of copper hydroxide. 

1 7 . 1 3 S I G N I F I CA N C E  O F  T H E H A L F - C E L L  POTENTIAL 

In  the case of  the metal ion/metal electrode, the half-cell potential i s  a measure of  the 
tendency of the reaction Mn + + ne - � M to occur. It is thus a measure of the tendency of 
Mn + to be reduced by Hz at unit fugacity to form the metal and H+ ion at unit activity. 
In Example 17. 1  we showed that for the Mn+ I M electrode 

(17. 5 1) 
Thus the standard electrode potential is a measure of the standard molar Gibbs energy of 
the metal ion relative to the hydrogen ion. 

Active metals such as Zn, Na, or Mg have highly negative standard potentials . Their 
compounds are not reduced by hydrogen, but rather the metal itself can be oxidized by 
H + to yield Hz . Noble metals such as Cu and Ag have positive cPO>s .  Compounds of these 
metals are readily reduced by Hz ; the metals themselves are not oxidized by hydrogen ion. 

Since the potential of a metal depends on the activity ofthe metal ion in solution, factors 
that influence the activity of the ion will ipso facto influence the electrode potential. For 
silver, the Nernst equation is 

1 cPAg + /Ag = 0.7991 V - (0.059 16 V)logl o  -. (17.52) aAg + 
As the value of aAg + decreases, the value of cPAg + /Ag also decreases. Using different values 
of aAg + in Eq. (17.52) we obtain : 
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aAg + 1 .0 10- 2 

¢'Ag + /Ag/V 0.7991 0.6808 

10-4 10- 6 1 0- 8 10- 1 0 

0.5625 0.4441 0.3258 0.2075 

For each power of ten by which the activity of the silver ion decreases, the potential drops 
by 59. 1 6  mY. 

Rather than simply diluting the solution to reduce the activity of silver ion, if we add a 
precipitating agent-or a complexing agent that combines strongly with silver ion-then 
both the activity of the silver ion and the electrode potential will be drastically reduced. 

For example, if we add sufficient HCl to the AgN03 solution in the Ag+ l Ag electrode, 
not only to completely precipitate the silver ion as Agel but also to bring the activity of the 
chloride ion to unity, the electrode will be converted to the standard Ag I AgCI I CI- elec
trode. For this electrode the equilibrium is 

AgCl(s) + e - � Ag(s) + Cl- ;  cpO = 0.222 V. 

This potential, if we use the Nernst equation for the Ag+ I Ag electrode, corresponds to a 
silver ion activity given by 

1 
0.222 V = 0.799 V - (0.05916 V)10g1 0 -aAg + 

or a 1 8  X 10- 1 ° . Ag +  = . 

At the same time, the solubility equilibrium must be satisfied. Thus 

AgCI(s) � Ag+ + Cl- ;  Ksp = aAg + aCI - ' 

Since aAg +  = 1 . 8  x 10- 1 0 and aCl - = 1, we conclude that 

Ksp = aAg + aC1 - = 1 . 8 ( 10- 1 °)( 1) = 1 . 8  x 10- 1 ° . 
It follows that we can determine the solubility product constants for slightly soluble 
materials by measuring the standard potential of the appropriate electrochemical cell. 
(Compare to Examples 17.6 and 1 7.7, Section 1 7. 12.) 

From the argument above it can be seen that the more stable the species in which the 
silver ion is bound, the lower will be the electrode potential of the silver. A group of cpo's for 
various silver couples is given in Table 17 .2 .  From the values in Table 17.2, it is clear that 
iodide ion ties up Ag+ more effectively than bromide or chloride ; AgI is less soluble than 
AgCI or AgBr. The fact that the silver iodide-silver couple has a negative potential means 
that silver should dissolve in HI with the liberation of hydrogen. This occurs in fact, but the 
action ceases promptly due to the layer of insoluble AgI that forms and protects the Ag sur
face from further attack. 

Tab l e  1 1 .2  

Couples 

Ag+ + e- ¢ Ag 
AgCl(s) + e- ¢ Ag + Cl
AgBr(s) + e - ¢ Ag + Br

AgI(s) + e - ¢ Ag + r 
Ag2S(S) + 2e - ¢ 2Ag + s =  

0.7991 
0.2222 
0.03 

- 0. 1 5 1  
- 0.69 
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Substances that form soluble complexes with the metal ion also lower the electrode 
potential. Two examples are 

Ag(NH3)i + e 

Ag(CN); + e -

Ag + 2NH3 , 

Ag + 2 CN- , 

cpO = + 0.373 V ;  

cp o  = - 0. 3 1  V. 

Whether a metal is a noble metal or an active metal depends on its environment. 
Ordinarily silver is a noble metal ; in the presence of iodide, sulfide, or cyanide ion, it is an 
active metal (if we consider the zero of potential as the dividing line between active and 
noble metals). 

1 7 . 1 4 T H E M EAS U R E M E N T  O F  C E L L  P OT E N TI A LS 

The simplest method of measuring the potential of an electrochemical cell is to balance it 
against an equal and opposite potential difference in the slidewire of a potentiometer. 
Figure 17 .5 shows a potentiometer circuit with the cell connected in it. The battery B sends 
a current i through the slidewire R. The contact S is adjusted until no deflection is observed 
on the galvanometer G. At the null point, the potential of the cell is balanced by the poten
tial difference between the points S and P of the slidewire. The slidewire is calibrated so that 
the potential drop ir between the points S and P can be read directly. If the resistance of the 
cell is very large, the potentiometer setting may be moved over a wide range without 
producing a sensible deflection on the galvanometer. In this case a high impedance electronic 
voltmeter must be used. 

F i g u re 1 7 .5  Potent iometer c i rcu it .  

Cell 

1 7 . 1 5 R EV E R S I B I LITY 

In the foregoing treatment of electrodes and cells we assumed implicitly that the electrode 
or cell was in equilibrium with respect to certain chemical and electrical transformations. 
By definition such an electrode or cell is reversible. To correlate measured values of cell 
potentials with the ones calculated by the Nernst equation, the measured values must be 
equilibrium or reversible values ; the potentiometric measurement in which no current is 
drawn from the cell is ideally suited for the measurement of reversible potentials. 

Consider the cell, Pt I H2 1 H + i : Cu2 + I Cu, which we discussed in Sect. 17 . 9. The cell 
reaction is 
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The copper is the positive electrode and the platinum is negative. Suppose that the cell is 
in balance with a potentiometer, as shown in Fig. 17 .5 :  Now if we move the sliding contact, 
S, to the right of the balance point, that will make the copper more positive ; Cu will then 
leave the electrode as Cu2 + and the electrons will move from right to left in the external 
circuit. On the platinum the electrons will combine with H + to form H2 . The entire reaction 
goes in the reverse direction from right to left. Conversely, if the slider is moved to the left. 
the electrons will move from left to right in the external circuit ; H2 will ionize to H+ and 
Cu 2 + will be reduced to copper. In this situation the cell produces work, while in the earlier 
circumstances work was destroyed. 

The cell behaves reversibly if moving the potentiometer contact slightly to one side of 
the balance point and then to the other reverses the current and the direction of the chemical 
reaction. In practice it is not necessary to analyze for the amounts of the reactants and 
products after each of the adjustments to decide whether the reaction is behaving in the 
required way. If the cell is irreversible, throwing the potentiometer slightly out of balance 
ordinarily results in the flow of a comparatively large current, while reversibility demands 
that only a small current flow when the imbalance between the potentials is slight . Further
more, in the irreversible cell, after disturbing the balance in the circuit slightly, the new 
balance point is usually significantly different from the original one. For these reasons, the 
irreversible cell exhibits what is apparently an erratic behavior and often it is impossible to 
bring a potentiometer into balance with such a cell. 

1 1 . 1 6 TH E D ETE R M I N ATI O N  O F  T H E go O F  A H A L F - C E l l  

Since the values o f  equilibrium constants are obtained from the standard half-cell poten
tials, the method of obtaining the rfr of a half-cell has great importance. Suppose we wish 
to determine the go of the silver-silver ion electrode. Then we set up a cell that includes 
this electrode and another electrode the potential of which is known ; for simplicity we 
choose the SHE as the other electrode. Then the cell is 

SHE : : Ag+ l Ag. 

The cell reaction is Ag + + eSHE ¢ Ag, and the cell potential is 

g = g Ag + JAg = gAg +/Ag -
RT 

In _
1
_ F aAg + 

At 25 °C 
g = gAg + /Ag + (0.059 16 V)logl o  aAg + ' (17 . 53) 

If the solution were an ideal dilute solution, we could replace aAg + by m+ = m, the molality 
of the silver salt. Equation ( 17.53) would become 

g = gAg + /Ag + (0.059 16 V)logl o  m. 
By measuring g at several values of m and plotting g versus logl o  m, a straight line o f  slope 
0.059 1 6  V would be obtained, as in Fig. 17 . 6(a) . The intercept on the vertical axis, m = 1 ,  
would be the value o f  go. However, life i s  not s o  simple. We cannot replace aAg + by m and 
hope for any real accuracy in our equation. In an ionic solution, the activity of an ion can 
be replaced by the mean ionic activity a± = y ±  m± . If the solution contains only silver 
nitrate, then m± = m ;  and Eq. ( 17.53) becomes 

g = gAg + /Ag + (0.059 16 V)loglo  m + (0.059 16 V)logl o  Y ± . 
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- 3 - 2  - 1  o + 1  + 2 
loglO m 

(a) 

1 
tff ° l 

tff - 0 .05916 loglO m 

o 

(b) 
F i g u re 1 7 .6  (a ) " Idea l " dependence of  0' o n  m. (b)  P lot to obta i n  ,go by extrapolat io n .  

If  the measurements are carried to solutions dilute enough so that the Debye-Huckel 
limiting law, Eq. ( 16.82), is valid, then logl o  y ± = - (0. 5092 V kgI/2/moI I/2)mI/2 , and we 
can reduce the equation to 

g - (0.059 16 V)log, o  m = gAg + lAg - (0.03012 V kgI/2/moII /2)mI /2 . ( 17. 54) 

From the measured values of g and m, the left-hand side of this equation can be calculated. 
The left-hand side is plotted against m1 /2 ; extrapolation of the curve to m1 /2 = 0 yields an 
intercept equal to gAg + IAg ' The plot is shown schematically in Fig. 17 .6(b). It is by this 
method that accurate values of go are obtained from the measured values of the g of any 
half-cell. 

1 7 . 1 7 T H E D ETE R M I N ATI O N  O F  ACTIVITI E S  A N D ACTIVITY 
C O E F F I C I E NTS F R O M  C E l l  P OT E NTIALS 

Once an accurate value of go has been obtained for a cell, then the potential measurements 
yield values of the activity coefficients directly. Consider the cell 

Pt l HzCf = l ) I H+ , Cl - I AgCI I Ag. 
The cell reaction is 

AgCI(s) + !HzCf = 1) � Ag + H+ + Cl- . 
The cell potential is 

(17 .55) 

According to Eq. (17 .55), the potential of the cell does not depend on the individual ion 
activities but on the product aw an - . As it turns out there is no measurable quantity that 
depends on an individual ion activity. Consequently, we replace the product aH +  aCl - by 
a� . Since in HCI, m± = m, we have a� = (y ± m)2 ; this reduces Eq. ( 17.55) to 

At 25 °C 

o 2RT 2RT g = g  - -- ln m - -- ln y + . F F -

g = go _ (0. 1 1 83  V)logl o  m - (0. 1 1 83  V)log, o  y ± . 

( 17. 56) 

(1 7.57) 

Having determined go by the extrapolation described in Section 17 . 16, we see that the 
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values of IS' determine the values of y ± at every value of m. Conversely, if the value of y ± is 
known at all values of m, the cell potential IS' can be calculated from Eq. ( 17. 56) or (17 .57) as 
a function of m. 

The measurement of cell potentials is the most powerful method of obtaining values of 
activities of electrolytes. Experimentally it is ,  in many cases at least, much easier to handle 
than measurements of colligative properties . It has the additional advantage that it can be 
used over a wide range of temperatures. Although cell potentials can be measured in 
nonaqueous solvents, the electrode equilibria often are not as easily established so that the 
experimental difficulties are much greater. 

* 1 7 . 1 8 C O N C E NTRATI O N  C E l lS 

If the two electrode systems that compose a cell involve electrolytic solutions of different 
composition, there will be a potential difference across the boundary between the two 
solutions. This potential difference is called the liquid junction potential, or the diffusion 
potential. To illustrate how such a potential difference arises, consider two silver�silver 
chloride electrodes, one in contact with a concentrated HCI solution, activity = at >  the 
other in contact with a dilute HCI solution, activity = a2 ; Fig. 17 .7(a). If the boundary 
between the two solutions is open, the H+ and Cl- ions in the more concentrated solution 
diffuse into the more dilute solution. The H+ ion diffuses much more rapidly than does the 
CI- ion (Fig. 17 .  7b). As the H+ ion begins to outdistance the Cl- ion, an electrical double 
layer develops at the interface between the two solutions (Fig. 17 .7c). The potential 
difference across the double layer produces an electrical field that slows the faster moving 
ion and speeds the slower moving ion. A steady state is established in which the two ions 
migrate at the same speed ; the ion that moved faster initially leads the march. 

The diffusion from the concentrated to the dilute solution is an irreversible change ; 
however, if it is very slow-slow enough that the interface does not move appreciably in 
the time we require to make the measurements-then we may consider the system at 
" equilibrium" and ignore the motion of the boundary. However, the additional potential 
difference in the liquid junction will show up in the measurements of the cell potential. 

Choosing the lower electrode as the left-hand electrode, the symbol for this cell is 
Ag I AgCI I CI- (a 1 ) ! CI- (a2) I AgCI I Ag, 

where the dashed vertical bar represents the junction between the two aqueous phases. 

Ag, Age l electrode 

(a) (b) (c) 

F i g u re 1 7 .7  Deve lopment of the 
j u nction potentia l .  
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We can calculate the potential of the cell if we assume that on the passage of one mole 
of electrical charge through the cell all of the changes take place reversibly. Then the 
potential of the cell is given by 

(17 .58) 

where � !:iGi is the sum of all the Gibbs energy changes in the cell that accompany the pass
age of one mole of positive charge upward through the cell. These Gibbs energy changes 
are : 

Lower electrode 

Upper electrode 
Net change at two electrodes 

Ag(s) + Cl- (a l) -------> AgCI(s) + e 

AgCI(s) + e - -------> Cl- (a2) + Ag(s) 

Cl- (al) -------> Cl- (a2) 
In addition, at the boundary of the two solutions a fraction t + of the charge is carried by 
H + and a fraction t _ is carried by CI- . The fractions t + and t _  are the transference numbers, 
or transport numbers, of the ions. One mole of positive charge passing through the boundary 
requires that t + moles ofH + ion are moved upward from the solution al to the solution a2 , 
and L moles of Cl- are moved downward from a2 to al ' Thus at the boundary : 

t + H+ (a l) -------> t + H+ (a2), and t_ Cl- (a2) -------> L Cl- (a l). 

The total change within the cell is the sum of the changes at the electrodes and at the 
boundary : 

t + H + (a l) + Cl- (a l) + L CI- (a2) -------> t+ H+ (a2) + Cl- (a2) + L Cl- (al). 

The sum of the fractions must be unity, so that t _ = 1 - t + . Using this value of t _ in the 
equation, after some rearrangement, reduces it to 

( 17. 59) 

The cell reaction (17 .59) is the transfer of t + moles of HCI from the solution al to the 
solution a2 . The total Gibbs energy change is 

!:iG = t + [Ilf.r+ + RT In (aH + )2 + IlCl - + RT In (aCl - )2 
- Ilf.r +  - RT In (aH + ) l - IlCl - - RT In (aCl -h] , 

!:iG = t+ RT ln (aH + aCl -h = 2t + RT ln 
(a± )2 

(aH +  aCl -h (a± ) l ' 

since aH +  aCl - = a� . Using Eq. (17 .58), we have for the potential of the cell with trans
ference, 

tffwt = - 2t+ RT 
In 

(a ±h . 
F (a ± ) l 

(17 .60) 

If the boundary between the two solutions did not contribute to the cell potential, then 
the only change would be that contributed by the electrodes, which is 

Cl - (a l) -------> Cl- (a2)· 
The corresponding value of !:iG is 

!:iG = IlCl - + RT  In (aCl - )Z - IlCl - - RT In (aCl - ) l = RT In 
«
a±

)
)2 , a± 1 
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where aCl - has been replaced by the mean ionic activity a ± . This cell is without transference 
and has the potential, 

Iff = _ t.G = _ RT 1 (a± )2 
wot F F n 

(a+ )l ' (17 .61) 

The total potential of the cell with transference is that of the cell without transference plus 
the junction potential, Iffj . Thus, Iff wt = Iff wot + Iffj ' so that 

Iff j = Iff wt - Iff wot , 

Using Eqs. (17 .60) and (17 .61), this becomes 

fP. = (1 _ 
2 ) 

RT 1 (a± )2 
0 J  t + n

( )
. F a ± 1 

(17 .62) 

(17 .63) 

From Eq. (17.63) it is apparent that if t + is near 0.5, the liquid junction potential will be 
small ; this relation is correct only if the two electrolytes in the cell produce two ions in 
solution. By measuring the potential of the cells with and without transference it is possible 
to evaluate Iffj and t+ . Note, by comparing Eqs. (17 .60) and (17 .61), that 

(17 .64) 

The trick in all of this is to be able to establish a sharp boundary so as to obtain 
reproducible measurements of Iffwt and to be able to construct a cell that eliminates Iffj so 
that Iffwot can be measured. There are several clever ways of establishing a sharp boundary 
between the two solutions ; however, they will not be described here. The second problem of 
constructing a cell without a liquid boundary is more pertinent to our discussion. 

A concentration cell without transference (that is, without a liquid junction) is shown 
in Fig. 17 .8 .  The cell consists of two cells in series, which can be symbolized by 

The potential is the sum of the potentials of the two cells separately : 

Iff = [¢(AgCljAg) - ¢(H+ /H2)] 1 + [¢(H+ /H2) - (AgCljAg)] 2 '  

Ag, Agel electrodes 
/' 

F i g u re 1 7 .8  Concentrat ion ce l l  without transference.  
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Writing the Nernst equation for each potential, we obtain [ O R T R T pl/2 ] 
G = ¢AgCl/Ag/Cl - - F In (aCl - ) l + F In (aH +) l [ R T pl /2 

0 R T ] + - F In (aH +h - ¢AgCl/Ag/Cl - + F In (aCl - )2 , 

G = RT 
In (aH + aCl -h = 2RT 

In (a± )2 . F (aH + aCl - ) l F (a± ) l 
By comparison with Eq. (17 .61), we see that 

G = - 2Gwot . ( 17.65) 

Measurement ofthe potential of this double cell yields the value of G wot through Eq. ( 17.65). 
Every measurement of the potential of a cell whose two electrodes require different 

electrolytes raises the problem of the liquid junction potential between the electrolytes. 
The problem can be solved in two ways : Either measure the junction potential or eliminate 
it. The junction potential can be eliminated by designing the experiment, as above, so that 
no liquid junction appears. Or, rather than using two cells, choose a reference electrode 
that uses the same electrolyte as the electrode being investigated. This is often the best way 
to eliminate the liquid junction ; however, it is not always feasilJ1e. 

The salt bridge, an agar jelly saturated with either KCl or NH4N03 , is often used to 
connect the two electrode compartments .  This device introduces two liquid junctions, 
whose potentials are often opposed to one another, and the net junction potential is very 
small. The physical reason for the cancellation of thetwo potentials is complex. The use of a 
jelly has some advantages in itself : It prevents siphoning if the electrolyte levels differ in the 
two electrode compartments, and it slows the ionic diffusion very much so that the junction 
potentials, whatever they may be, settle down to reproducible values very quickly. 

1 7 . 1 9 T EC H N I CA L  E L E CT R O C H E M I CA L  P R O C ES S ES 

Practical electrochemical processes divide naturally into power-consuming processes and 
power-producing processes. The industrial electrolytic preparative processes consume 
electrical power and produce high-energy substances. Typical of substances produced at 
the cathode are : hydrogen and sodium hydroxide in the electrolysis of brine ; aluminum, 
magnesium, and the alkali and alkaline earth metals in the electrolysis of molten salts. 
Electroplating and electrorefining of metals are important technical cathodic processes. 
Substances produced at the anode are : oxygen in water electrolysis, and chlorine in the 
electrolysis of brine and molten chlorides ; hydrogen peroxide ; potassium perchlorate ; and 
oxide coatings for decorative finishes on anodized aluminum. Anodic dissolution of a 
metal is important in the electro refining and electromachining of metals. 

The power-producing processes occur in the electrochemical cell ; these processes con
sume high-energy substances and produce electrical power. Two important devices are 
described in Section 17 .2l .  

It  is interesting to note that the invention of the electrochemical cell by Alessandro 
Volta in 1 800 is, in fact, a re-invention. Recently, archaeological excavations in the Near 
East unearthed what is apparently an electrochemical cell based on iron and copper 
electrodes ; the device is dated somewhere between 300 B.C. and 300 A.D. There is also some 
evidence that, as early as 2500 B.C., the Egyptians knew how to electroplate objects. 
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1 7 . 20 E L E CT R O C H E M I CA L  C E L LS AS P OW E R  S O U R C ES 

It is remarkable that, in principle, any chemical reaction can be harnessed to perform work 
in an electrochemical cell. If the cell operates reversibly, the electrical work obtained is 
�l = - I1G, or 

�l = - I1H + TI1S = - I1H + Qrev 

- I1H( l _ Qrev) 
I1H 

. 

In many practical cases the increase in entropy is not very large, so that TI1S/I1H is 
relatively small and 

�l ;::::: - I1H. 

This means that the electrical work that is produced is only slightly less than the decrease 
in enthalpy in the reaction. Note that if we simply let the reaction occur without producing 
work, the quantity of heat, - I1H, would be released. This could be used to heat a boiler 
which in turn could run a turbine . But this heat engine is subject to the Carnot restriction ;  
the electrical work that could be produced by a generator operated by a turbine would be 

�l = _ I1H(Tl � T2} 
This amount of work is substantially less (often three to five times less) than could be 
obtained electrochemically from the same reaction. Thus the electrochemical cell offers 
possibilities for efficient production of electrical energy from chemical sources that are 
unequalled by any other device. 

1 7 . 20 . 1  C l assi f i cat i o n  of E l ectrochemica l  C e l l s  

We can classify electrochemical cells that provide electrical energy into three general types. 

1. Primary cells . These are constructed of high-energy materials which react chemically 
and produce electrical power. The cell reaction is not reversible, and when the materials 
are consumed the device must be discarded. Typical examples of the primary cell are the 
ordinary flashlight battery (the LeClanch6 cell), and the zinc-mercury cells used in 
cameras, clocks, hearing aids, watches, and other familiar articles. 

2. Secondary cells. These devices are reversible. After providing power, the high-energy 
materials can be reconstituted by imposing a current from an exterior power source in the 
reverse direction. The cell reaction is thus reversed and the device is " recharged ". 

The most important example of a secondary cell is the lead storage battery used in 
automobiles. Other examples of secondary cells are the Edison cell and the nickel
cadmium rechargeable cells used in calculators and flash lamps. 

30 Fuel cells. The fuel cell, like the primary cell, is designed to use high-energy materials 
to produce power. It differs from the primary cell in that it is designed to accept a continu
ing supply of the " fuel," and the " fuels " are materials that we would commonly regard as 
fuels, such as hydrogen, carbon, and hydrocarbons. Ultimately, we might even hope to use 
raw coal and petroleum. 



E lectrochemica l  Ce l l s  as Power Sou rces 397 

1 7 . 20 . 2  R eq u i rements for  a Power S o u rce 

If we are to draw power from an electrochemical cell, since 

P = 81, (17 .66) 

it follows that the product of the cell potential and the current must remain at a reasonable 
value over the useful life of the cell. The current, I, is distributed over the entire area of the 
electrode, A. The current into or out of a unit area of the electrode surface is the current 
density, i. Thus 

I 
i = -

A '  
( 17.67) 

This current density implies a definite rate of reaction on each unit of electrode area. 
Suppose we draw a current, I, from the cell. For purposes of argument, suppose that the 
negative electrode is a hydrogen electrode. Then charge is drained away from each unit of 
electrode area at the rate, i = (ljA) dQjdt = 1jA. As the electrons leave the platinum ofthe 
H +  jHz electrode, more Hz must ionize, Hz -+ 2 H+ + 2 e - , or the potential ofthe electrode 
will move to a less negative value. If the rate at which electrons are produced by the ioniza
tion of hydrogen is comparable to the rate at which electrons leave the platinum to enter the 
external circuit, then the potential of the electrode will be near the open-circuit potential. 
On the other hand, if the electrode reaction is so slow that the electrons are not quickly 
replenished when they are drained away into the external circuit, then the potential of the 
electrode will depart substantially from the open-circuit potential. Similarly, if the electrode 
reaction on the positive electrode is slow, the electrons that arrive from the external circuit 
are not quickly consumed by the electrode reaction and the potential of the positive 
electrode becomes much less positive. We conclude that when a cell provides power, the 
cell potential decreases since the positive electrode becomes less positive and the negative 
electrode becomes less negative. 

The curves in Fig. 17 .9 show the cell potential versus time for various cells after con
nection to a load that draws a current density i l .  The electrode reactions in cells A and B 
are too slow and cannot keep up with the current drain. The cell potential falls quickly to 
zero and the power, 81, also goes to zero. Both cells provide a small amount of power 
initially, but neither cell is capable of being a practical power source. On the other hand, 

F i g u re 1 7 .9  Ce l l  potent ia l  u nder  load 
as a fu nct ion of t ime.  
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the electrode reactions in cell C are fast enough to restore the charge on the electrodes. The 
cell potential drops slightly but then stays steady at a relatively high value for a long period 
of time, so that the power, Iff[, provided is substantial. If a larger current is drawn from cell 
C (i2 > i1 ), the potential drops a bit more but is still relatively high. Even in this circum
stance cell C is a practical source of power. The rapid drop ofthe cell potential as at the end 
of curves C, signals the exhaustion of the active materials, the " fuel." If more " fuel " is 
supplied, the curve will remain fiat, and the cell will continue to provide power. 

We conclude that if a cell is to be practical as a power source the electrode reactions 
must be fast. The reactions must occur quickly enough so that the potential of the cell 
drops only slightly below its open-circuit potential. The problem in devising a fuel cell to 
burn coal lies in finding electrode surfaces on which the appropriate reactions will occur 
rapidly at reasonable temperatures .  Can we invent the appropriate catalysts ?  Time will 
tell. 

1 7 . 21 TWO P RACTI CAL POWE R S O U R C ES 

1 7 . 21 . 1  T h e  lead Storage Ce l l 

Consider first the lead-acid storage cell. As we draw current from the cell, at the positive 
plate, the cathode, Pb02 is reduced to PbS04 : 

Pb02(s) + 4 H + + SO� - + 2 e - -------* PbS04(s) + 2 H20, 
while at the negative plate, the anode, lead is oxidized to PbS04 , 

Pb(s) + SO� - -------* PbS04(s) + 2 e - . 

The potential of the cell is 2.0 volts. As current is drawn from the cell, the cell potential 
does not drop very much so the power, 1ff1, is near the reversible value, IffreJ. Rather large 
currents-hundreds of amperes-can be drawn from the fully charged device without 
dropping the potential excessively. 

When the cell needs to be recharged, we use an external power source to force current 
through the cell in the reverse direction ; the positive plate is now the anode on which 
PbS04 is oxidized to Pb02 ; the negative plate is the cathode on which PbS04 is reduced 
to Pb. The potential difference that must be impressed to recharge the cell has to be greater 
than the potential difference during discharge, but not excessively larger. The voltage 
efficiency of the cell is defined as : 

V I ffi . average voltage during discharge 
o tage e Clency = . 

average voltage during charge 
The voltage efficiency of the lead-acid cell is about 80 %. This near reversibility is a 

consequence of the rapidity of the chemical reactions in the cell. As we have seen, the 
ability to supply large currents at potentials near the open-circuit potential means that the 
chemical reactions at the electrodes are fast ; as the charge is drained away by the current, 
the potential should drop, but the chemical reaction occurs rapidly enough to rebuild the 
potential. 

If we compare the quantity of charge obtained from the lead-acid cell to the quantity 
that must be passed in to charge the cell, we obtain values of 90 to 95 %, or even higher in 
special circumstances. This means that very little of the charging current is dissipated in 
side reactions (such as electrolysis of water). Overall, the lead storage cell is an extra-
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ordinary device : It is highly efficient ; its larger versions can last 20 to 30 years (if carefully 
attended) ; and it can be cycled thousands of times. Its chief disadvantages are its great 
weight (low energy storage to weight ratio), and that if left unused in partially charged 
condition it can be ruined in a short time by the growth of relatively large PbSO 4 crystals, 
which are not easily reduced or oxidized by the charging current ; this disaster is known as 
" sulfation." 

For the standard Gibbs energy change in the lead-acid cell we have (for a two
electron change) : 

I1GO = - 376.97 kJ/mol ; 

I1Ho = - 227.58 kJ/mol ;  

Qrev = T I1So .= + 149.39 kJ/mol. 

Note that the reaction is endothermic if the cell performs reversibly. These figures mean 
that not only is the energy change, the I1H, available to provide electrical work but also 
the quantity of heat, Qrev = T I1S, that flows from the surroundings to keep the cell iso
thermal can be converted to electrical work. The ratio 

- I1Go 376.97 
-I1Ho = 

277.58  
= 1 .36  

compares the electrical work that can be produced to the decrease in enthalpy of  the 
materials. The extra 36 % is the energy that flows in from the surroundings. 

1 7 . 21 . 2  The F u e l  Ce l l 

The question is whether the kinds of reactions and the kinds of substances we commonly 
regard as " fuels," (coal, petroleum, natural gas) can be combined in the usual fuel burning 
reactions in an electrochemical way. 
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Cathode current 
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(Ti-O . 1  % Pd) 
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� / (Ti-O . 1  % Pd) 
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Polytetrafluoroethylene 
Pt Black 

A Wire screen 
Y (Ti-O . 10/0 Pd) 

Ir1lD Coolant ducts � (Ti-O . 1  % Pd) 

Oxygen Frame L Hydrogen 
inlet outlet 

F i g u re 1 7 . 1 0  Schematic representat ion of a s ing le  G e m i n i  hydrogen
oxygen fue l  cel l .  ( F rom H .  A .  Lei bhafsky and E .  J .  Ca i rns, Fuel Cells and 
Fuel Batteries. N ew York, Wi ley, 1 968 . )  

Probably the most successful fuel cell thus far is the hydrogen-oxygen cell, which has 
been used in spacecraft. The electrodes consist of porous screens of titanium coated with a 
layer of a platinum catalyst. The electrolyte is a cation exchange resin that is mixed with a 
plastic material and formed into a thin sheet. The entire combination of two electrodes 
with the plastic membrane between them is only about 0.5 mm thick. The device is shown 
schematically in Fig. 17 . 10. The resin is kept saturated with water by means of a wick ; the 
water formed by the operation of the cell drains out through the wick and is collected for 
drinking water. Connecting several of these cells raises the voltage to a practical value, 
while increasing the active area increases the current that can be drawn from the cell. This 
cell has been built to supply power of about 1 kilowatt. 

The power available is limited by the relatively slow reduction of oxygen at the cathode 
surface, Oz + 4H+ + 4e - � 2 HzO ;  this problem exists with any fuel cell that uses an 
oxygen electrode. At present, platinum seems to be the best catalyst, but even platinum is 
not nearly as good as we would like. The rate of the anodic reaction, H2 � 2 H+ + 2e - , the 
oxidation of hydrogen at the platinum surface, is relatively rapid. However, it would be 
nice if we could use something less expensive than platinum as a catalyst. At higher tempera
tures, the reaction rates are faster and the cell performance is better. 

In Table 17 .3 we have listed the thermodynamic properties (at 25 °C) of several 
reactions that would be desirable as fuel cell reactions. Each of the oxidizable substances 
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Tab le  1 7.3  
Thermodynamic  propert ies of possi b l e  fue l  ce l l  react ions at 25 °c 

- LlG - LlH - LlGo TLlSo go 
Reaction -- -- -- -- -

kJ/mo! kJ/mo! - LlHo kJ/mo! V 

Hz + ±Oz ---+ H2O 237. 178 285.830 0.83 - 48.65 1 1 .23 
C + Oz --> COz 394.359 393 .509 1 .002 + 0.857 1 .02 
C + ±Oz -> CO 137. 1 52 1 10.524 1 .24 26.628 1 .42 
CO + ±02 -> COz 257.207 282.985 0.9 1 - 25.77 1 . 33  
CH4 + 20z -> COz + 2HzO 8 1 7.96 890.36 0.92 - 72.38 1 .06 
CH30H + � Oz -> CO2 + 2H2O 702.36 726.5 1 0.97 - 24. 1 1  1 .21  
CSHI S + Zz5 0z ---+ 8C02 + 9HzO 5306.80 5512 . 10 0.96 - 205. 19  1 . 10 
CzHsOH + 3 02 ---+ 2 COz + 3 HzO 1 325.36 1 366.82 0.97 - 41 .36 1 . 1 5  

can, in  principle, be  brought to  equilibrium on an  electrode. For example, the methanol 
oxidation can be written 

This electrode, when combined with an oxygen electrode would yield a cell with an open
circuit potential of 1 .2 1  V. A fuel cell based on methanol and air in KOH solution has been 
used to power television relay stations. All the reactions in Table 17 .3 would yield cells 
with potentials of about one volt . 

Cells have been built based on the oxidation of carbon to carbon dioxide. Relatively 
high temperatures are required (500 to 700 °C). One version uses a molten sodium 
carbonate electrolyte. The reactions are : 

Anode 

Cathode 

C + 2 CO� - -----+ 3 COl + 4e -

01 + 2 COl + 4e - -----+ 2 CO� -

The overall reaction is simply 

C + O2 -----+ COl ' 

One of the difficulties with high-temperature cells is that the construction materials may 
corrode very rapidly. This disadvantage has to be weighed against the increase in available 
power at the higher temperature. 

Hydrocarbons such as methane, propane, and decane have been successfully oxidized 
in fuel cells, even at temperatures below 100 °C. We can reasonably expect that these devices 
will be much improved in the future. 

As an alternative to the direct oxidation of the hydrocarbon at an electrode, the sub
stance can be reformed at high temperatures by the reaction 

The hydrogen is then oxidized at the anode. This method may ultimately be the most 
successful one for using hydrocarbons and carbon itself as electrochemical fuels. 
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Q U ESTI O N S  

17.1 Explain the meaning of Eq. ( 17 . 1 1 ), in terms of the reversible work required to bring a metal 
ion M +z from infinity into the metal M maintained at potential cp. 

17.2 Sketch the potential CPH +/H2 versus aH + for the hydrogen electrode ; assume that ! = P = 1 for 
H2 . Explain why the potential increases for increasing aw ,  in terms of the " escaping tendency" 
of the Pt electrons and the aqueous H + ions . 

17.3 Outline the logic leading to the conclusion that K is the most " active " alkali metal in Table 
17 . 1 .  

17.4 Consider a cell composed of  the two half-cells of  Example 17.4. At  what ionic activities will the 
measured cell potential be go = gPe3 +/Fe2 + - $�n4 +/ Sn2 + ? How would the overall reaction 
equilibrium constant be calculated ?  Contrast this procedure to the difficulty of direct measure
ment ofK. 

17.5 Use Table 17 . 1 to decide if it is likely that metallic zinc reduces the copper ion, Zn(s) + Cu2 + (aq)",+ 
Zn2 + (aq) + Cu(s). 

17.6 Electrochemical cells can perform work. Imagine two hydrogen electrodes A and B connected 
by an external wire, with appropriate electrical contact between the two acid solutions. Assume 
that aH+ (A) = aH+ (B), and that ! = P for both A and B. If PH/B) = 2PH,(A), show that the net 
cell reaction corresponds to a gas expansion, which outside of the cell could produce work. 
Discuss the work performed by the cell in terms of the current produced (how?) in the external 
wire. 

17.7 What is the fate of the energy that does not flow to the surroundings in the cell-reaction example of 
Section 17 . 10. 1  ? 

P R O B LE M S 

Unless otherwise noted, the temperature is to be taken as 25 DC in the problems below. 

17.1 Calculate the cell potential and find the cell reaction for each of the cells (data in Table 17. 1 ) :  
a) Ag(s) I Ag+ (aq, a± = O.Ol ) ; : Zn2 + (a± = O. I) I Zn(s) ; 
b) Pt(s) j Fez + (aq, a± = 1 .0), Fe3 + (aq, a± = O. l ) i i Cl - (aq, a± = O.OOI) I AgCI(s) I Ag(s) ; 
c) Zn(s) I ZnO� - (aq, a±  = 0.1) ,  OH-(aq, a ± = 1) I HgO(s) I Hg(1) .  
In each case is  the cell reaction as written spontaneous or not ? 

17.2 Calculate the equilibrium constant for each of the cell reactions in Problem 1 7. 1 .  

17.3 From the data in Table 17 . 1  calculate the equilibrium constant for each of the reactions : 
a) Cu2 + + Zn ¢ Cu + Zn2 + ;  
b) Znz + + 4CN-! ¢ Zn(CN)i - ; 
c) 3 HzO + Fe = Fe(OHMs) + 1H2 ; 
d) Fe + 2 Fe3 + ¢ 3 Fe2 + ; 
e) 3 HSnOZ- + Bi203 + 6 H20 + 3 0H - ¢ 2 Bi + 3 Sn(OH)� - ; 
f) PbS04(s) ¢ Pb2 + + SOi- · 

17.4 The Edison storage cell is symbolized 

Fe(s) I FeO(s) I KOH(aq, a) I Ni203(s) 1 NiO(s) I Ni(s) 

The half-cell reactions are 

Niz03(s) + H20(l) + 2e

FeO(s) + HzO(l) + 2e-

2NiO(s) + 2 0H - ,  

Fe(s) + 2 0H - ,  

cpo = 0.4 V ;  

cpo = - 0.87 V. 



a) What is the cell reaction ? 
b) How does the cell potential depend on the activity of the KOH ?  
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�) How much electrical energy can be obtained per kilogram of the active materials in the cell ? 

17.5 Consider the lead storage cell 
Pb(s) I PbS04(s) I HzSOiaq, a) 1 PbSOis) I Pb02(s) I Pb(s), 

in which 1>SO� -/Pb SO./Pb = - 0.356 V, and 1>so� - / Pb02/PbSO./Pb = + 1 .685 V. 

a) If the cell potential is 2.016  volts, compute the activity of the sulfuric acid. 
b) Write the cell reaction. Is this reaction spontaneous ? 
c) If the cell pro4uces work (discharge) the reaction goes in one direction, while if work is 

destroyed (charge) the reaction goes in the opposite direction. How much work must be 
destroyed per mole of PbOz produced if the average potential during charge is 2. 1 5  volts ? 

d) Sketch the dependence of the cell potential on the activity of the sulfuric acid. 
e) How much electrical energy can be obtained per kilogram of the active materials in the 

cell ? 

17.6 Consider the cell 
Hg(l) I HgzSOis) I FeSOiaq, a = 0.01) 1 Fe(s) 

a) Write the cell reaction. 
b) Calculate the cell potential, the equilibrium constant for the cell reaction, and the standard 

Gibbs energy change, L'lGo, at 25 0c . (Data in Table 17 . 1 .) 

17.7 For the electrode SO�- (aq, aso� - ) I PbS04(S) I Pb(s), 1>0 = - 0.356 V. 
a) If this electrode is the right-hand electrode and the SHE is the left-hand electrode, the cell 

potential is - 0.245 volt. What is the activity of the sulfate ion in this cell ? 
b) Calculate the mean ionic activity of the sulfuric acid in the cell 

Pt(s) I Hig, 1 atm) I HZS04(aq, a) 1 PbS04(s) I Pb(s) 
if the cell potential is - 0.220 V. (Note : the left-hand electrode is not the SHE.) 

17.8 Consider the cell 
Pt(s) I Hz(g, 1 atm) I H + (aq, a = 1), Fe 3 +(aq), Fe2 + (aq) I Pt(s), 

given Fe 3 + + e- ¢ Fe2 +, 1>0 = 0 77 1  V. 
a) If the potential of the cell is 0.7 12 V, what is the ratio of concentration of Fe2 + to Fe3 + ?  
b) What is the ratio of these concentrations if the potential of the cell is 0.830 V?  
c )  Calculate the fraction of  the total iron present a s  Fe3 + at 1> = 0.650 V ,  0.700 V ,  0.750 V, 

0.771 V, 0.800 V, 0.850 V, and 0.900 V. Sketch this fraction as a function of 1>. 

17.9 The standard potentials at 25 °C are : 
Pd2 + (aq) + 2e- :':::::==::;: Pd(s), 1> 0 = 0.83 V ;  

1> 0 = 0.64 V. 

a) Calculate the equilibrium constant for the reaction Pd2 + + 4CI- � PdCl� - . 
b) Calculate the L'lGo for this reaction. 

17.10 a) Calculate the potential of the Ag+ l Ag electrode ; 1>0 = 0.799 1 V, for activities of Ag+ = 1, 
0. 1 ,  0.01 ,  and 0.001 .  

b )  For AgI, Ksp = 8 . 7  X 10- 1 7 ; what will be  the potential of  the Ag+ I Ag electrode in  a saturated 
solution of AgI ? 

. 

c) Calculate the standard potential of the I - I AgI I Ag electrode. 

17.11 A 0. 1 moljL solution of NaCI is titrated with AgN03 • The titration is followed potentiometric
ally, using a silver wire as the indicating electrode and a suitable reference electrode. Calculate 
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the potential of the silver wire when the amount o f  AgN03 added i s  5 0  % ,  9 0  %, 99 % ,  99.9 %, 
100 %, 100. 1 %, 101 %, 1 10 %, and 1 50 % of the stoichiometric requirement (ignore the change in 
volume of the solution). 

¢�I - /AgCI/Ag = 0.222 V, 
For silver chloride, Ksp = 1 . 7  X 10- 1 0. 

¢Ag+ / Ag = 0.799 V. 

17.12 Consider the couple 0 + e - ¢ R, with all of the oxidized and reduced species at unit activity. 
What must be the value of ¢o of the couple if the reductant R is to liberate hydrogen at 1 atm 
from 
a) an acid solution, aH +  = I ? 
b) water at pH = 7 ?  
c) Is hydrogen a better reducing agent in acid or in basic solution ? 

17.13 Consider the same couple under the same conditions as in Problem 17 . 12 .  What must be the 
value of ¢o of the couple if the oxidant is to liberate oxygen at 1 atm by the half-cell reaction, 

0z(g) + 2 H20(l) + 4e- � 4 0H - , ¢o = 0.401 V, 
a) from a basic solution, aow = 1 ? 
b) from an acid solution, aH +  = I ? 
c) from water at pH = 7 ?  
d )  I s  oxygen a better oxidizing agent in acid o r  in basic solution ? 

17.14 From the values of the standard potentials in Table 17 . 1 ,  calculate the standard molar Gibbs 
energy Jlo of the ions N a +, Pb2 + ,  Ag + . 

17.15 Calculate Jl�e3 + from the data : ¢�e3 +/Fe2 + = + 0.771 V, ¢�e2 +/Fe = - 0.440 V. 

17.:1.6 Consider the half-cell reaction 

AgCl(s) + e - � Ag(s) + Cnaq). 
If JlO(AgCI) = - 109.721 leI/mol, and if ¢o = + 0.222 V for this half-cell, calculate the standard 
Gibbs energy of Cl- (aq). 

17.17 At 25 °C for the potential of the cell, 
Pt I Hz(g, j  = 1 ) 1 HCl(aq, m) 1 AgCl(s) 1 Ag(s), 

as a function of m, the molality of HCl, we have 

m/(moljkg) tffjV m/(moljkg) tff/V m/(moljkg) tffjV 

0.001 0.579 1 5  0.02 0.430 24 0.5 0.272 3 1  
0.002 0.544 25 0.05 0 .385 88 1 0.23 3 28 
0.005 0.498 46 0. 1 0 .352 41 1 . 5  0.207 19  
0.01 0 .464 1 7  0.2 0.3 1 8 74 2 0. 1 86 3 1  

3 0. 1 5 1 83  

Calculate tff° and y ±  for HCl at  m = 0.001 , 0 .01, 0 . 1 ,  1 , 3 .  

17.18 The standard potential of  the quinhydrone electrode is ¢o = 0.6994 V. The half-cell reaction is 
Q(s) + 2H+  + 2e- � QH2(s). 

Using a calomel electrode as a reference electrode, ¢CI - /Hg2Ch/Hg = 0.2676 V, we have the cell 

Hg(l) I HgzClis) I HCl(aq, a) I Q . QHz(s) I Au(s). 
The compound Q . QHz , quinhydrone, is sparingly soluble in water, producing equal concen
trations of Q, quinone, and QH2 , hydroquinone. Using the values of the mean ionic activity 
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coefficients for HCI given in Table 16 . 1 ,  calculate the potential of this cell at mHCl = 0.001 ,  
0.005, 0.0 1 .  

17 .19  H. S. Harned and W. J. Hamer [1. Amer. Chem. Soc. 57 ; 33 (1935)J present values for the poten
tial of the cell, 

Pb(s) I PbS04(s) I H2S04(aq, a) I PbS04(s) I Pb02(s) I Pt(s), 
over a wide range of temperature and concentration of H2S04 . In 1 m H2S04 they found, 
between 0 °C and 60 °C, 

,g/V = 1 . 9 1737 + 56. 1 ( 1O- 6)t  + 108(1O- S)t2 , 
where t is the Celsius temperature. 
a) Calculate L'lG, L'lH, and L'lS for the cell reaction at 0 °C and 25 0c . 
b) For the half-cells at 25 °C 

Pb02(s) + SO�- + 4H+  + 2e- "==;: PbS04(s) + 2 H20, cpa = 1 .6849 V ;  
cp a  = - 0.3553 V. 

Calculate the mean ionic activity coefficient in 1 m H2S04 at 25 0c . Assume that the activity 
of water is unity. 

17.20 At 25 °C the potential of the cell, 
Pt(s) I H2(g, j = 1) I H2S04(aq, a) I Hg2S04(s) I Hg(l), 

is 0.6 1201  V in 4 m  H2S04 ; ,go = 0.6 1 5 1 5  V. Calculate the mean ionic activity coefficient in 
4 m H2S04 . [H. S .  Harned and W. 1. Hamer, J. Amer. Chem. Soc. 57; 27 ( 1933)] . 

17.21 In 4 m H2S04 , the potential of the cell in Problem 17 . 1 9  is 2.0529 V at 25 0c . Calculate the 
value of the activity of water in 4 m H2S04 using the result in Problem 17.20. 

17.22 Between 0 °C and 90 °C, the potential of the cell, 
Pt(s) I H2(g, j = 1) I HCI(aq, m = 0.1)  1 AgCI(s) 1 Ag(s), 

is given by 
,g/V = 0.35510 - 0.3422(10- 4)t - 3 .2347(10- 6)t2 + 6.3 14( 1O- 9)t3 , 

where t is the Celsius temperature. Write the cell reaction and calculate L'lG, L'lH, and L'lS for the 
cell at 50 0c . 

17.23 Write the cell reaction and calculate the potential of the following cells without transference. 
a) Pt(s) I H2(g, p = 1 atm) 1 HCI(aq, a) I H2(g, p = 0.5 atm) I Pt(s) 
b) Zn(s) I Zn2 + (aq, a = 0.01) : :  Zn2 + (aq, a = O. l ) I Zn(s). 

17.24 At 25 °C the potential of the cell with transference, 
Pt(s) 1 Hz(g, j = 1) 1 HCI(aq, a ±  = 0.009048) : HCI(aq, a± = 0.0175 1 ) 1 H2(g, j = l) I Pt(s), 

is 0.02802 V. The corresponding cell without transference has a potential of 0.01696 V. Calculate 
the transference number of H+ ion and the value of the junction potential. 

17.25 Consider the reaction 
Sn + Sn4 + "==;: 2 Sn2 + .  

If metallic tin is in equilibrium with a solution of Sn2 + in which aSn2 + = 0.100, what is the 
equilibrium activity of Sn4+ ion? Use data in Table 1 7 . 1 .  

17.26 Consider a Daniell cell that has 100 cm3 of  1 .00 moljL CUS04 solution in  the positive electrode 
compartment and 100 cm3 of 1 .00 mol/L ZnS04 in the negative electrode compartment. 
The zinc electrode is sufficiently large that it does not limit the reaction. 
a) Calculate the cell potential after 0 %, 50 %, 90 %, 99 %, 99.9 %, and 99.99 % of the available 

copper sulfate has been consumed. 
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b) What is the total electrical energy that can be drawn from the cell ? Nate : �Gtotal = 
Sge (aGlac;h, p dC;, 

c) Plot the cell potential as a function of the fraction of the total energy that has been delivered, 
17.27 A platinum electrode is immersed in 100 mL of a solution in which the sum of the concentrations 

of the Fe2 + and Fe3 + ions is O, lOO mol/L. 
a) Sketch the fraction of the ions that are present as Fe3 + as a function of the potential of the 

electrode. 
b) If Sn2 + is added to the solution, the reaction 2 Fe3 + + Sn2 + ¢ 2 Fe2 + + Sn4+ occurs. 

Assume that initially all the iron is present as Fe3 + .  Plot the potential of the platinum 
after the addition of 40 mL, 49.0 mL, 49.9 mL, 49.99 mL, 50.0 mL, 50.01 mL, 50. lO mL, 
5 1 .0 mL, and 60 mL of 0. 100 mol/L Sn2 + solution. 



1 
S u rface P h e n o m e n a  

1 8 . 1  S U R FA C E  E N E R G Y  A N D  S U R fA C E  T E N S I O N  

Consider a solid composed of spherical molecules in a close-packed arrangement. The 
molecules are bound by a cohesive energy E per mole and £ = E/N per molecule. Each 
molecule is bonded to twelve others ; the bond strength is £/12 . If the surface layer is close 
packed, a molecule on the surface is bonded to a total of only nine neighbors. Then the 
total binding energy of the surface molecule is 9£/12 = ·k From this rather crude picture 
we conclude that the surface molecule is bound with only 75 % of the binding energy of a 
molecule in the bulk. The energy of a surface molecule is therefore higher than that of a 
molecule in the interior of the solid and energy must be expended to move a molecule from 
the interior to the surface of a solid ; this is also true of liquids. 

Suppose that a film of liquid is stretched on a wire frame having a movable member 
(Fig. 1 8 . 1) . To increase the area of the film by dA, a proportionate amount of work must 
be done. The Gibbs energy of the film increases by y dA, where y is the surface Gibbs 
energy per unit area. The Gibbs energy increase implies that the motion of the wire is 
opposed by a force f ;  if the wire moves a distance dx, the work expended is f dx. These 
two energy increments are equal, so that 

Liquid film 
/ 

f dx = Y dA 

F i g u re 1 8 . 1  Stretched fi lm .  
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Liquid 

Acetone 
Benzene 
Carbon tetrachloride 
Ethyl acetate 
Ethyl alcohol 

Tab le  1 8 . 1  
S u rface tension of l i q u ids  a t  2 0  °c  

y/(lO- 3 N/m) Liquid 

23.70 Ethyl ether 
28 .85 n-Hexane 
26.95 Methyl alcohol 
23.9 Toluene 
22.75 Water 

y/( 10- 3 N/m) 

1 7.01 
18 .43 
22.61  
28 .5  
72.75 

If 1 is the length of the movable member, the increase in area is 2(1 dx) ; the factor two 
appears because the film has two sides. Thus 

f dx = y(2/) dx or f = 21y. 

The length of the film in contact with the wire is 1 on each side, or a total length is 21 ; 
the force acting per unit length of the wire in contact with the film is the surface tension 
of the liquid, f 121 = y. The surface tension acts as a force that opposes the increase in 
area of the liquid. The SI unit for surface tension is the newton per metre, which is 
numerically equal to the rate of increase of the surface Gibbs energy with area, in joules 
per square metre. The magnitude of the surface tension of common liquids is of the order 
of tens of millinewtons per metre. Some values are given in Table 1 8 . 1 .  

1 8 . 2  M A G N IT U D E  OF  S U R FA C E  T E N S I O N  

By the argument used in Section 1 8 . 1  we estimated that the surface atoms have an energy 
roughly 25 % above that of those in the bulk. This excess energy does not show up in 
systems of ordinary size since the number of molecules on the surface is an insignificant 
fraction of the total number of molecules present. Consider a cube having an edge of 
length a. If the molecules are 10 - 1 ° m in diameter, then 101 ° a molecules can be placed on 
an edge ; the number of molecules in the cube is ( 101 0a)3 = 103 0a3 . On each face there 
will be (101 °a)2 = 102°a2 molecules ; there are six faces, making a total of 6(102°a2) 
molecules on the surface of the cube. The fraction of molecules on the surface is 6(102°a2)1 
1030a3 = 6 x 1O - 1 °la. If a = 1 metre, then only six molecules in every ten billion are on 
the surface ; or if a = 1 centimetre, then only six molecules in every 100 million are on the 
surface. Consequently, unless we make special efforts to observe the surface energy, we 
may ignore its presence as we have in all the earlier thermodynamic discussions. 

If the ratio of surface to volume of the system is very large, the surface energy shows 
up willy nilly. We can calculate the size of particle for which the surface energy will 
contribute, let us say 1 % of the total energy. We write the energy in the form, 

E = Ev V + Es A, 

where V and A are the volume and area, Ev and Es are the energy per unit volume and the 
energy per unit area. But, Ev = tv Nv , and Es = ts N" where tv and ts are energies per 
molecule in the bulk and per molecule on the surface, respectively ; Ns and Nv are the 
number of molecules per unit area and per unit volume, respectively. Then 

E = Ev V(l + Es A ) = Ev V(l + NstsA ) . Ev V Nv tv V  



M easu rement of Su rface Tens ion  409 

But Ns = 1020 m- 2 and Nv = 1030 m- 3 , so that Ns/Nv = 10- 1 0 m ;  also the ratio 
(ts/tv) = 1 .25 � 1. So we have 

E = Ev V(l + 10- 1 0 �) . 
If the second term is to have 1 % of the value of the first, then 0.0 1 = 10 - 1 0 A/V. This 
requires that A/V = 108 . If a cube has a side a, the area is 6a2, and the volume is a3 , so 
that A/V = 6/a . Therefore 6/a = 108 , and a = 6 x 10 - 8 m = 0.06 .um. This gives us a 
very rough, but reasonable, estimate of the maximum size of particle for which the effect 
of the surface energy becomes noticeable. In practice, surface effects are significant for 
particles having diameters less than about 0.5 .urn. 

1 8 .3  M EAS U R E M E NT O F  S U R FA C E  T E N S I O N  

In principle, by measuring the force needed to extend the film, the wire frame shown in 
Fig. 1 8 . 1  could be used to measure the surface tension. In practice, other devices are more 
convenient. The ring-pull device (called the duNouy tensiometer) shown in Fig. 1 8 .2 is 
one of the simplest of these. We can calibrate the torsion wire by adding tiny masses to the 
end of the beam and determining the setting of the torsion scale required to keep the beam 
level. To make the measurement, we place the ring on the beam and raise the liquid to be 

(a) 

F i g u re 1 8 .2  (a )  D u Nouy r ing - p u l l  apparatus for 
measu r ing surface tens ion , (b) Deta i ls of the r i ng .  
( F rom Experimental Physical Chemistry, 5th  ed " by 
F. Dan iels,  J .  H .  Matthews, P. Bender, R, A. Al berty. 
Copyright © 1 956 M c G raw- H i l i  Book Co. U sed with 
the permiss ion of M c G raw- H i l i  Book Co . )  
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studied on the platform until the ring is immersed and the beam is level (for a zero setting 
of the torsion wire). We pull the ring out slowly by turning the torsion wire and at the 
same time lower the height of the platform so that the beam remains level. When the ring 
pulls free, we take the reading on the torsion scale ; using the calibration, we convert the 
reading into an equivalent force, F. This force is equal to the length of the wire in contact 
with the ring 2(2nR) times y, the force per unit length. Thus 

F = 2(2nR)y. ( IS .  1)  

The length is twice the circumference since the liquid is in contact with both the inside 
and the outside of the ring (Fig. I S .2b). This method requires an empirical correction 
factor, f, which accounts for the shape of the liquid pulled up and for the fact that the 
diameter of the wire itself, 2r, is not zero. Then Eq. ( lS . l )  can be written as 

F = 4nRyf. ( l S . la) 

Extensive tables off as a function of R and r are available in the literature. The method is 
highly accurate if we use Eq. ( lS . la) ;  Eq. ( 1S . 1) is much too crude for accurate work. 

The Wilhelmy slide method is somewhat similar to the ring-pull method. A very thin 
plate, such as a microscope cover glass or a sheet of mica, is hung from one arm of a balance 
and allowed to dip in the solution (Fig. l S . 3) . If p is the perimeter ofthe slide, the downward 
pull on the slide due to surface tension is yp. If F and Fa are the forces acting downward 
when the slide is touching the surface and when it is suspended freely in air respectively, 
then 

F = Fa + yp ( 1S .2) 

assuming that the depth of immersion is negligible. If the depth of immersion is not 
negligible, the buoyant force must be subtracted from the right-hand side of Eq. ( lS .2). 
This method is particularly convenient for measuring differences in y (for example, in 
measurements on the Langmuir tray since the depth of immersion is constant). 

The drop-weight method depends, as do all of the detachment methods, on the 
assumption that the circumference times the surface tension is the force holding two parts 
of a liquid column together. When this force is balanced by the mass of the lower portion, 
a drop breaks off (Fig. l S.4a) and 

Glass cover slide 

2nRy = mg, ( 1S .3) 

F i g u re 1 8 .3  Wi lhe lmy method for measu r ing 
s u rface tens ion .  
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F i g u re 1 8 .4 The d rop-weight method for measu r ing su rface tensio n .  (Adapted from Experimental 
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in which m is the mass of the drop. By adjusting the amount of liquid in the apparatus 
(Fig. 1 8 .4b) the time for formation of the drop can be controlled. The drop must form 
slowly if the method is to yield accurate results, but even then an empirical correction 
factor must be used. Tables of these correction factors are available in the literature. 

Before considering other methods of measurement we need to understand the thermo
dynamic relations for the system. 

1 8 . 4  T H E R M O DY N A M I C  FO R M U LATI O N  
- ,� 

Consider two phases and the interface between them. We choose as the system the portions 
of the two phases M l and M 2 , and the portion of the interface I enclosed by a cylindrical 
bounding surface B (Fig. 18 . Sa). Suppose that the interface is displaced slightly to a new 
position 1'. The changes in energy are : 

For Ml 
For NI2 
F or the surface 

dUl = TdSl - PldVl ; 
dU2 = TdS2 - P2dV2 ; 
dU" = TdS" + ydA. 

( 1 8 .4) 

( 1 8 . 5) 

( 1 8 .6) 

The last equation is written in analogy to the others, since dW = - ydA. There is no 
pdV term for the surface, since the surface obviously has no volume. The total change in 
energy is 

dU = dUl + dU2 + dU" = Td(Sl + S2 + S") - PldVl - P2 dV2 + ydA 
= TdS - PldVl - P2dV2 + ydA. 

Since the total volume V = Vl + V2 , then dVl = dV - dV2 , and 

dU = TdS - PldV + (Pl - P2)dV2 + ydA. ( 1 8 .7) 
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F i g u re 1 8 . 5  D isp lacement o f  t h e  i nterface.  ( a )  P l a n a r  i nterface. (b )  Spher ica l  i nterface. 

If the entropy and volume are constant, dS = 0 and dV = O. Then at equilibrium the 
energy is a minimum, dU = O. This reduces the equation to 

( 1S .S) 

If, as is shown in Fig. l S .S(a), the interface is plane and the bounding surface B is a 
cylinder having sides perpendicular to the interface, the area of the interface does not 
change, dA = O. Since dVz # 0, Eq. ( I S .S) requires that Pi = pz . Consequently, the 
pressure is the same in two phases that are separated by a plane dividing surface. 

If the interface is not planar, a displacement of the interface will involve a change in 
area. This implies an inequality of the pressures in the two phases. Suppose that the 
bounding surface is conical and that the interface is a spherical cap having a radius of 
curvature R (Fig. l S . Sb). Then the area of the cap is A = wRz, and the volume of M2 
enclosed by the cone and the cap is V2 = wR3/3, where w is the solid angle subtended by 
the cap. But dV2 = WR2 dR and dA = 2wR dR ; therefore, Eq. ( I S .S) becomes 

(P2 - pdwR2 dR = y2wR dR, 

which reduces immediately to 
2y 

P2 = Pi + li' ( 1S .9) 

Equation ( l S .9) expresses the fundamental result that the pressure inside a phase which 
has a convex surface is greater than that outside. The difference in pressure in passing 
across a curved surface is the physical reason for capillary rise and capillary depression, 
which we consider in the next section. Note that in the case of a bubble the increment in 
pressure in moving from the outside to the inside is 4y/R, or twice the value given by 
Eq. ( l S.9), because two convex interfaces are traversed. 

If the interface is not spherical but has principal radii of curvature R and R', then 
Eq. ( 1S .9) would have the form 

( IS . 10) 
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1 8 . 5  CAP I LLA R Y  R I S E  A N D CAP I L LA R Y  D E P R ES S I O N  

If a capillary tube i s  partially immersed in a liquid, the liquid stands at different levels 
inside and outside the tube, because the liquid-vapor interface is curved inside the tube 
and fiat outside. By considering Eq. ( 18 .9) and the effect of gravity on the system, we can 
determine the relation between the difference in liquid levels, the surface tension, and the 
relative densities of the two phases. 

Figure 1 8 .6 shows two phases, 1 and 2; separated by an interface that is plane for the 
most part but has a portion in which phase 2 is convex ; the levels of the interface are 
different under the plane and curved portions. The densities of the two phases are P I  and 
P2 ' Let PI be the pressure in phase 1 at the plane surface separating the two phases ; this 
position is taken as the origin (z = 0) of the z-axis, which is directed downward. The 
pressures at the other positions are as indicated in the figure : P/I and p� are the pressures 
just inside phases 1 and 2 at the curved interface ; p� and p� are related by Eq. ( 1 8 .9). 
The condition of equilibrium is that the pressure at the depth z, which lies below both 
the plane and curved parts of the interface, must have the same value everywhere. 
Otherwise, at depth z, a flow of material would occur from one region to another. Equality 
of the pressures at the depth z requires that 

PI + P2 gz = p� + P2 g(Z - h). 
Since p� = p� + 2y/R, and p� = PI + P l gh, Eq. ( 1 8 . 1 1) reduces to 

2y (P2 - PI)gh = ii' 

(18 . 1 1) 

( 18 . 12) 

which relates the capillary depression h to the surface tension, the densities of the two 
phases, and the radius of curvature of the curved surface. We have assumed that the surface 
of phase 2, the liquid phase, is convex. In this case there is a capillary depression. If the 
surface of the liquid is concave, this is equivalent to R being negative, which makes the 
capillary depression h negative. Therefore a liquid that has a concave surface will exhibit 
a capillary elevation. Water rises in a glass capillary, while mercury in a glass tube is 
depressed. 

The use of Eq. ( 1 8. 12) to calculate the surface tension from the capillary depression 
requires knowing how the radius of curvature is related to the radius of the tube. Figure 
1 8 .7 shows the relation between the radius of curvature R, the radius of the tube r, and the 
contact angle 8, which is the angle within the liquid between the wall of the tube and 
the tangent to the liquid surface at the wall of the tube. From Fig. 1 8.7, we have 

Phase 1 
PI i P1 =Pz r i h I 

Phase 2 

j Pi=PI +Plgh -'----- � r '\::P2 = pi + � z - h  R 

1 Pz=P'z + pzg(z - h) 

Interface 

F i g u re 1 8 .6 Pressu res u nder  p lane  and cu rved 
port ions of a surface. 

r 

F i g u re 1 8 .7  Contact ang le .  
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r/R = sin ¢ = sin (e - 90°) = - cos e, so that R = - r/cos e. In terms of the radius of 
the tube, Eq. ( 18 . 12) becomes - y cos e = t(P2 - Pl)grh. 
Since h is the capillary depression, it is convenient to replace it by the capillary rise - h. 
This removes the negative sign and we have 

y cos e = t(P2 - P l)grH. ( 18 . 1 3) 

In Eq. ( 18 . 1 3), H is the capillary rise. If e < 90°, the liquid meniscus is concave and H is 
positive. When e > 90°, the meniscus is convex and cos e and H are negative. 

Liquids that wet the tube have values of e less than 90°, while those that do not wet 
the tube have values greater than 90°. For making measurements we choose a tube 
narrow enough that e = 0° (or 1 80°). This is necessary because it is difficult to establish 
other values of e reproducibly. 

1 8 . 6  P R O P E RTi ES O F  V E R Y  S M A l l  PARTI C LE S  

I f  a particle i s  small enough, the surface energy produces measurable effects on  the 
observable properties of a substance. Two examples are the enhanced vapor pressure of 
small droplets and the increased solubility of fine particles. 

1 8 . 6 . 1  E n ha nced Va p o r  P ress u re 

Consider a liquid in equilibrium with vapor, with a plane interface between the two 
phases. Let the vapor pressure in this circumstance be Po ' The pressure just inside the 
liquid phase is also Po , since the interface is plane, by Eq. ( 1 8 .9). If, on the other hand, we 
suspend a small droplet of radius, r, then the pressure inside the droplet is higher than in 
the gas phase because of the curvature of the surface, also by Eq. ( 1 8.9). This increase in 
pressure increases the chemical potential by an amount dil l = Vl dp l , where Vl is the 
molar volume of the liquid. If the vapor is to remain in equilibrium, the chemical potential 
of the vapor must increase by an equal amount, or 

dllg = dill. 

Using the fundamental equation, Eq. ( 10.22), at constant T, 
vg dp = Vl dpl , 

where p is the pressure of the vapor. Let's assume that the vapor is ideal and integrate : 

If Vl is constant, we have 

RT In � = V�(P2 - Pl ) ' 

Pl 
Using Eq. ( 1 8 .9) for the pressure jump across the interface, we have 

RT In � = Vl (2Y) . 
Pl r 
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When r - 00, the interface is planar, and P = Pi = Po ' Thus we can write 

In � = 
j71 21' 

Po RT r 
( 1 8. 14) 

If M is the molar mass and p the density, then j71 = M/p. For water at 25 DC we have 
M = 0.0 1 8  kg/mol, p = 1 .0 x 103 kg/m3, l' = 72 x 1O- 3 N/m. Then 

P ( 0.0 18  kg/mol ) (  2(72 x 10- 3 N/m) ) 1 .0 x 10- 9 m 
In 

Po 
= 

1 .0 X 103 kg/m3 8 .314 J K 1 mol 1 (298 K)r 
= r 

. 

Values of p/Po as a function of r are : 

r/m 10-6  10 - 7  10- 8  10- 9 

p/Po 1 .0010 1 .010 1 . 1 1  2.7 

A drop of radius 10- 9 m has about ten molecules across its diameter and perhaps 100 
molecules in it. This calculation indicates that if we compress water vapor in the absence 
of a liquid phase, we can bring it to 2.7 times its saturation pressure before it comes into 
equilibrium with a drop having 100 molecules in it. ThUs, in the absence of foreign nuclei 
on which the vapor can condense, considerable supersaturation of the vapor can occur 
before droplets form. This effect is used in the Wilson cloud chamber in which super
saturation is induced by cooling the saturated vapor by an adiabatic expansion. Con
densation does not occur until the passage of a charged particle (an a-ray or f3-ray) 
produces gaseous ions that provide the nuclei on which droplets of water condense, leaving 
a visible trail to mark the path of the particle. Similarly, the fine particles of AgI, which are 
used in cloud seeding, provide the nuclei on which the water in a supersaturated atmo
sphere can condense and thus produce rain or show. 

Another consequence of Eq. ( 1 8. 1 4) is that a vapor condenses in a fine capillary at 
pressures below the saturation pressure if the liquid wets the capillary. In this situation, r 
is negative ; the liquid surface is concave. Similarly, if the liquid is to evaporate from the 
capillary, the pressure must be below the saturation pressure. 

1 8 . 6 . 2  I nc reased S o l u b i l ity 

The solubility of solids depends on particle size in a similar way. The solubility equilibrium 
condition is 

J-lS1n = J-ls, 

where sIn = solution. If the solution is ideal, then 
J-ls1n = J-lDI + RT In x. 

where x is the mole fraction solubility. For the solid, 
J-ls = J-lDS + I'A, 

in which A is the area per mole of the solid. If one mole of the solid consists of n small 
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cubes of edge a, then the molar volume of the solid, ys is 
or 

but the molar area, A, is 

ys 
n = 3 ' 

a 

Using this value for .iI, the equilibrium condition becomes 

pol + RT In x = pos + vs(6;) . 
As a ---+ 00, x ---+ xo , the solubility of large crystals. Thus 

pol + R T In Xo = pos. 
Subtracting this equation from the preceding one and dividing by RT yields 

In � = 

ys (6Y) . 
XO RT a 

( 1 8. 1 5) 

This equation differs from Eq. ( 18 . 14) only in that the factor, (6/a), replaces (2/r). Since 
the crystal may not indeed be cubical, in general the factor (6/a) could be replaced by a 
factor (a/a) where IX is a numerical factor of the order of unity, which depends on the shape 
of the crystal and a is the average diameter of the crystals. Just as Eq. ( 18 . 14) predicts an 
increased vapor pressure for fine droplets of a liquid, so Eq. ( 1 8 . 1 5) predicts an enhanced 
solubility for finely divided solids. Since the surface tension of some solids may be five to 
twenty times larger than that of common liquids, the enhanced solubility is noticeable for 
somewhat larger particles than those for which the enhanced vapor pressure is observable. 

If a freshly precipitated sample of AgCI or BaS04 is allowed to stand for a period of 
time, or better yet, if it is held at a high temperature for some hours in contact with the 
saturated solution, we observe that the average particle size increases. The more highly 
soluble fine particles produce a solution that is supersaturated with respect to the solubility 
of the larger particles. Thus the large particles grow larger and the fine particles ultimately 
disappear. 

VO N WEI M A R N 'S LAW 

A related effect, the von Weimarn effect, is important in crystal growth. If a high 
degree of supersaturation occurs before nuclei appear in the solution, then large 
numbers of nuclei appear at once. This produces a heavy crop of very small crystals . 
However, if little supersaturation occurs before nucleation, a few large crystals form. 
In the limiting case, we can immerse a single seed crystal in a saturated solution ; 
then, on extremely slow cooling, no supersaturation occurs and one large crystal grows. 

Von Weimarn's law states that the average size of the crystals is inversely proportional 
to the supersaturation ratio ; that is, the ratio of the concentration at which crystallization 
begins to the saturation concentration at the same temperature. For example, if hot, dilute 
solutions of CaClz and NaZC03 are mixed, there is relatively little supersaturation before 
the precipitate of CaC03 forms and the precipitate consists of relatively large crystals. 
On the other hand, if cold, concentrated solutions of the same reagents are mixed, there 
is a high degree of supersaturation and a very large number of nuclei are formed. The 
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system sets to a gel ; the particles of CaC03 are colloidal in size. After standing for a period 
of time, these crystals grow, the gel collapses, and the particles drop to the bottom of the 
container. This behavior is a classic example of von Weimarn's law. 

1 8 . 7  B U B B LE S ;  S ES S i L E  D R O PS 

It is possible to determine the surface tension from the maximum pressure required to 
blow a bubble at the end of a capillary tube immersed in a liquid. In Fig. 1 8 .8 ,  three stages 
of a bubble are shown. In the first stage the radius of curvature is very large, so that the 
difference in pressure across the interface is small. As the bubble grows, R decreases and 
the pressure in the bubble increases until the bubble is hemispherical with R = r, the 
radius of the capillary. Beyond this point, as the bubble enlarges, R becomes greater than 
r ;  the pressure drops and air rushes in. The bubble is unstable. Thus the situation in 
Fig. 18 .8(b) represents a minimum radius and therefore a maximum bubble pressure, by 
Eq. (1 8 .9). From a measurement of the maximum bubble pressure the value of I' can be 
obtained. If Pmax is the maximum pressure required to blow the bubble and Ph is the pressure 
at the depth of the tip, h, then 

21' 
Pmax = Ph + -. r 

Again, for large values of r, corrections must be applied. 
Since the shape of a drop sitting (sessile) on a surface that it does not wet depends on 

the surface tension, we can measure the surface tension by making an accurate measure
ment of the parameters that characterize the shape of the drop. The profile of a drop is 
shown in Fig. 1 8 .9 . For large drops it can be shown that 

( 18 . 1 6) 

where h is the distance between the top of the drop and the " equator," the point where 
dy/dx -+ 00.  The function y = y(x) is the equation of the profile of the drop. Measurements 
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F i g u re 1 8 .8  Max imum bubb le-pressure method 
for measu r ing  surface tens ion .  
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F i g u re 1 8.9  Prof i le  o f  a sessi le  d rop .  

on a photograph of the drop profile yield the surface tension. The differential equation 
that describes y(x) apparently does not have a solution in closed form. Numerical inte
grations and approximations of various types abound in the literature. 

* 1 8 . 8  L I Q U I D-LI QU I D  A N D SO LI D-LI QU I D  I NT E R FACES 

The interfacial tension between two liquid phases, rx and f3 ,  i s  designated by  y�p . Suppose 
that the interface has unit area ; then if we pull the two phases apart we will form 1 m2 of 
a surface of pure phase rx with surface Gibbs energy, y�v, and 1 m2 of a surface of pure phase 
f3 with surface Gibbs energy, yPv (Fig. 1 8 . 10). The increase in Gibbs energy in this trans
formation is 

( 18 . 17) 

This increase in Gibbs energy is called the work of adhesion, w't, between the phases rx 
and f3. Note that since the pure phases rx and f3 are in contact with the vapor phase, we 
have written y�V for the interfacial tension between rx and the vapor phase. Similarly, ypv 
is the interfacial tension between phase f3 and the equilibrium vapor phase. 

If we pull apart a column of pure phase rx, 2 m2 of surface are formed, and 

�G = We = 2y�v. 
This increase in Gibbs energy, We , is caned the work of cohesion of rx. Similarly, w� = 
2yPv. Then 

or 
(18 . 1 8) 

Phase a Phase a 

/ - - - ....... 

Phase fJ 

Phase fJ 

F i g u re 1 8 . 1 0  I nterfac ia l  tension .  
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Tab le  1 8 .2  
I nterfaci a l  tension between water (0()  and  va r ious l i q u ids  (f!)  at 20  ° c  

Liquid y.P /(10- 3 N/m) Liquid y.P/( 10- 3 N/m) 

Hg 375 
n-C6Hl4- 5 1 . 1  CzHsOCzHs 10.7 
n-C7H1 6 50.2 n-CSH 1 7OH 8 .5  
n-CSH1 8 50.8 C6H1 3COOH 7.0 
C6H6 35.0 CH3COOCzHs 6.8 
C6HsCHO 15 .5  n-C4-H90H 1 . 8  

As the Gibbs energy of adhesion between the phases rx and f3 increases, y.fJ decreases. 
When y.p = 0, there is no resistance to the extension of the interface between phases rx 
and f3 ;  the two liquids mix spontaneously. In this case, the work of adhesion is the average 
of the work of cohesion of the two liquids. 

( 18 . 19) 

Table 1 8 .2 shows values of the interfacial tensions between water and various liquids. 
Note that the interfacial tensions between water and those liquids that are close to being 
completely miscible in water (for example, n-butyl alcohol) have very low values. 

The same argument holds for the interfacial tension between a solid and a liquid. 
Thus, in analogy to Eq. ( 18 . 17), we have 

(1 8 .20) 

Although y"v and ysl are not measurable, it is possible to obtain a relation between y"v - y"i, 
the contact angle, e, and ylv. To do this, we consider the liquid drop resting on a solid 
surface as in Fig. 1 8 . 1 1 .  

If we deform the liquid surface slightly s o  that the area o f  the solid-liquid interface 
increases by dAsl ' then the Gibbs energy change is 

dG = y"l dAsl + ySV dAsv + ylv dAly ' 
From Fig. 1 8 . 1 1  we have 

then 
dAsv = - dAsl and dAly = dAsl cos e ;  

( 1 8 .21) 

It can be shown that it is not necessary to allow for a change in e since this would contribute 

Vapor 
dALV = dAsL cos f) 

F i g u re 1 8. 1 1 Spread ing  a l i q u id on a so l i d .  
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only a second-order term. Then we can define (JI" the spreading coefficient for the liquid 
on the solid, as 

oG 
oAsl ' 

( 1 8 .22) 

Thus, if (Jis is positive, (oG/oAs1) is negative, and the Gibbs energy will decrease as the 
solid-liquid interface enlarges ; the liquid will spread spontaneously. If (Jis = 0, the 
configuration is stable (in equilibrium) with respect to variations in the area of the solid
liquid interface. If (Jis is negative, the liquid will contract and decrease AsI spontaneously. 
Combining Eqs. ( 1 8 .21) and ( 18 .22) we get 

(Jis = tV � ysl _ ylV cos e. 
If the liquid is to be stable against variations fn its area, (Jis = 0, and we have 

ySV _ ysl = ylv cos e 
This is combined with Eq. ( 1 8 .20) to eliminate ySV - ysl and obtain 

w� = ylV (1 + cos e) 

( 1 8.23) 

( 18 .24) 

(1 8.25) 

If e = 0, then w� = 2ylv ; that is, the work of adhesion between solid and liquid is equal 
to the work of cohesion of the liquid. Thus the liquid can spread indefinitely over the 
surface, since energetically the system is indifferent to whether the liquid is in contact with 
itself or with the solid. On the other hand, if e = 1 80°, cos e = - 1 ,  and w� = O. No Gibbs 
energy expenditure is required to separate the solid and the liquid. The liquid does not 
wet the solid and does not spread on it. The spreading coefficient for one liquid on another 
is defined in the same way as for a liquid on a solid, Eq. ( 18 .23), except that cos e = 1 .  
Thus 

Note that as a liquid spreads on a surface the interfacial tensions change, with the result 
that the spreading coefficient changes. For example, benzene spreads on a pure water 
surface, (JBW � 9 x 10- 3 N/m initially. When the water is saturated with benzene and 
the benzene saturated with water ((JBW)sa! � - 2 X 10- 3 N/m and any additional benzene 
collects as a lens on the surface. 

1 8 . 9  S U R FA C E  T E N S I O N  A N D A D S O R PTI O N  

Consider the system of the type shown in Fig. 18 .5(a) : two phases with a plane interface 
between them. Since the interface is plane, we have PI = P2 = P and the Gibbs energy 
becomes a convenient function. If we have a multicomponent system the chemical 
potential of each component must have the same value in each phase and at the interface. 
The variation in total Gibbs energy of the system is given by 

(1 8 .26) 

in which y dA is the increase in Gibbs energy of the system associated with a variation in 
area. The Gibbs energy increments for the two phases are given by 

dGI = -SldT + Vidp + I f.1i dnj l ) i 
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dGz = - Sz dT + Vz dp + L J1i dn�z l, i 
in which np) and nlZ) are the number of moles of i in phases 1 and 2, respectively. Sub
tracting these two equations from the equation for the change in total Gibbs energy 
yields 

d(G - G1 - Gz) = - (S - Sl - Sz)dT + (V - Vi - Vz)dp + ydA 
+ '\' l I . d(n . - n( l ) - n(Z) L,.; t"'l l l l '  i 

If the presence of the interface produced no physical effect, then the difference between 
the total Gibbs energy, G, and the sum of the Gibbs energies of the bulk phases, Gt + Gz , 
would be zero. Since the presence of the interface does produce physical effects, we ascribe 
the difference G - (G1 + Gz) to the presence of the surface and define it as the surface 
Gibbs energy, G". Then, 

Note that the presence of the interface cannot affect the geometric requirement that 
V = V1 + V; .  The differential equation becomes 

dG" = _ S" dT + ydA + L J1i dnf. ( 1 8 .27) 
i 

At constant temperature, pressure, and composition, let the bounding surface, the cylinder 
B in Fig. i8 .5(a), increase in radius from zero to some finite value. Then the interfacial 
area increases from zero to A and the nf increase from zero to nf, while y and all the J1i 
are constants. Then Eq. ( 18.27) integrates to 

fGa dG" = y fA dA + L J1i In?" dnf 
o 0 i 0 

G" = yA + L J1i nf· i 
(1 8.28) 

This equation is similar to the usual additivity rule for Gibbs energy, but contains the 
additional term, yA. Dividing by A and introducing the Gibbs energy per unit area, 
g" = G" / A, and the surface excesses, Ii , defined by 

( 18 .29) 

yields 
( 18 . 30) 

which is similar to the additivity rule for bulk phases but contains the additional term, y. 
Differentiating Eq. ( 18 .28) yields 

dG" = ydA + Ady + I J1i dnf + L nfdJ1i ' i i 
( 1 8 . 3 1) 

By subtracting Eq. (1 8 .27) from Eq. ( 18 . 3 1) we obtain an analogue of the Gibbs-Duhem 
equation, 

0 =  S" dT + Ady + L nfdJ1i ' i 
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Division by A, and introduction of the entropy per unit area srI = SrI/A, and the surface 
excess, ri o reduces this relation to 

dy = - srIdT - I ri df.1i · i 
At constant temperature this becomes 

( 1 8. 32) 

(1 8 . 33) 

This equation relates the change in surface tension, y, to change in the f.1i which, at constant 
T and p, are determined by the variation in composition. 

As we will show below, in a single-component system it is always possible to choose 
the position of the interfacial surface so that the surface excess, r 1 = O. Then, Eqs. ( 18 . 30) 
and ( 18 . 32) become 

and (18 . 34a, b) 

Since grI = urI - TsrI, we obtain for urI, the surface energy per unit area, 

rI ( 8Y ) u = y - T 8T A · ( 1 8 . 35) 

To obtain a clearer meaning for the surface excesses, consider a column having a 
constant cross-sectional area, A. Phase 1 fills the space between height z = 0 and zo , and 
has a volume, Vi = Azo . Phase 2 fills from Zo to Z, and has a volume V; = A(Z - zo). 
The molar concentration, Ci , of species i is shown (by the solid curve) as a function of 
height, z, in Fig. 1 8 . 12. The interface between the two phases is located approximately 
at Zo . In the region near Zo the concentration changes smoothly from d1), the value in the 
bulk of phase 1, to d2), the value in the bulk of phase 2 ;  the width of this region has been 
enormously exaggerated in Fig. 1 8 . 12. To calculate the actual number of moles of species 
i in the system, we multiply Ci by the volume element, dV = A dz and integrate over the 
entire length of the system from zero to Z : 

d1) 1 

o 

ni = LZ c;Adz = A LZ ci dz. 

F i g u re 1 8 . 1 2 Concentrat ion as a fu nction  of posit ion .  

( 18 . 36) 

z z __ 
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The concentration Ci is the function of z shown in Fig. 1 8 . 1 2. It is clear that the value of 
ni calculated in this way is the correct value and does not depend in the least on the position 
chosen for the reference surface, zo . 

Now if we define the total number of moles of i in phase 1 ,  nI l ) and the total number in 
phase 2, n12>, in terms of the bulk concentrations, el l ) and el2), we obtain 

nI l ) = C(1)"V,l = c!l )Azo = A c!l )l1Z ' i
ZO 

): 1 l 1 , 
. 0 

nF) = cF)v2 = cF)A(Z - zo) = A rZ el2)dz. Jzo 
Using these equations, Eq. ( 18 .36), and the definition of n'{, we find that 

n'! = n . - nI l ) - n(2) = A[izc . dZ - i
Z°c! l )dZ - 1Zc(2)dz] 1 1 ): ):  ): 1 l '  o 0 ZO 

Since Ii = ni/A and 

we have 

rZ i
ZO 

1Z J , cidz = cidz + Ci dz, o 0 Zo 

( 18 . 37) 

The first of these integrals is the negative of the shaded area to the left of the line Zo in 
Fig. 1 8 . 12, while the second integral is the shaded area to the right of zo . 1t is clear from the 
manner in which this figure is drawn that Ii , the sum of the two integrals, is negative. How
ever, it is also clear that this value of Ii depends critically on the position chosen for the 
reference plane, Zo ' By moving Zo slightly to the left, Ii would have a positive value ; 
moving Zo to the right would decrease the value to zero ; moving Zo farther to the right 
would make Ii negative. We may vary the numerical values of the surface excesses arbitrarily 
by adjusting the position of the reference surface Zo ' Suppose we adjust the position of the 
reference surface in such a way that the surface excess of one of the components is made 
equal to zero. This component is usually chosen as the solvent and labeled component 1 .  
Then, by this adjustment, 

11 = O. 
However, in general this location for the reference surface will not yield zero values for the 
surface excesses for the other components. Hence, Eq. ( 1 8 .33) for a two-component system 
takes the form 

-dy = 12 d1l2 ' ( 18 . 38) 

In an ideal dilute solution, 112 = Il� + RT In c2 , and dll2 = RT (dc2/C2), so that ( Oy ) _ I RT -
oC2 T, p - 2 G 

or 

12 = 
- R

1
T 
(
O l�y 

CJT, P' ( 18 . 39) 

This is the Gibbs adsorption isotherm. If the surface tension of the solution decreases with 
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increase in concentration of solute, then (8y/8cz) is negative and r z is positive ; there is an 
excess of solute at the interface. This is the usual situation with surface active materials ; 
if they accumulate at the interface, they lower the surface tension. The Langmuir surface 
films described in the following section are a classic example of this. 

1 8 . 1 0  S U R FA C E  F I L M S  

Certain insoluble substances will spread on the surface of a liquid such as water until they 
form a monomolecular layer. Long-chain fatty acids, stearic acid and oleic acid, are 
classical examples. The -COO H group at one end of the molecule is strongly attracted to 
the water, while the long hydrocarbon chain is hydrophobic. 

A shallow tray, the Langmuir tray, is filled to the brim with water (Fig. 1 8 . 1 3). The film 
is spread in the area between the float and the barrier by adding a drop of a dilute solution 
of stearic acid in benzene. The benzene evaporates leaving the stearic acid on the surface. 
The float is attached rigidly to a superstructure that allows any lateral force, indicated by 
the arrow, to be measured by means of a torsion wire. 

By moving the barrier, we can vary the area confining the film. If the area is reduced, the 
force on the barrier is practically zero until a critical area is reached, whereupon the force 
rises rapidly (Fig. 1 8. 14a). The extrapolated value of the critical area is 0.205 nmz per 
molecule. This is the area at which the film becomes close packed. In this state the molecules 
in the film have the polar heads attached to the surface and the hydrocarbon tails extended 
upward. The cross-sectional area of the molecule is therefore 0.205 nm2. 

The force F is a consequence of the lower surface tension on the film-covered surface 
as compared with that of the clean surface. If the length of the barrier is I, and it moves a 

Clean 

L 
surface 

Barrier 
Float '" i / 

Film 

I 
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-

Clean 
surface 

F i g u re 1 8 . 1 3 Langmu i r  f i lm exper iment.  
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F i g u re 1 8 . 1 4 Force-area cu rves . ( a )  H igh  su rface pressure .  
(b )  Low su rface pressure .  
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distance dx, then the area of the film decreases by I dx and that of the clean surface behind 
the barrier increases by I dx. The energy increase is Yo I dx - yl dx, where Yo and y are the 
surface tensions of the water and the film-covered surface. This energy is supplied by the 
barrier moving a distance dx against a force FI, so that FI dx = (Yo - y)l dx, or 

F = Yo - y. ( 1 8 .40) 

Note that F is a force per unit length of the barrier, which is equal to that on the float. From 
curve 1 in Fig. 1 8 . 1 4(a) and Eq. ( 1 8.40), we see that the surface tension of the film-covered 
surface is not very different from that ofthe clean surface until the film becomes close packed. 

Figure 18 . 14(b) shows the behavior of the surface pressure at very high areas and very 
low surface pressures F. The curves look very much like the isotherms of a real gas. In fact, 
the uppermost curve follows a law that is much like the ideal gas law, 

FA = n� RT, ( 1 8 .41) 

where A is the area and n� is the number of moles of the substance in the surface film. 
Equation (1 8 .41) is easily derived from kinetic theory by supposing that the " gas " is two 
dimensional. The plateaus in Fig. 1 8 . 14(b) represent a phenomenon that is analogous to 
liq uefaction. 

We can obtain Eq. ( 1 8.41) by writing the Gibbs adsorption isotherm in the form 

dC2 dy = -RTr2 -C2 
and considering the difference in surface tension in comparing the film-covered surface, y, 
with the clean surface, Yo ' At low concentrations, the surface excess is proportional to the 
bulk concentration, so that r 2 = Kc2 . Using this in the Gibbs adsorption isotherm, we 
obtain dy = -RTKdc2 ; integrating, we have y - Yo = -RTKcz , or 

Y - Yo = -RTr2 · 
Since F = Yo - y, we have 

F = RTr2 . 
But r 2 = nYA ; inserting this value, we get 

FA = n� RT, 
which is the result in Eq. ( 18 .41). If the area per mole is A, then 

(� ( 1 8 .42) 

If a glass slide is dipped through the close-packed film, as it is withdrawn the polar 
heads of the stearic acid molecules attach themselves to the glass. Pushing the slide back in 
allows the hydrocarbon tails on the water surface to join with the tails on the glass slide. 
Figure 1 8 . 1 5  shows the arrangement of molecules on the surface and on the slide. By re
peated dipping, a layer of stearic acid containing a known number of molecular layers can 
be built up on the slide. After about twenty dippings the layer is thick enough to show 
interference colors, from which the thickness ofthe layer is calculated. Knowing the number 
of molecular layers on the slide from the number of dippings, we can calculate the length of 
the molecule. This method of Langmuir and Blodgett is an incredibly simple method
and was one of the first methods-for the direct measurement of the size of molecules. 
The results agree well with those obtained from x-ray diffraction. 
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(a) 

___ Glass slide 

(b) 
F ig u re 1 8 . 1 5 S u rface f i l ms. ( a )  M ono layer of stear ic ac id o n  
a su rface. (b )  M u lt i l ayer obta i n ed b y  d i p p i n g  a g lass s l i de  
th rough  a mono layer. 

The study of surface films of the Langmuir type covers an extremely diverse group of 
phenomena. Measurements of film viscosity, diffusion on the surface, diffusion through the 
surface film, surface potentials, the spreading of monolayers, and chemical reactions in 
monolayers are just a few of the topics that have been studied. One interesting application 
is the use of long-chain alcohols to retard evaporation from reservoirs and thus conserve 
water. The phrase " to pour oil on the troubled waters " reflects the ability of a mono
molecular film to damp out ripples, apparently by distributing the force of the wind more 
evenly. There are also several different types of surface films ; only the simplest was dis
cussed in this section. 

1 8 . 1 1 A D S O R PTI O N  O N  S O L I D S  

If a finely divided solid is stirred into a dilute solution of a dye, we observe that the depth of 
color in the solution is much decreased. If a finely divided solid is exposed to a gas at low 
pressure, the pressure decreases noticeably. In these situations the dye or the gas is adsorbed 
on the surface. The magnitude of the effect depends on the temperature, the nature of the 
adsorbed substance (the adsorbate), the nature and state of subdivision of the adsorbent 
(the finely divided solid), and the concentration of the dye or pressure of the gas. 

The Freundlich isotherm is one of the first equations proposed to relate the amount of 
material adsorbed to the concentration of the material in the solution : 

( 1 8.43) 

where m is the mass adsorbed per unit mass of adsorbent, c is the concentration, and k and n 
are constants. By measuring m as a function of c and plotting logl o  m versus logl o  c, the 
values of n and k can be determined from the slope and intercept of the line. The Freundlich 
isotherm fails if the concentration ( or pressure) of the adsorbate is too high. 

We can represent the process of adsorption by a chemical equation. If the adsorbate is 
a gas, then we write the equilibrium 

A(g) + S � AS, 

where A is the gaseous adsorbate, S is a vacant site on the surface, and AS represents an 
adsorbed molecule of A or an occupied site on the surface. The equilibrium constant can be 
written 

K = XAS 
xsP ' ( 1 8 .44) 
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where XAS is the mole fraction of occupied sites on the surface, Xs is the mole fraction of 
vacant sites on the surface, and p is the pressure of the gas. It is more common to use e for 
XAS . Then Xs = (1 - e) and the equation can be written 

e 
1 _ e = Kp, (1 8.45) 

which is the Langmuir isotherm ; K is the equilibrium constant for the adsorption. Solving 
for e, we obtain 

e = Kp 
1 + Kp (1 8.46) 

If we are speaking of adsorption of a substance from solution, Eq. (1 8.46) is correct if p is 
replaced by the molar concentration c. 

The amount of the substance adsorbed, m, will be proportional to e for a specified 
adsorbent, so m = be, where b is a constant. Then 

which, if inverted, yields 

bKp m = ------''--1 + Kp ' 

1 1 1 
- = - + - .  m b bKp 

(1 8.47) 

(1 8.48) 

By plotting 11m against lip, the constants K and b can be determined from the slope and 
intercept of the line. Knowing K, we can calculate the fraction of the surface covered from 
Eq. ( 18 .46). 

The Langmuir isotherm, in the form of Eq. ( 1 8.46), is generally more successful in 
interpreting the data than is the Freundlich isotherm if only a monolayer is formed. A plot 
of e versus p is shown in Fig. 1 8 . 16 . At low pressures, Kp � 1 and e = Kp, so that e in
creases linearly with pressure. At high pressures, Kp � 1 , so that e :::::; 1. The surface is nearly 
covered with a monomolecular layer at high pressures, so that change in pressure produces 
little change in the amount adsorbed. 

1 8 . 1 2 P HYS I CA L  A N D C H E M I S O R PTI O N  

If the adsorbate and the surface of the adsorbent interact only by van der Waals forces, 
then we speak of physical adsorption, or van der Waals adsorption. The adsorbed molecules 
are weakly bound to the surface and heats of adsorption are low (a few kilojoules at most) 
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pip 0 

F i g u re 1 8 . 1 7 M u lt i l ayer adsorpt ion .  
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and are comparable to the heat of vaporization of the adsorbate. Increase in temperature 
markedly decreases the amount of adsorption. 

Since the van der Waals forces are the same as those that produce liquefaction, adsorp
tion does not occur at temperatures that are much above the critical temperature of the 
gaseous adsorbate. Also, if the pressure of the gas has values near the equilibrium vapor 
pressure ofthe liquid adsorbate, then a more extensive adsorption multilayer adsorption
occurs. A plot of the amount of material adsorbed versus plpo, where pO is the vapor 
pressure of the liquid, is shown in Fig. 18 . 17 .  Near plpo = 1 more and more of the gas is 
adsorbed ; this large increase in adsorption is a preliminary to outright liquefaction of the 
gas, which occurs at pO in the absence of the solid. 

If the adsorbed molecules react chemically with the surface, the phenomenon is called 
chemisorption. Since chemical bonds are broken and formed in the process of chemisorp
tion, the heat of adsorption has the same range of values as for chemical reactions : from 
a few kilojoules to as high as 400 kJ. Chemisorption does not go beyond the formation of a 
monolayer on the surface. For this reason an isotherm of the Langmuir type, which pre
dicts a monolayer and nothing more, is well suited for interpreting the data. The Langmuir 
adsorption isotherm predicts a heat of adsorption that is independent of e, the fraction of 
the surface covered at equilibrium. For many systems the heat of adsorption decreases with 
increasing coverage of the surface. If the heat adsorption depends on the coverage, then we 
must use an isotherm more elaborate than the Langmuir isotherm. 

The difference between physical and chemisorption is typified by the behavior of 
nitrogen on iron. At the temperature of liquid nitrogen, - 190 °C, nitrogen is adsorbed 
physically on iron as nitrogen molecules, N 2 ' The amount ofN 2 adsorbed decreases rapidly 
as the temperature rises. At room temperature iron does not adsorb nitrogen at all. At high 
temperatures, "" 500 °C, nitrogen is chemisorbed on the iron surface as nitrogen atoms. 

1 8 . 1 3  TH E B R U NA U E R ,  E M M ET, A N D  T E L L E R  ( B ET) I S OT H E R M  

Brunauer, Emmet, and Teller have worked out a model for multilayer adsorption. They 
assumed that the first step in the adsorption is 

A(g) + S � AS K = � 1 evp ( 18 .49) 

where Kl is the equilibrium constant, e1 is the fraction of the surface sites covered by a 
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single molecule, and 8v is the fraction of vacant sites. If nothing else occurred, this would 
simply be the Langmuir isotherm (Section 1 8. 1 1). 

Next they assumed that additional molecules sit on top of one another to form a variety 
of multilayers. They interpreted the process as a sequence of chemical reactions, each 
with an appropriate equilibrium constant : 

where the symbol A3 S indicates a surface site that has a stack of three A molecules piled up 
on it. The 8i is the fraction of sites on which the stack of A molecules is i layers deep. The 
interaction between the first A molecule and the surface site is unique, depending on the 
particular nature of the A molecule and the surface. However, when the second A molecule 
sits on the first A molecule, the interaction cannot be very different from the interaction of 
two A molecules in the liquid ; the same is true when the third sits on the second. All of these 
processes except the first can be regarded as being essentially equivalent to liquefaction, 
and so they should have the same equilibrium constant, K. Thus the BET treatment 
assumes that 

K2 = K3 = K4 = . . .  = Kn = K (1 8 .50) 
where K is the equilibrium constant for the reaction A(g) :;;:::: A(liquid). Then 

K = � po ' ( 18 .51 ) 

where po is the equilibrium vapor pressure of the liquid. 
We can use the equilibrium conditions to calculate the values of the various 8i . We 

have 

Combining the first two we have, 83 = 81 (Kp)2 . Repeating the operation, we find 

8i = 8 1 (KpY - 1 . 
The sum of all these fractions must be equal to unity : 

1 = 8v + L 8i = 8v + L 8 1 (KpY- 1 . i = 1 i 

(1 8 . 52) 

( 1 8. 53) 

In the second writing we replaced 8i by its equal from Eq. ( 1 8 .53). If we temporarily set 
Kp = x, this becomes 

1 = 8v + 8 1 (1 + x + x2 + x3 + . . .  ). 
If we now assume that the process can go on indefinitely, then n � 00, and the series is 
simply the expansion of 1/(1 - x) = 1 + x + x2 + . .  ' . Thus 

8 1 1 = 8v + -- . 1 - x ( 18 .54) 
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Using the equilibrium condition for the first adsorption, we find 8v = 8dK 1P. We define 
a new constant, e = KdK ;  then 

and Eq. ( 18 .54) becomes 

8 = � v ex 

1 = 8 1 (� + -1 _
1 _) , ex - x 

81 = ex(1 - x) 
. 1 + (e - l)x (18 . 55) 

Let N be the total number of molecules adsorbed per unit mass of adsorbent and es be the 
total number of surface sites per unit mass. Then cs 8 1 is the number of sites carrying one 
molecule, cs 82 is the number carrying two molecules, and so on. Then 

N = cs(1 81 + 282 + 383 + . .  -) = Cs L Wi · i 
From Eq. ( 18 . 53) we have 8i = 81x

i - 1 ; this brings N to the form 

N = cs 81 I iXi - 1 = cs 81 (1 + 2x + 3x2 + . .  J i = 1 
We recognize this series as the deri vati ve of the earlier one : 

2 d 2 3 1 + 2x + 3x + . . .  = � (1 + x + x + x + . .  -) dx 
d ( 1 ) 1 = dx 1 - x = (1 - X)2 · 

Using this result in the expression for N, we obtain 

cs 81 N = (1 _ X)2 · 

If the entire surface were covered with a monolayer, then N m molecules would be adsorbed ; 
Nm = Cs and 

Nm 81 N = (1 _ X)2 · 

Using the value for 81 from Eq. ( 18 .55), this becomes 

N = Nmcx 
(1 - x) [1 + (c - l)x] 

( 1 8. 56) 

The amount adsorbed is usually reported as the volume of the gas adsorbed, measured 
at STP. The volume is, of course, proportional to N so we have N /N rn = v/vrn , or 

Vm cx V =  . (1 - x) [l + (c - l)x] ( 1 8. 57) 

Recalling that x = Kp and that K = l/po, we have finally the BET isotherm : 

( 18 . 58) 
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The volume, v, is measured as a function of p. From the data we can obtain the value 
of Vrn and c. Note that when p = pO , the equation has a singularity and v --+ 00. This 
accounts for the steep rise of the isotherm (Fig. 1 8 . 1 7) as the pressure approaches pO . 

To obtain the constants c and Vrn we multiply both sides of Eq. ( 1 8. 58) by (po - p)/p : 

v(pO - p) Vrn C 
p 1 + (c - 1) (P/pO) 

. 

Next we take the reciprocal of both sides : 

(18 .59) 

The combination of measured quantities on the left is plotted against p. The result in many 
instances is a straight line. From the intercept, ( 1/vm c), and the slope, (c - 1 )/vrn cpo , we can 
calculate values of Vrn and of c. The reasonable values obtained confirm the validity of the 
approach. 

From the value of Vrn at STP, we can calculate N m . 

N - N Vrn m - A 0.022414 m3/mo! " 
(18 .60) 

Since N rn is the number of molecules required to cover a unit mass with a monolayer, then 
if we know the area covered by one molecule, a, we can calculate the area of unit mass of 
material : 

Area/unit mass = N rna. (1 8 .61) 
This method is a useful way to determine the surface area of a finely divided solid. 

If we write the equilibrium constants, K 1 and K, in terms of the standard differences 
in Gibbs energy for the transformations, then 

and (18 .62) 
where L1G� is the standard Gibbs energy of adsorption of the first layer and L1Gliq is the 
standard Gibbs energy of liquefaction. Dividing the first of Eqs. ( 18 .62) by the second, we 
obtain c. 

( 1 8.63) 

Using the relations, 

L1G� = L1H� - T L1S� and 

and assuming that L1S� � L1Sfiq (that is, that the loss in entropy is the same regardless of 
which layer the molecule sits in), Eq. ( 18.63) becomes 

( 1 8 .64) 
Note that the heat of liquefaction, L1Hliq , is the negative of the heat of vaporization, L1H�ap , 
so that we have L1Hliq = - L1H�ap and 

c = e- (Ll.H; + Ll.H�ap)RT. 

Taking logarithms and rearranging, 

L1H� = - L1H�ap - R T In c. 
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Since we know the value of !1H�ap of the adsorbate, the value of !1H� can be calculated from 
the measured value of c. In all cases, it is foune;! that c > 1, which implies that !1H� < !1Hiiq . 
The adsorption in the first layer is more exothermic than liquefaction. 

The measurement of surface areas and !1H� has increased our knowledge of surface 
structure enormously and is particularly valuable in the study of catalysts. One important 
point to note is that the actual area of any solid surface is substantially greater than its 
apparent geometric area. Even a mirror-smooth surface has hins and valleys on the atomic 
scale ; the actual area is perhaps 2 to 3 times the apparent area. For finely divided powders or 
porous spongy material the ratio is often much higher : 10 to 1000 times in some instances. 

1 8 . 1 4 E L E CT R I CA L  P H E N O M E N A  AT I NTE R FACES ; 
TH E D O U B LE LAY E R  

If two phases of different chemical composition are in contact, an electric potential differ
ence develops between them. This potential difference is accompanied by a charge separa
tion, one side of the interface being positively charged and the other being negatively 
charged. 

For simplicity we will assume that one phase is a metal and the other is an electrolytic 
solution (Fig. 18 . 1 8a). Suppose that the metal is positively charged and the electrolytic 
solution has a matching negative charge. Then several charge distributions corresponding 
to different potential fields are possible, as shown in Fig. 1 8. 1 8 . The metal is in the region 
x ::;; 0, and the electrolytic solution is in the region x 2:: O. The electric potential on the 
vertical axis is the value relative to that in the solution. The first possibility was proposed 
by Helmholtz : that the matching negative charge is located in a plane a short distance, b, 
from the metal surface. Fig. 1 8 . l 8(b) shows the variation of the potential in the solution as 
a function of x. This double layer, composed of charges at a fixed distance, is called the 
Helmholtz double layer. The second possibility, proposed by Gouy and Chapman, is that 
the matching negative charge is distributed in a diffuse way throughout the solution (much 
like the diffuse atmosphere around an ion in solution). The potential variation for this 
situation is shown in Fig. 1 8 . 1 8(c). This diffuse layer is called the Gouy layer, or Gouy� 
Chapman layer. 

In concentrated solutions, c 2:: 1 mol/dm3, the Helmholtz model is reasonably 
successful ; in more dilute solutions, neither model is adequate. Stern proposed a combina
tion of the fixed and diffuse layers. At the distance b there is a fixed layer of negative charge 
insufficient to balance the positive charge on the metal. Beyond the distance b, a diffuse 
layer contains the remainder of the negative charge (Fig. 1 8 . 1 8d). The fixed layer can also 
carry more than enough negative charge to balance the positive charge on the metal. When 
that happens, the diffuse layer will be positively charged ; the potential variation is shown 
in Fig. 1 8 . 1 8( e). Either of these composite layers is called a Stern double layer. Stern's theory 
also includes the possibility of specific adsorption of anions or cations on the surface. If the 
metal were negatively charged, four additional possibilities analogous to these could be 
realized (Fig. 1 8 . 1 8f, g, h, and i). 

In an elegant and successful model, Grahame distinguished between two planes of ions. 
Nearest the surface is the plane at the distance of closest approach of the centers of 
chemisorbed anions to the metal surface ; this is called the inner-Helmholtz plane. Some
what beyond this plane is the outer-Helmholtz plane, which is at the distance of closest 
approach of the centers of hydrated cations. The diffuse layer begins at the outer Helmholtz 
plane. This model, shown in Fig. 1 8 . 19 ,  has been used very successfully in interpreting the 
phenomena associated with the double layer. 
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Solution 

(f) Helmholtz double layer 
(metal negative) 

cP - CPs O l---i-----::;;p- x 

(g) Gouy double layer 

£5 1---
cP - CPs Ol--r----::= x 

(h) Stern double layer 

(e) Stern double layer (i) Stern double layer 

F i g u re H I . 1 8 Var ious types of doub le  l ayer. 



434 S u rface Phenomena 

Charged 
metal 

$� /" 

Solvated positive ion 
./ ---.... t 
8 Unsolvated negative ion 

(3 Water molecules 

F i g u re 1 8 . 1 9 A schematic representat ion of the structu re of an  
e lectrified interface. The  sma l l  posit ive ions tend to  be solvated 
wh i l e  the la rger  negative ions a re usua l ly  u nsolvated . ( F rom 
J .  O'M.  Bockris and A. K .  V .  Reddy, Modern Electrochemistry, vo l .  
1 .  N ew York : P lenum,  1 970 . )  

1 8 . 1 5 E LE CT R O KI N ETI C E F F ECTS 

The existence of the double layer has four electrokinetic effects as consequences : electro
osmosis, streaming potential, electro-osmotic counterpressure, and the streaming current. 
Two other effects, electrophoresis and the sedimentation potential (Dorn effect) are also 
consequences of the existence of the double layer. All of these effects depend on the fact that 
part of the double layer is only loosely attached to the solid surface and therefore is mobile, 
Consider the device in Fig. 1 8.20, which has a porous quartz disc fixed in position and is 
filled with water. If an electric potential is applied between the electrodes, a flow of water to 
the cathode compartment occurs. In the case of quartz and water, the diffuse (mobile) part 
of the double layer in the liquid is positively charged. This positive charge moves to the 
negative electrode and the water flows with it (electro-osmosis). Conversely, if water is 
forced through fine pores of a plug, it carries the charge from one side of the plug to the 
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F i g u re 1 8 .20 E lectro -osmosis .  

other, and a potential difference, the streaming potential, develops between the electrodes. 
Very finely divided particles suspended in a liquid carry an electrical charge which is 

equivalent to the charge on the particle itself plus the charge on the fixed portion of the 
double layer. If an electrical field is applied to such a suspension, the particles move in the 
field in the direction determined by the charge on the particle (electrophoresis). The diffuse 
part of the double layer, since it is mobile, has the opposite sign and is attracted to the other 
electrode. Conversely, if a suspension of particles is allowed to settle, they carry their 
charge toward the bottom of the vessel and leave the charge on the diffuse layer in the upper 
portion ofthe vessel. A potential difference, the sedimentation potential, develops between the 
top and bottom of the container. 

The magnitude of all of the electrokinetic effects depends on how much of the electrical 
charge resides in the mobile part of the double layer. The potential at the surface of shear, 
the dividing line between the fixed and mobile portions of the double layer, is called the 
zeta potential (( potential). The charge in the mobik portion of the ,double layer depends 
on the ( potential and therefore the magnitude of all ofthe electrokinetic effects depends on 
(. It is commonly assumed that the entire diffuse portion of the double layer is mobile ; if 
this is so, then the ( potential is the value of ¢ at the position x = 6 in Fig. 18 . 19 . It is more 
likely that part of the diffuse layer is fixed so that the value of ( corresponds to the value of 
¢ at a distance of perhaps two or three times 6.  In any case, ( has the same sign and same 
general magnitude as the value of ¢ at x = 6. 

1 8 . 1 6 C O L LO I D S  

A colloidal dispersion has traditionally been defined as a suspension o f  small particles in a 
continuous medium. Because of their ability to scatter light and the apparent lack of 
osmotic pressure, these particles were recognized to be much larger than simple small 
molecules such as water, alcohol, or benzene and simple salts like NaCI. It was assumed 
that they were aggregates of many small molecules, held together in a kind of amorphous 
state quite different from the usual crystalline state of these substances. Today we recognize 
that many of these " aggregates " are in fact single molecules that have a very high molar 
mass. The size limits are difficult to specify but if the dispersed particles are between 1 11m 
and 1 nm, we might say that the system is a colloidal dispersion. The anthracene molecule, 
which is 1 .09 1 nm across the wide dimension, is one example of the specification problems. 
It is not clear that we would describe all anthracene solutions as colloids. However, a sphere 
with this same diameter could contain an aggregate of about 27 water molecules. It might 
be useful to call that aggregate a colloidal particle. 

There are two classical subdivisions of colloidal systems : (1) lyophilic, or solvent-loving 
colloids (also called gels) and (2) lyophobic, or solvent-fearing colloids (also called sols). 
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1 8 . 1 6 . 1  Lyo ph i l i c  C o l l o i d s  

The lyophilic colloids are invariably polymeric molecules o f  one sort o r  another, s o  that the 
solution consists of a dispersion of single molecules. The stability of the lyophilic colloid is 
a consequence of the strong, favorable solvent-solute interactions. Typical lyophilic 
systems would be proteins (especially gelatin) or starch in water, rubber in benzene, and 
cellulose nitrate or cellulose acetate in acetone. The process of solution may be rather slow. 
The first additions of solvent are slowly absorbed by the solid, which swells as a result (this 
stage is called imbibition). Further addition of solvent together with mechanical kneading 
(as in the case of rubber) slowly distributes the solvent and solute uniformly. In the case of 
ordinary gelatin, the solution process is aided considerably by raising the temperature. 
As the solution cools, the long and twisted protein molecules become entangled in a net
work with much open space between the molecules. The presence of the protein induces 
some structure in the water, which is physically trapped in the interstices of the network. 
The result is a gel. The addition of gross amounts of salts to a hydrophilic gel will ultimately 
precipitate the protein. However, this is a consequence of competition between the protein 
and the salt for the solvent, water. Lithium salts are particularly effective because of the 
large amount of water than can be bound by the lithium ion. The charge of the ion is not a 
primary determinant of its effectiveness as a precipitant. We will deal in detail with prop
erties such as light scattering, sedimentation, precipitation, and the osmotic properties of 
lyophilic colloids in Chapter 35 where we discuss polymeric molecules. 

1 8. 1 6 . 2  Lyo p h o b i c  C o l l o i d s  

The lyophobic colloids are invariably substances that are highly insoluble in  the dispersing 
medium. The lyophobic colloids are usually aggregates of small molecules (or in cases 
where a molecule is not defined, such as AgI, they consist of a rather large number of units 
of formula). The lyophobic dispersion can be prepared by grinding the solid with the 
dispersing medium in a " colloid mill," a ball mill, which over a prolonged period of time 
reduces the substance to a size in the colloidal range, < 1 11m. More often the lyophobic 
dispersion, the sol, is produced by precipitation under special conditions in which a large 
number of nuclei are produced while limiting their growth. Typical chemical reactions for 
the production of sols are : 

Hydrolysis 

Pouring a solution of FeC13 into a beaker of boiling water produces a deep red sol of 
Fe(OH)3 · 

Metathesis 

Reduction 

AgN03 + KI � AgI(colloid) + K + + N03" 

S02 + 2 H2S � 2 S(colloid) + 2 H20 

2AuC13 + 3 H20 + 3 CH20 � 2Au(colloid) + 3 HCOOH + 6 H+ + 6 Cl-

One classic method for producing metal sols i s  t o  pass an arc between electrodes of the 
desired metal immersed in water (Bredig arc). The vaporized metal forms aggregates of 
colloidal size. 

Since the sols are extremely sensitive to the presence of electrolytes, preparative reac
tions that do not produce electrolytes are better than those that do. To avoid precipitation 
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of the sol by the electrolyte, the sol can be purified by dialysis. The sol is placed in a collodion 
bag and the bag is immersed in a stream of flowing water. The small ions can diffuse through 
the collodion and be washed away, while the larger colloid particles are retained in the bag. 
The porosity of the collodion bag can be adjusted over a fairly wide range by varying the 
preparation method. A bare trace of electrolyte is needed to stabilize the colloid since sols 
derive their stability from the presence ofthe electrical double layer on the particle. If AgI is 
washed too clean, the sol precipitates. Addition of a trace of either AgN03 to provide a 
layer of adsorbed Ag+ ion or KI to provide a layer of adsorbed r ions will often resuspend 
the colloid ; this process is called peptization. 

1 8 . 1 6 . 3  E l ectr i ca l D o u b le Layer a n d  Sta b i l i ty of Lyo p h o b i c  C o l l o i ds 

The stability of a lyophobic colloid is a consequence of the electrical double layer at the 
surface of the colloidal particles. For example, if two particles of an insoluble material do 
not have a double layer, they can come close enough that the attractice van der Waals force 
can pull them together. In contrast to this behavior suppose that the particles do have a 
double layer, as shown in Fig. 1 8 .21 .  The overall effect is that the particles repel one another 
at large distances of separation since, as two particles approach, the distance between like 
charges (on the average) is less than that between unlike charges. This repulsion prevents 
close approach of the particles and stabilizes the colloid. Curve (a) in Fig. 1 8.22 shows the 
potential energy due to the van der Waals attractive force as a function of the distance of 
separation between the two particles ; curve (b) shows the repulsion energy. The combined 
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curve for double-layer repulsion and van der Waals attraction is shown by curve (c). So 
long as curve (c) has a maximum, the colloid will have some stability. 

The addition of electrolytes to the sol suppresses the diffuse double layer and reduces 
the zeta potential. This drastically decreases the electrostatic repulsion between the particles 
and precipitates the colloid. The colloid is particularly sensitive to ions of the opposite sign. 
A positively charged sol such as ferric oxide is precipitated by negative ions such as Cl 
and SO� - .  These ions are incorporated into the fixed portion of the double layer, reducing 
the net charge on the particle. This lowers the ( potential, which reduces the repulsion 
between the particles. Similarly, a negative sol will be destabilized by positive ions. The 
higher the charge on the ion the more effective it is in coagulating the colloid (the Schulz
Hardy rule). The minimum concentration of electrolyte needed to produce rapid co
agulation is roughly in the ratio of 1 :  10 : 500 for triply, doubly, and singly charged ions. 
The ion having the same charge as the colloidal particle does not have much effect on the 
coagulation, except for its assistance in suppressing the diffuse part of the double layer. 
Since the double layer contains very few ions, only a small concentration of electrolyte is 
needed to suppress the double layer and precipitate the colloid. 

1 8 . 1 7 C O L LO I DA L  E L E CT R O LYTES ; SOAPS A N D D ET E R G E NTS 

The metal salt of a long-chain fatty acid is a soap, the most common example being sodium 
stearate, C1 7H3 SCOO -Na + . At low concentrations the solution of sodium stearate con
sists of individual sodium and stearate ions dispersed throughout the solution in the same 
way as in any ordinary salt solution. At a rather definite concentration, the critical micelle 
concentration, the stearate ions aggregate into clumps, called micelles (Fig. 1 8 .23). The 
micelle contains perhaps 50 to 100 individual stearate ions. The micelle is roughly spher
ical and the hydrocarbon chains are in the interior, leaving the polar -COO - groups 
on the outer surface. It is the outer surface that is in contact with the water, and the polar 
groups on the outer surface stabilize the micelle in the water solution. The micelle is the 
size of a colloidal particle ; since it is charged, it is a colloidal ion. The micelle binds a 
fairly large number of positive ions to its surface as counter ions which reduces its charge 
considerably. 

The formation of micelles results in a sharp drop in the electrical conductivity 
per mole of the electrolyte. Suppose 100 sodium and 100 stearate ions were present 
individually. If the stearate ions aggregate into a micelle and the micelle binds 70Na + as 
counter ions, then there will be 30Na + ions and 1 micellar ion having a charge of - 30 
units ; a total of 31 ions. The same quantity of sodium stearate would produce 200 ions as 
individuals but only 31 ions if the micelle is formed. This reduction in the number of ions 
sharply reduces the conductivity. The formation of micelles also reduces the osmotic 
pressure of the solution. The average molar mass, and thus an estimate of the average 
number of stearate ions in the micelle, can be obtained from the osmotic pressure. 

By incorporating molecules of hydrocarbon into the hydrocarbon interior of the 
micelle, the soap solution can act as a solvent for hydrocarbons. The action of soap as a 
cleanser depends in part on this ability to hold grease in suspension. 

The detergents are similar in structure to the soaps. The typical anionic detergent is an 
alkyl sulfonate, ROS03Na + . For good detergent action, R should have at least 16 carbon 
atoms. Cationic detergents are often quaternary ammonium salts, in which one alkyl 
group is a long chain ; (CH3)3RN+ Cl- is a typical example if R has between 12 and 1 8  
carbon atoms. 



(a) 

F i g u re 1 8 . 23 A schematic d i agram 
of a mice l le composed of (a )  an  
n-decane-sa lt  soap ;  (b)  the mice l le  
has i n corporated a few polar  mole
c u l es (n- pentano l ) ; (c)  the mice l le  
has i ncorporated some nonpo lar  
molecu les ( nonane) . ( From J .  L .  
Kavanau ,  Structure and Function in 
Biological Membranes, vol .  I .  San 
Franc isco : Ho lden- Day, 1 965 . )  

1 8 . 1 8  E M U LS I O N S  A N D F OA M S  

Emu ls ions and Foams 439 

(b) 

(c) 

Water and oil can be whipped or beaten mechanically to produce a suspension of finely 
divided oil droplets in water, an emulsion. Mayonnaise is a common household example. 
It is also possible to produce an emulsion consisting of water droplets in a continuous oil 
phase (for example, butter). In either type of emulsion, the large interfacial tension between 
water and oil coupled with the very large interfacial area implies that the emulsion has a 
high Gibbs energy compared with the separated phases. To supply this Gibbs energy an 
equal amount of mechanical work must be expended in the whipping or beating. 

The addition of a surface active agent, such as a soap or detergent, or any molecule 
with a polar end and a large hydrocarbon end, to the separated system of oil and water 
lowers the interfacial tension markedly. In this way the Gibbs-energy requirement for 
formation of the emulsion can be lowered. Such additives are called emulsifying agents. 
The interfacial tension is lowered because of the adsorption of the surface active agent 
at the interface with the polar end in the water and the hydrocarbon end in the oil. The 
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interfacial tension decreases just as it does when a monomolecular film of stearic acid is 
spread on a water surface in the Langmuir experiment. 

Foams consist of a large number of tiny gas bubbles in a continuous liquid phase. A 
thin film of liquid separates any two gas bubbles. As in the case of emulsions, the surface 
energy is high and foaming agents are added to lower the interfacial tension between liquid 
and gas. The foaming agents are the same type of surface active agents as the emulsifying 
agents. Since the bubbles in the foam are fragile, other additives are needed to give the foam 
an elasticity to stabilize the foam against mechanical shock. Long-chain alcohols (or if a 
soap is the foaming agent, the undissociated acid) can serve as foam stabilizers. 

QU ESTI O N S  

18.1 Suggest a Gibbs-energy argument for why a liquid drop is spherical. 
18.2 What happens to the surface tension at the gas-liquid critical point ? 
18.3 Why should the Langmuir adsorption isotherm be more reliable, at high gas pressures, for 

chemisorption than for physical adsorption ? 
18.4 Colloidal particles of the same charge immersed in an electrolyte solution attract each other by 

van der Waals forces and repel each other by Debye screened interactions (see Eq. 16 .70). Why 
does the ease of coagulation increase rapidly with increasing solution ionic strength ? 

18.5 Describe the roles of both the inner and outer portions of the micelle in the action of soap. 

P R O B LE M S  

18.1 One cm3 of water is broken into droplets having a radius of 10- 5 em. If the surface tension of 
water is 72.75(10- 3) N/m at 20 °C, calculate the Gibbs energy of the fine droplets relative to 
that of the water. 

18.2 An emulsion of toluene in water can be prepared by pouring a toluene-alcohol solution into 
water. The alcohol diffuses into the water and leaves the toluene behind in small droplets. If 
10 g of a solution that is 15 % ethanol and 85 % toluene by mass is poured into 10 g of water, 
an emulsion forms spontaneously. The interfacial tension between the suspended toluene 
droplets and the water-alcohol mixture is 0.036 N/m, the average diameter of the droplets is 
10- 4 cm, and the density of toluene is 0.87 g/cm3 . Calculate the increase in Gibbs energy 
associated with the formation of the droplets. Compare this increase with the Gibbs energy of 
mixing of the alcohol and water at 25 °C. 

18.3 As a vapor condenses to liquid and a droplet grows in size, the Gibbs energy of the droplet 
varies with its size. For a bulk liquid, Gvap - Gliq = I:iHvap - T I:iSvap ; if I:iHvap and I:iSvap are 
independent of temperature, then I:iSvap = I:iHvaplTb , where Tb is the boiling point. If we take 
Gvap = O, then Gliq = - I:iHvap(l - 17Tb). If Gliq and I:iHvap refer to the values per unit volume of 
liquid, then the total Gibbs energy ofthe volume V of bulk liquid is G' = VGliq = - V I:iHvap(l -
T ITb) . If we speak of a fine droplet rather than the bulk liquid then a term yA, where A is the 
area of the droplet, must be added to this expression G' = - V Mvap(l - T ITb) + yA. 
a) Show that for a spherical droplet, the Gibbs energy of the droplet is positive when the drop 

is small, then passes through a maximum, and then decreases rapidly as the radius increases. 
If T < Tb , at what value of the radius r does G' = O? Show that at larger values of r, G' 
is negative. Keeping in mind that we chose Gvap = 0, what radius must the droplet have 
before it can grow spontaneously by condensation from the vapor ? 

b) At 25 °C for water y = 7 1 .97 X 10- 3 J/m2, I:iHvap = 2443.3  Jig, and the density is 
0.9970 gjcm3 . What radius must a water droplet have before it grows spontaneously ? 
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18.4 In the duNouy tensiometer, the force required to pull up a ring of fine wire lying in the surface 
of the liquid is measured. If the diameter of the ring is 1 .0  cm and the force needed to pull the 
ring up (with the surface of the liquid attached to the inner and outer periphery of the ring) 
is 6.77 mN, what is the surface tension of the liquid ? 

18.5 At 25 °C, the density of mercury is 13 .53  g/cm 3 and y = 0.484 N/m. What would be the capillary 
depression of mercury in a glass tube of 1 mm inner diameter if we assume that () = 1 80°? 
Neglect the density of air. 

18.6 In a glass tube, water exhibits a capillary rise of 2.0 cm at 20 °C. If p = 0.9982 g/cm3 and y = 
72.75 x 10- 3 N/m, calculate the diameter of the tube (() = 0°). 

18.7 If a 30-metre-tall tree were supplied by sap that is drawn up solely by capillary elevation, what 
would the radius of the channels have to be ? Assume that the density of the sap is 1 .0 g/cm3, 
() = 0°, and y = 73 x 10- 3 N/m. Neglect the density of air. (Note : Sap rises mainly by osmotic 
pressure.) 

18.8 A microscope-cover glass with a perimeter of 2 . 100 cm is used in the Wilhelmy apparatus. A 
10.00 mL sample of water is placed in the container and the beam is balanced. The water is 
removed and is replaced by 10.00 mL samples of 5 .00 %, 10.00 %, and 20.00 % acetone (mass %) 
in the same container. To restore the balance in each case, the following masses had to be 
removed : 35 .27 mg, 49.40 mg, and 66. 1 1  mg. Calculate the surface tension of each solution if the 
surface tension of water is 7 1 .97 x 10- 3 N/m. The effect of density differences can be neglected. 

18.9 Consider a fine-capillary tube of radius = 0.0500 cm, which just dips into a liquid with a surface 
tension equal to 0.0720 N/m. What excess pressure is required to blow a bubble with a radius 
equal to that of the capillary ? Assume that the depth of immersion is negligible. 

18.10 An excess pressure of 364 Pa is required to produce a hemispherical bubble at the end of a 
capillary tube of 0.300 mm diameter immersed in acetone. Calculate y.  

18.11 Consider two soap bubbles, one with a radius r l = 1 .00 cm and the other with a radius r2 = 
2.00 cm. What is the excess pressure inside each bubble if y = 0.030 N/m for the soap solution ? 
If the bubbles collide and stick together with a film between them, what is the radius of curvature 
of this film? On which side is the center of curvature ? Keep in mind that in going from the 
outside to the inside of a soap bubble, two interfaces are passed. 

18.12 Two bubbles of different radii are connected by a hollow tube. What happens ? 

18.13 At 20 °C the interfacial tension between water and benzene is 35 mN/m. If y = 28.85 mN/m 
for benzene and 72.75 mN/m for water (assuming that () = 0), calculate 

a) the work of adhesion between water and benzene ; 
b) the work of cohesion for benzene and for water ; 
c) the spreading coefficient for benzene on water. 

18.14 If, at 20 °C, for pure CH2I2 y = 50.76 mJ/m2 and for pure water y = 72.75 mJ/m2, and the 
interfacial tension is 45.9 mJ/m2, calculate 

a) the spreading coefficient for CH2I2 on water ; 
b) the work of adhesion between CH212 and H20. 

18.15 Assuming that crystals form as tiny cubes having edge length (j, calculate the freezing point 
of ice consisting of small crystals relative to the freezing point of infinitely large crystals ; To = 
273. 1 5K. Assume that the interfacial tension is 25 mN/m ; �H�us = 6.0kJjmol ; 17s = 20cm3/mol. 
Calculate for (j = 10 11m, 1 11m, 0 .1  /im, 0.01 11m, and 0.001 11m. 

18.16 Calculate the solubility of crystals of BaS04 having edge lengths of 1 11m, 0. 1 11m, and 0.01 11m, 
relative to the solubility of coarse crystals at 20 °C. Assume y = 500 mJ/m2 ; p = 4.50 g/cm3. 

18.17 At 20 DC the density of CCl4 is 1 .59 g/cm3, y = 26.95 mN/m. The vapor pressure is 1 1 .50 kPa. 
Calculate the vapor pressure of droplets with radii of 0. 1 11m, 0.01 11m, and 0.001 11m. 
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18.18 For water the surface tension depends on temperature according to the rule 

Y = Yo (l - 3�8r2 

where t is the Celsius temperature and Yo = 75 .5 X 10- 3 J/m2 . Calculate the value of gO, so, 

and UO at 30-degree intervals from 0 DC to 368 DC. Plot these values as a function of t. (Note : 
The critical temperature of water is 374 °C.) 

18.19 Stearic acid, C1 7H3 SCOOH, has a density of 0.85 g/cm3. The molecule occupies an area of 
0.205 nm2 in a close-packed surface film. Calculate the length of the molecule. 

18.20 Hexadecanol, CI 6H3 30H, has been used to produce monomolecular films on reservoirs to 
retard the evaporation of water. If the cross-sectional area of the alcohol in the close-packed 
layer is 0.20 nm2, how many grams of the alcohol are required to cover a lO-acre (� 40,000 m2) 
lake ? 

18.21 The number of cubic centimetres of methane, measured at STP, adsorbed on 1 g of charcoal 
at 0 °C and several different pressures is 

plmmHg 100 200 300 400 

cm3 adsorbed 9.75 14.5 18.2 21 .4 

Plot the data using the Freundlich isotherm and determine the constants k and lin. 
18.22 a) The adsorption of ethyl chloride on a sample of charcoal at O °C and at several different 

pressures is 

plmmHg 20 50 100 200 300 

grams adsorbed 3.0 3.8 4.3 4.7 4.8 

Using the Langmuir isotherm, determine the fraction of the surface covered at each pressure. 
b) lf the area of the ethyl chloride molecule is 0.260 nm2, what is the area of the charcoal ? 

18.23 The adsorption of butane on an NiO powder was measured at 0 DC ; the volumes of butane at 
STP adsorbed per gram of NiO are : 

p/kPa 7. 543 1 1 .852 16.448 20.260 22.959 

vl(cm3/g) 16.46 20.72 24.38 27. 1 3  29.08 

a) Using the BET isotherm, calculate the volume at STP adsorbed per gram when the powder 
is covered by a monolayer ; pO = 103.24 kPa. 

b) If the cross-sectional area of a single butane molecule is 44.6 x 10- 20 m2, what is the area 
per gram of the powder ? 

c) Calculate 13 1 , 132 , 133 , and I3v at 10 kPa and 20 kPa. 
d) Using the Langmuir isotherm, calculate 13 at 10 kPa and 20 kPa and estimate the surface 

area. Compare with the area in (b). 
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18.24 By considering the derivation of the Langmuir isotherm on the basis of a chemical reaction 
between the gas and the surface, show that if a diatomic gas is adsorbed as atoms on the surface, 
then () = K i /zpl /Z/(1 + Kl/Zpl/Z). 

18.25 a) At 30 °C, the surface tensions of acetic acid solutions in water are 

wt % acid 2.475 5.001 10.01 30.09 49.96 69.91  

y/( lO- 3 N/m) 64.40 60. 10 54.60 43.60 38 .40 34.30 

Plot y versus In m and determine the surface excess of acetic acid using the Gibbs adsorption 
isotherm. (Note : We can use the molality, m, in the isotherm instead of Cz , the molarity.) 

b) At 25 °C, the surface tensions of propionic acid solutions in water are 

wt % acid 1 . 9 1  5.84 9.80 2 1 .70 

y/( 1O- 3 N/m) 60.00 49.00 44.00 36.00 

Calculate the surface excess of propionic acid. 
18.26 Consider the two systems, 10 cm3 of liquid water and 10 cm3 of liquid mercury, each in a separate 

200 mL beaker. For water on glass, () = 0° ; for mercury on glass () = 1 80°. If we turned off the 
gravity field, how would each system behave ? 





T h e  Stru ct u re of atter 

1 9 . 1  I NT R O D U CTI O N  

The notion that matter consists of discrete, indivisible particles (atoms) is quite ancient. 
The pre-Christian writers Lucretius and Democritus constructed elaborate speculative 
natural philosophies based on the supposition of the atomicity of matter. In the absence of 
experimental evidence to support them, these early atomic theories bore no fruit . 

Modern atomic theory is based on the quantitative observation of nature ; its first 
proposal by Dalton came after a period in which quantitative measurement had risen to 
importance in scientific investigation. In contrast to the ancient theories, modern atomic 
theory has been exceedingly fruitful. 

To put modern theory in some perspective, it is worthwhile to trace some of its 
development, at least in bare outline. We shall not attempt anything that could be dignified 
by the name of history, but only call attention to some major mileposts and courses of 
thought. 

1 9 . 2  N I N ET E E N T H  C E N T U RY 

In the period 1775-1780, Lavoisier established chemistry as  a quantitative science by 
proving that in the course of a chemical reaction the total mass is unaltered. The con
servation of mass in chemical reactions proved ultimately to be a death blow to the 
phlogiston theory. Shortly after Lavoisier, Proust and Dalton proposed the laws of definite 
and multiple proportions. In 1 803 Dalton proposed his atomic theory. Matter was made 
up of very small particles called atoms. Every kind of atom has a definite weight. The atoms 
of different elements have different weights. Compounds are formed by atoms which 
combine in definite ratios of (usually small) whole numbers. This theory could give a 
satisfying interpretation of the quantitative data available at the time. 
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Gay-Lussac's experiments on gas volumes in 1 808 led to the law of combining volumes. 
The volumes of the reactant gases are related to those of the product gases by simple ratios 
of whole numbers. Gay-Lussac suggested that equal volumes of different gases contained 
the same number of atoms. This suggestion was rejected. At that time attempts to con
struct a table of atomic weights were mired in contradictions, since it was supposed that the 
" atom " of the simplest compound of two elements was formed by combination of two 
single atoms of the elements ; the formation of water and of ammonia would be written 

H + O � OH and H + N � NH. 

This would require a ratio of atomic weights N/O = 7/12. No compound of nitrogen and 
oxygen exhibiting such a ratio of combining weights was known. 

By distinguishing between an atom, the smallest particle that can take part in a 
chemical change, and a molecule, the smallest particle that can exist permanently, Avogadro 
(1 8 1 1) removed the contradictions in the weight ratios by supposing that the molecules of 
certain elementary gases were diatomic ; for example, H2 , N 2 , O2 , C12 . He also proposed 
what is now Avogadro's law : under the same conditions of temperature and pressure equal 
volumes of all gases contain the same number of molecules. These ideas were ignored and 
forgotten until 1858  when Cannizaro used them with the law of Dulong and Petit (c. 1 8 16) 
to establish the first consistent table of atomic weights. Chaos reigned in the realm of 
chemical formulas in the fifty-five year interval between the announcement of the atomic 
theory and the construction of a table of atomic weights substantially the same as the 
modern one. 

A parallel development began in 1 832 when Faraday announced the laws of elec
trolysis. First law : the weight of material formed at an electrode is proportional to the 
quantity of electricity passed through the electrolyte. Second law : the weights of different 
materials formed at an electrode by the same quantity of electricity are in the same ratio as 
their chemical equivalent weights. It was not until 1 8 8 1  when Helmholtz wrote that 
acceptance of the atomic hypothesis and Faraday's laws compelled the conclusion that 
both positive and negative electricity were divided into definite elementary portions, 
" atoms " of electricity ; a conclusion that today seems obvious waited fifty years to be 
drawn. From 1 880 onward, intensive study of electrical conduction in gases led to the 
discovery of the free electron (J. 1. Thomson, 1 897), positive rays, and x-rays (Roentgen, 
1 895). The direct measurement of the charge on the electron was made by Millikan, 1 9 1 3. 

Another parallel development began with Count Rumford's experiment (c. 1798) of 
rubbing a blunt boring tool against a solid plate. (He was supposed to be boring cannon at 
the time ; no doubt his assistants thought him a bit odd.) The tool and plate were immersed 
in water and the water finally boiled. This suggested to Rumford that " heat " was not a fluid, 
" caloric," but a form of motion. Later experiments, particularly the careful work of Joule 
in the 1 840s, culminated in the recognition of the first law of thermodynamics in 1 847. 
Independently, Helmholtz in 1 847 proposed the law of conservation of energy. The second 
law of thermodynamics, founded on the work of Carnot in 1824, was formulated by Kelvin 
and Clausius in the 1 850s. 

In the late 1 8508 the kinetic theory of gases was intensively developed and met with 
phenomenal success. Kinetic theory is based on the atomic hypothesis and depends 
importantly on Rumford's idea of the relation between " heat " and motion. 

The chemical achievements, particularly in synthetic and analytical chemistry, in the 
19th century are staggering in number ; we mention only a few. The growth of organic 
chemistry after Wohler's synthesis of urea, 1 824. The stereochemical studies of van't Hoff, 
LeBel, and Pasteur. The chemical proof of the tetrahedral arrangement of the bonds about 
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the carbon atom ; Kekule's structure for benzene. Werner's work on the stereochemistry of 
inorganic complexes. The work of Stas on exact atomic weights. The Arrhenius theory of 
electrolytic solutions. Gibbs's treatise on heterogeneous equilibria and the phase rule. 
And in fitting conclusion, the observation of chemical periodicity : Dobereiner's triads, 
Newland's octaves, climaxed by the periodic law of Mendeleev and Meyer, 1 869- 1 870. 

In the preceding chronicles, those developments that supported the atomic idea were 
stressed. On the other hand, Maxwell's development of electromagnetic theory, an un
dulatory theory, is an important link in the chain. Another fact of great consequence is that 
in the latter part of the 19th century a great amount of experimental work was devoted to 
the study of spectra. 

Today it is difficult to imagine the complacency of the physicist of 1 890. Classical 
physics was a house in order : mechanics, thermodynamics, kinetic theory, optics, and 
electromagnetic theory were the main foundations-an imposing display. By choosing 
tools from the appropriate discipline any problem could be solved. Of course, there were 
one or two problems that were giving some trouble, but everyone was confident that these 
would soon yield under the usual attack. There were two parts in this house of physics : the 
corpuscular and the undulatory, or the domain of the particle and the domain of the 
wave. Matter was corpuscular, light was undulatory, and that was that. The joint between 
matter and light did not seem very smooth. 

1 9 . 3  T H E EA RT H Q U A K E  

I t  i s  difficult t o  describe what happened next because everything happened s o  quickly. 
Within thirty-five years classical physics was shaken to the very foot of the cellar stairs. 
When the dust settled, the main foundations remained, not too much the worse for wear. 
But entirely new areas of physics were opened. Again only the barest mention of these 
events must suffice for the moment : the discovery of the photoelectric effect by Hertz in 
1 887. The discovery of x-rays by Roentgen in 1 895 .  The discovery of radioactivity by 
Becquerel in 1896. The discovery of the electron by J. J. Thomson in 1 897. The quantum 
hypothesis in blackbody radiation by Planck in 1900. The quantum hypothesis in the 
photoelectric effect by Einstein in 1905. Thomson's model of the atom in 1907. The 
scattering experiment with IX-particles by Geiger, Marsden, and Rutherford in 1909. The 
nuclear model of the atom of Rutherford in 1 9 1 1 .  Quantitative confirmation of Rutherford's 
calculations on scattering by Geiger and Marsden in 1 9 1 3. The quantum hypothesis 
applied to the atom, the Bohr model of the atom, in 19 13 . Another development in the first 
decade which does not concern us directly here is the Einstein theory of relativity. 

The year 19 13  marks a major climax in the history of science. The application of 
Planck's quantum hypothesis to blackbody radiation, and later by Einstein to the photo
electric effect, had met with disbelief and in some quarters even with scorn. Bohr's applica
tion to the theory of the hydrogen atom compelled belief and worked a revolution in 
thought. In the following ten years this new knowledge was quickly assimilated and applied 
with spectacular success to the interpretation of spectra and chemical periodicity. 

A new series of discoveries was made in the third decade of the 20th century. The 
theoretical prediction of the wave nature of matter by de Broglie in 1924. Experimental 
verification ; measurement of the wavelength of electrons by Davisson and Germer in 1927. 
The quantum mechanics of Heisenberg and Schrodinger in 1925- 1926. Since then 
quantum mechanics has been successful in all of its applications to atomic problems. In 
principle any chemical problem can be solved on paper using the Schrodinger equation. In 
practice, the computations are so laborious for most chemical problems that experimental 
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chemistry is, and will be for many years, a very active field. This attitude must be dis
tinguished from that of the complacent physicist of 1890. Although the theoretical basis for 
attacking chemical problems is well understood today-and it is unlikely that this 
foundation will be overturned -we recognize our limitations. We break off the chronology 
in 1927. Those discoveries since 1927 that concern us will be dealt with as they are needed. 

Looking back on the developments before 1927 we see two main consequences. 
Radiation, which was a wave phenomenon in classical physics, was endowed with a particle 
aspect by the work of Planck, Einstein, and Bohr. Electrons and atoms, which were 
particles in the classical view, were given a wave aspect by the work of de Broglie, 
Schrodinger, and Heisenberg. The two parts of classical physics that did not join smoothly 
are brought together in a unified way in the quantum mechanics. The dual nature of matter 
and of light, the wave-particle nature, permits this unification. 

1 9 . 4  D I S CO V E R Y  O F  T H E E L E CT R O N  

From the time of Dalton, atoms were indivisible. The discovery of the electron by J. J. 
Thomson in 1 897 was the first hint of the existence of particles smaller than atoms. 
Thomson's discovery allowed speculation about the interior structure of the atom and 
extended the hope that such speculation could be verified experimentally. 

The studies of electrical conduction in gases had led to the discovery of cathode rays. 
If a glasstube fitted with two electrodes connected to a source of high potential is evacuated, 
a spark will jump between the electrodes. At lower pressures the spark broadens to a glow 
that fills the tube ; at still lower pressure various dark spaces appear in the glowing gas. At 
very low pressures the interior of the tube is dark, but its walls emit a fluorescence, the color 
of which depends only on the kind of glass. It was soon decided that the cathode was 
emitting some kind of ray, a cathode ray, which impinged on the glass wall and produced 
the fluorescence. Objects placed in the path of these cathode rays cast a shadow on the walls 
of the tube ; the rays are deflected by electric and magnetic fields. Figure 19 . 1 shows the 
device used by J. J. Thomson in his famous experiments which showed that the cathode ray 
was a stream of particles, later called electrons. 

In the highly evacuated tube, cathode rays are emitted from the cathode C. Two slotted 
metal plates A and A' serve as anodes. Passage through the two slots collimates the beam, 
which then moves in a straight line to hit the spot P at which the fluorescence appears. An 

Glass envelope 

M 

F i g u re 1 9 . 1  Device to measu re elm for  cathode rays. 
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. electric field can be applied between the plates M and M' ;  a magnetic field can be applied in 
the region of M and M' but perpendicular to the plane of the drawing. The forces produced 
on the ray by the fields act in the vertical direction only ; the horizontal component of 
velocity is unaffected by the fields. Two experiments are done. 

The electrical field E is applied, which pulls the beam downward and deflects the spot 
to P' ; the magnetic field, with a flux density B is applied and adjusted so that the spot 
returns to the original position P. If the beam consists of particles of charge e and mass m, 
then the force on the beam due to the electrical field is eE, and that due to the magnetic 
field is Bev, where v is the horizontal component of velocity of the particle. Since these 
forces are in balance, eE = Bev, and we obtain the horizontal velocity component in terms 
of E and B :  

(19 . 1 )  

In the second experiment, the magnetic field is turned off, and the deflection P pi  under 
the electrical field only is measured. Since the force is eE, the vertical acceleration is eElm. 
The time to pass through the field is t = Llv. After this time, the vertical component of 
velocity w = (eElm)t ;  in this same time the vertical displacement is s = !(eElm)t2 . The 
value of s can be calculated from the displacement PP' and the length L'. Using the value 
for t, we have elm = 2sv21EL2, and using the value for v from Eq. (19 . 1) 

e 2sE 
m B2L2 ' ( 19 .2) 

The experiment yields the value of elm for the particles. The present value of this ratio is 

� = 1 .758804 X 101 1  C/kg. m 
From the direction of the deflection it is apparent that e is negative. 

Earlier experiments on electrolysis had measured the ratio of charge to mass of hydro
gen, the lightest atom. The present value is 

(;t = 9.57354 X 107 C/kg. 

The elm for the cathode particles was about 1837 times larger than that of hydrogen. At the 
time it was not known whether this was because of a difference in charge or mass or both. 
In 19 13, R. A. Millikan measured the charge on the electron directly, the " oil-drop " 
experiment. The present value is 

e = 1 .6021 892 x 10- 1 9 C. 

Combining this with the elm value, we obtain for the electron mass 

m = 9. 109534 x 10- 3 1  kg. 

From the atomic weight of hydrogen, and the value of the Avogadro number from kinetic 
theory, the average mass of the hydrogen atom could be estimated. The present value is 

mH = 1 .6737 x 10- 2 7 kg. 

It was finally apparent that the charge on the hydrogen ion was equal and opposite to 
that on the electron, while the mass of the electron was very much less (1837. 1 5 1  times less) 
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than that of the hydrogen atom. Being less massive, the electron was a more elementary 
particle than the atom. Presumably atoms were composites of negative electrons and 
positively charged matter, which was much more massive. Mter Thomson's work it was 
possible to think of how atoms could be built with such materials. 

1 9 . 5  P O S IT IVE RAYS A N D I S OTO P E S  

The discovery of positive rays, canal rays, by  Goldstein in 1 886 i s  another important result 
of the studies of electrical condition in gases. The device is shown in Fig. 19 .2. 

The cathode C has a hole, a canal, drilled through it. In addition to the usual discharge 
between A and C, a luminous stream emerges from the canal to the left of the cathode. This 
ray is positively charged and, reasonably enough, is called a positive ray. The systematic 
study of positive rays was long delayed, but it was determined at an early date that their 
characteristics depended on the kind of residual gas in the tube. In contrast, the cathode ray 
did not depend on the residual gas. 

Thomson was engaged in the measurement of the elm of positive rays by the same 
general method as he used for the electron when, in 1 9 1 3, he discovered that neon consisted 
of two different kinds of atoms : one having fl. mass of 20, the other having a mass of 22. 
These different atoms of the same element are called isotopes, meaning " same place " (that 
is, in the periodic table). Since this discovery that an element may contain atoms of different 
mass, the isotopic constitution of all the elements has been determined. Moreover, as is 
well known, in recent years many artificial isotopes have been synthesized by the high
energy techniques of physics. 

Isotopes of an element are almost indistinguishable chemically, since the external 
electron configurations are the same. Their physical properties differ slightly because of the 
difference in mass. The differences are most pronounced with the lightest elements, since 
the relative difference in mass is greatest. The differences in properties of isotopes are most 
marked in the positive-ray tube itself, where the strengths of the applied electrical and 
magnetic fields can be adjusted to spread the rays having different values of elm into a 
pattern resembling a spectrum, called a mass spectrum. The modern mass spectrometer is a 
descendant of Thomson's elm apparatus. 

( 
1 9 . 6  R A D I OACTIVITY 

F i g u re 1 9 .2  S i mp le  positive- ray tube .  

In 1 896, shortly after the discovery of x-rays, H. Becquerel tried to discover if fluorescent 
substances emitted x-rays. He found that a fluorescent salt of uranium emitted a penetrating 
radiation that was not connected with the fluorescence of the salt. The radiation could pass 
through several thicknesses of the black paper used to protect photographic plates and 
through thin metal foils. The radiation differed from x-radiation in that it could be resolved 
into three components, a-, p-, and y-rays, by the imposition of a strong magnetic field. The 
p-ray has the same elm as the electron ; the y-ray is undeflected in the field ; the a-ray is 
positively charged, with an elm value of one-half that of hydrogen. The p-ray is a 
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stream of electrons ; the IX-ray is a stream of helium nuclei ; the y-ray is a light ray of ex
tremely short wavelength. A great deal of effort was devoted to the study of radioactivity in 
the years that followed. The discovery of two new elements, polonium and radium, by 
Pierre and Marie Curie, was one of the notable accomplishments. 

The striking fact about radioactivity is that the rate of emission ofthe rays is completely 
unaffected by even the most drastic changes in external conditions such as chemical 
environment, temperature, pressure, and electrical and magnetic fields. The rays are 
emitted from the nucleus ; the lack of influence of external variables on this process shows 
that the situation in the nucleus is independent of these variables. Secondly, the energies of 
the emitted rays are of the order of one-million electron volts, (1 eV :::::; 96 kJ). This energy 
is enormously greater than that associated with any chemical transformation. 

The rate law for the radioactive decay of a nucleus is described in Section 32.4. 1 .  

1 9 . 7  A L P HA- R AY S CATTE R I N G  

In 1908 Thomson proposed a model of the atom : the positive charge was uniformly spread 
throughout a sphere of definite radius ; to confer electrical neutrality, electrons were 
imbedded in the sphere. For stability according to classical theory, the electrons had to be 
at rest. This requirement could be met for the hydrogen atom by having the electron at the 
center of the sphere. This model failed the crucial test provided by the scattering of IX
rays by thin metal foils. 

In 1909 Geiger and Marsden discovered that if a beam of IX-particles was directed at a 
thin gold foil, some of the IX-particles were scattered back toward the source. Figure 19 .3 
shows the experiment schematically. The majority of the IX-particles pass through the 
foil and can be detected at A. Some are scattered through small angles e and are detected 
at A' ;  remarkably, quite a few are scattered through large angles such as e' and can be 
detected at A". 

The scattering occurs because of the repulsion between the positive charge on the 
IX-particle and the positive charges on the atoms of the foil. If the positive charges on the 
atoms were spread uniformly, as in the Thomson model, the scattering would be the result 
of a gradual deflection of the particle as it progressed through the foil. The scattering angle 
would be very small. Rutherford reasoned that the scattering at large angles was due to a 
very close approach of the IX-particle to a positively charged center with subsequent 
rebound ; a single scattering event. By calculation he could show that to be scattered 
through a large angle in a single event the IX-particle would have to approach the positive 

A "  

Source 

Metal 
foil 

F i g u re 1 9 .3 The (X- ray scatter ing experiment. 
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part of the scattering atom very closely, to within 10- 14  m. The sizes of atoms were known 
to be about 10- 1 0  m. Since the mass of the atom is associated with the positively charged 
part of the atom, Rutherford's calculation implied that the positive charge and the mass 
of the atom are concentrated in a space which is very much smaller than that occupied 
by the atom as a whole. 

The nuclear model of the atom proposed by Rutherford supposed that the atom was a 
sphere of negative charge, not having much mass but having a tiny kernel or nucleus at the 
center in which the mass and positive charge are concentrated. Using the nuclear model, 
Rutherford calculated the angular distribution of scattered a-particles. Later experiments 
of Geiger and Marsden confirmed the predicted distribution in all its particulars. 

The Rutherford model had its difficulties. The sphere, uniformly filled with negative 
charge, was incompatible with the concept of the electron as a particle that should be 
localized in space. But it is not possible to take a positive discrete particle and a negative 
discrete particle, place them a certain distance apart, and ask them to stay put. Being 
oppositely charged, they will attract one another ; the electron will fall into the nucleus. 
Thomson's model did not have this type of instability. Matters are not helped by whirling 
the electron around in an orbit to achieve the stability of a satellite in orbit around a planet. 
The electrical attractive force could be balanced by the centrifugal force, but a fundamental 
objection arises. An electron in orbit is subject to a continual acceleration toward the 
center ; otherwise, the orbit would not be stable. Classical electromagnetic theory, con
firmed by Hertz's discovery of radio waves, required an accelerated electrical charge to 
emit radiation. The consequent loss of energy should bring the electron down in a spiral to 
the nucleus. This difficulty seemed insuperable. But less than two years later Niels Bohr 
found a way out. To appreciate Bohr's contribution we must return to 1900 and follow the 
course of another series of discoveries. 

1 9 . 8  R A D I ATi O N  A N D M ATT E R  

By 1900 the success of Maxwell's electromagnetic theory had firmly established the wave 
nature of light. One puzzle that remained was the distribution of wavelengths in a cavity, or 
blackbody ; the observed distribution had eluded explanation on accepted principles. In 
1900 Max Planck calculated the distribution, within the experimental error, in a completely 
mysterious way. Planck's work proved ultimately to be the key to the entire problem of 
atomic structure ; yet at first glance it seems to have little bearing on that problem. 

A perfect blackbody is one which adsorbs all the radiation, light, that falls on it. 
Experimentally the most nearly perfect blackbody is a pinhole in a hollow object. Radia
tion falling on the pinhole enters the cavity and is trapped (absorbed) within the cavity. Let 
the radiation in the cavity be brought to thermal equilibrium with the walls at a tempera
ture T. Since there is energy in the radiation, there is a certain energy density in the cavity, 
u = U IV, where U is the energy, V the volume, and u the energy density. From electro
magnetic theory, the pressure exerted by the radiation is p = 1U, and experiment shows that 
the energy density is independent of the volume ; that is, u = u(T). The relation between u 
and T is obtained from the thermodynamic equation of state, Eq. (10. 3 1 ) : 

G�)T 
= T(:� t - p. 

Since U = u(T)V, (oU/oVh = u(T). Also p = 1U(T), so that (op/oT)v = 1(du/dT). 
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The equation of state becomes du/dT = 4u/T. Integration yields 

u = aT4, (19 .3) 
where the constant a = 7.5657 x 10 - 1 6 J/m3 K4. The rate of emission of energy from a 
cavity per unit area of opening is proportional to the energy density within ; this rate is 
the total emissive power, et ; thus, 

( 19 .4) 
where the Stefan-Boltzmann constant (J = tea = 5.6703 x 10- 8 J/m2 s K4. Equation 
(19 .4) is the Stefan-Boltzmann law ; among other things it is used to establish the absolute 
temperature scale at very high temperatures. 

So far everything is fine ; we may keep our confidence in the second law of thermo
dynamics. The difficulty is this : the energy in the cavity is the sum of the energies of light 
waves of many different wavelengths. Let u A dA be the energy density contributed by light 
waves having wavelengths in the range A to A + dA. Then the total energy density u is 

u = L'OUA dA, (19 .5) 

where we sum the contribution of all wavelengths from zero to infinity. It is rather easy to 
measure the distribution function u A'  shown in Fig. 19.4. Experimentally it has been shown 
that the wavelength at the maximum of this spectral distribution is inversely proportional 
to the temperature : 

Am T = 2.8979 X 10- 3 m K. 

This is Wien's displacement law. Classical principles had failed to explain the shape of the 
curve in Fig. 19 .4 and failed to predict the displacement law. The application ofthe classical 
law of equipartition of energy between the various degrees of freedom by Rayleigh and 
Jeans was satisfactory at long wavelengths but failed at short wavelengths, in the ultra
violet (" ultraviolet catastrophe ") . 

The Rayleigh-Jeans treatment assigned the classical value kT to the average energy of 
each mode of oscillation in the cavity ; !kT for kinetic and !kT for potential energy. The 
number of modes of oscillation dn in the wavelength range from A to A + dA per unit 

o 1 2 3 4 5 
F i g u re 1 9 .4 Spectra l d istribut ion i n  b lackbody rad iat ion .  
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volume of the cavity is* dn = 8n d).,/).,4. The energy density in the same wavelength range is 
UA d)" and is equal to the number of modes of oscillation multiplied by kT. Therefore, 
UA d)" = 8nkT d).,/).,4, so that 

8nkT uA = -y ,  (19 .6) 

which is the Rayleigh-Jeans formula. It predicts an infinite energy density as )., � 0 ;  hence 
an infinite value of the total energy density in the cavity, an absurdity. 

If a mode of oscillation can possess any arbitrary amount of energy from zero to 
infinity, there is no reason for the Rayleigh-Jeans formula to be incorrect. Let us suppose, 
for the sake of argument, that an oscillator cannot have any arbitrary energy but may have 
energy only in integral multiples of a certain unit of energy t. Then the distribution of a 
collection of these oscillators is discrete and we can represent it by 

Energy 0 £ 2£ 310 4£ . . .  
Number no n l  nz n3 n4 . . .  

We further suppose that the distribution is governed by the Boltzmann law : ni = no e - EdkY. 
Using these ideas we calculate the total number of particles N and the total energy : 

N = L: ni = no + no e - ElleY + no e - 2ElleY + no e - 3ElleY + . . . . 
i 

If we set x = e - ElkT
, this expression becomes 

N = no(1 + x + x2 + x3 + . . .  ). 
The series is the expansion of 1/( 1 - x), so we obtain 

The average energy (U) is given by 

no N = -- . 1 - x 

N (U) = no(O) + n1 £ + nzC2t) + n3(3t) + . . .  
= no £(x + 2X2 + 3x3 + . . .  ) = no £x(1 + 2x + 3x2 + . .  -) . 

(19.7) 

But ( 1  + 2x + 3x2 + . . .  ) = d(l + x + x2 + x3 + . .  ·)/dx = d[l/( 1  - x)]/dx = 1/( 1  - X)2
, so 

that 
no Ex N(U) = ( 1  _ X)2 · 

Putting in the values of N and x, this becomes 

fe - ElleY £ (U) = 1 - ElleY = -E-;;-IIe=Y--l · - e e -

The derivation of this formula is beyond the scope of the treatment here . 

( 19 .8) 
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If we use the value given by Eq. (19 .8) for the average energy in a mode of vibration, then 
multiply it by the number of modes in the wavelength range to calculate the spectral 
distribution, we obtain for u .. 

810 ( (. ) 
11 .. = .14 e</kT _ 1 . ( 19 .9) 

Now if (. is a constant in Eq. ( 19.9), we are no better off than were Rayleigh and Jeans. 
Planck took the extraordinary step of setting (. inversely proportional to the wave

length, recognizing that the Wien displacement law would come out of the resulting equa
tion. Since the frequency times the wavelength is equal to the velocity, we have 1/.1 = vic, 
where v is the frequency and e the velocity. Setting (. proportional to 1/.1 is equivalent to 
setting it proportional to the frequency : 

he 
(. = hv = 

A ' (19 . 10) 

where Planck's constant h = 6.626 176 X 10- 34 J s. Putting the value of drom Eq. (19 . 10) 
into Eq. ( 19.9) yields the distribution function 

8nhe 1 u .. = Y ehc/ .. kT _ l ' (19 . 1 1) 

By properly choosing the value ofthe constant h, Planck found that Eq. (19 . 1 1) agreed with 
the measured distribution within the experimental error ! To find the maximum, we set 
du .. ldA = 0 ;  the Wien displacement law is obtained in the form 

Am T = 4.:�5k ' (19 . 12) 

The value of (. is the energy gap separating the energies of the various groups of oscil
lators ; classically this gap should be zero to yield a continuous energy distribution. Planck's 
assumption that (. = hv required the gap to be finite, approaching zero, the classical value, 
only at infinitely long wavelengths. 

The worst part of this is that it lacks the logic of classical physics and it has far
reaching implications. If the radiation in a cavity can possess energy only in multiples of a 
certain unit hv, then it can exchange energy with the oscillators in the cavity walls only in 
multiples of this unit. Therefore the interchange of energy had to be discontinuous also ; 
energy had to be exchanged in small lumps or bundles called quanta. The quantum of 
energy for an oscillator is hv. 

The nature of light seemed no longer to be simple. Light was a wave motion, but with 
Planck's work it acquired a corpuscular aspect. The light wave contains energy in ele
mentary discrete units, quanta. 

1 9 . 9  T H E P H OTO E L E CT R I C  E F F ECT 

As may be imagined, Planck's discovery excited very little interest and no controversy. 
The prevailing attitude seemed to be " if we ignore it, it will go away." Perhaps it might have 
gone away but for Einstein's interpretation of the photoelectric effect, another longstand
ing thorn in the side of classical physics. 
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If a beam of light falls on a clean metal plate in vacuum, the plate emits electrons. This 
effect, discovered by Hertz in 1887, had been thoroughly investigated. Two aspects of the 
phenomenon were the rocks on which classical physics foundered. 

1. Whether or not electrons are emitted from the plate depends only on the frequency of 
the light and not at all on the intensity of the beam. The number of electrons emitted is 
proportional to the intensity. 

2. There is no time lag between the light beam striking the plate and the emission of the 
electrons. 

An electron in a metal is bound by a potential energy ill, which must be supplied to 
bring the electron outside the metal. If, in addition, the electron outside the metal has 
kinetic energy, then the total energy of the electron is 

(19 . 1 3) 

Presumably the electron acquires this energy from the beam of light. Classically, the energy 
of the light beam depends on its intensity, and that energy should be absorbed continuously 
by the metal plate. It can be shown that for weak intensities and reasonable values of ill that 
after the onset of illumination, a long time period (days or even years) should intervene 
before any electron would soak up enough energy to be kicked out of the metal. After this 
time interval many electrons should be energetic enough to escape and a steady current 
should flow from then on. Increasing the intensity should lessen the time interval. No time 
interval has ever been observed. The proportionality ofthe current to intensity is reasonable 
on classical grounds, but the absence of a time interval could not be explained. 

In 1905 Albert Einstein took a different view of the problem. Classically, the energy 
of the light beam is absorbed continuously by the metal and divided among all the elect
rons in the plate, each electron receiving only a tiny share of the total. Suppose that the 
energy of the light beam is concentrated in Planck's quanta of energy hv, and further that 
the entire quantum of energy must be accepted by a single electron, and cannot be divided 
among all the electrons present. Then the energy of the electron after accepting the quan
tum must be hv, and this must be the total energy after emission, Eq. (19 . 1 3). Therefore 

hv = !mv2 + ill. ( 19. 14) 

Equation (19 . 14) is the Einstein photoelectric equation. It is apparent from the equa
tion that below a critical frequency, vo , given by hvo = ill, the electron does not gain 
sufficient energy from the light quantum to escape the metal. This explains the " cut-off" 
frequency Vo that is observed. A greater light intensity means only that more quanta are 
absorbed per unit time and more electrons are emitted ; the energies ofthe emitted electrons 
are completely independent of the intensity. 

U sing the same value of h as had been obtained by Planck in the treatment of blackbody 
radiation, the Einstein equation provided a completely satisfactory explanation of the 
photoelectric effect. Satisfactory? Yes, but very unsettling ! Einstein spoke of photons, 
corpuscles of light, each carrying energy hv. Planck's idea seemed to be gaining ground, a 
most distressing turn of events. 

1 9 . 1 0 B O H R 'S M O D E L  O F  T H E ATO M 

Throughout the 19th century, spectroscopy was a very popular field of study. A great 
number of precise measurements of wavelengths of lines had been made and catalogued. 
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Regularities in the spacing between lines had been observed and correlated by empirical 
formulas. One of the most famous of these formulas is that given by Balmer in 1 885. 
Balmer found that the wavelengths of nine lines in the visible and near-ultraviolet spectrum 
of hydrogen could be expressed by the formula 

A ( n2 
) 

10 1 0 m = 3645.6 n2 _ 22 ' (19 . 1 5) 

where n had the integral values 3, 4, 5, . . .  , 1 1 . Each integral value of n corresponds, 
through Eq. ( 19 . 1 5), to a wavelength. The computed wavelengths agreed excellently with 
the measured values. Somewhat later, Ritz proposed a more general formula which, for 
hydrogen, takes the form � = v = RH(:Z - n\

)
, (19 . 16) 

where both k and n are integers, RH is the Rydberg constant for hydrogen. The wave number v is the reciprocal of the wavelength. If k = 2, the Rydberg formula reduces to the Balmer 
formula. The Rydberg formula is remarkably accurate, and with slight modification it 
represents the wavelengths in the spectra of many different atoms. Because of the accuracy 
of the formula and the precision with which wavelengths can be measured, the Rydberg 
constant was known with great accuracy. Today the value is known to within less than one 
part in ten million. The present value is RH = 10 967 758 .5 ± 0.8 m - 1 . 

The spectrum emitted by an atom presumably is related to the structure of the atom. 
Until 1 9 1 3, attempts to relate the spectrum to a definite atomic model were unsuccessful. 
By 19 13  it was known that the atom had a positively charged nucleus, but the nuclear 
model of Rutherford was unstable according to classical electromagnetic theory. This 
Gordian knot was cut by Niels Bohr in 1 9 1 3 . 

In the Bohr model the hydrogen atom consists of a central nucleus with a charge + e, 
and an electron of charge - e whirling about the nucleus with velocity v in an orbit of 
radius r (Fig. 19 .5). For mechanical stability, the electrical force of attraction - e2/4nfo rZ 
must balance the centrifugal force mvz Ir : 

or 

eZ mvz 
- -- + - = 0 4nfo rz r ' 

eZ mv2 = --
4nfo r 

/ 
F i g u re 1 9 .5  

- e  

(19 . 17) 
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The total energy E is the sum of the kinetic energy tmv2, and the potential energy 
- e2/4nf.o r :  

Using Eq. (19 . 17), we obtain 
e2 E =  - -- . 8nf.o r (19 . 1 8) 

Classically, since the electron is accelerated, this system should radiate. To avoid this 
difficulty, Bohr broke completely with tradition. Bohr assumed : (1) that the electron can 
move around the nucleus only in certain orbits, and not in others (classically, no particular 
orbit is preferable to any other) ; (2) that these allowed orbits correspond to definite 
stationary states of the atom, and in such a stationary state the atom is stable and does not 
radiate (Bohr avoided the classical difficulty by simply assuming that it was not a difficulty 
in these special circumstances ! * ) ;  and (3) that in the transition of the electron from one 
stable orbit to another, radiation is emitted or absorbed, the frequency of the radiation 
being given by 

hv = A.E, 
where A.E is the energy difference between the two stationary states and h is Planck's 
constant. (There was nothing quite so nonclassical as a formula with Planck's constant in 
it.) 

The problem of choosing these special orbits out of all the possible ones remained. 
Bohr's condition is that the angular momentum mvr be an integral multiple of h = h/2n : 

mvr = nh, n = 1 , 2, . . .  (19 . 19) 

This condition is equivalent in a certain sense to Planck's condition on an oscillator. 
Solving Eqs. (19 . 17) and (19 . 19) for v and r, we obtain 

e2 v = ---4nf.o nh and 

If n = 1, then r = ao , the radius of the first Bohr orbit ; 

4nf.o h2 ao = --2- = 0.529 177 X 10 - 1 0 m = 52.9177 pm 
me 

then 

Using this value of r in Eq. (19. 1 8) for the total energy yields 

(19 .20) 

(19 .21) 

En = - 8n:: ao (:2), (19 .22) 

where the subscript on E indicates that the energy depends on the integer n. Equation 
(19 .22) expresses the energy entirely in terms of fundamental constants, e, h, m, and the 
integer n. Consider two stationary states, one described by the integer n and the other by 

* Bohr's approach cannot be recommended for solving standard problems in physical chemistry ! 
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the integer k. The difference in energy of these two states is 

!1Enk = En - Ek = _e_
2
_ (k\ - �). Snfo ao n 

By Bohr's third assumption, this difference should equal hv : 

hv = sn:� ao (:2 - :2) . 
If we replace v by v = cj Il = cii, the equation becomes 

ii = snf::o hc (:2 - n\) , (19.23) 

which is the Rydberg formula. Bohr's argument yields a value of the Rydberg constant : 
e2 

RH = (19 .24) Snfo ao hc 
Calculating the value of RH from Eq. (19 .24), Bohr obtained a value of RH which agreed 
with the empirical value within the uncertainty of the knowledge of the constants. 

Bohr had calculated the most accurately known experimental constant in physics by a 
method which was, to use a mild description, simply an outrage ! The corpuscular nature of 
light had come to stay ; it could no longer be ignored. No evangelist ever made so many 
converts in so short a time as did Bohr. 

The connection between matter and radiation soon became firmly established. In the 
decade following Bohr's discovery, what is now called the quantum theory or the " old 
quantum theory " burst into full flower. The systematic interpretation of the data in the 
catalogues of spectra went forward by leaps and bounds. The Bohr-Sommerfeld atom 
model, which used elliptical as well as circular orbits, was introduced and found useful. 
From studies of spectra Bohr constructed a theoretical periodic chart which agreed with 
that of the chemists. A detail was different : According to Bohr, element 72, which chemists 
had sought among the rare earths, was not a rare earth, but a member of the fourth family, 
with titanium and zirconium. Shortly thereafter, von Hevesy looked at the spectrum of zir
conium and found that many of the lines should be ascribed to element 72. Therefore, 
zirconium was a mixture of zirconium and element 72. The new element was named 
hafnium, after the ancient name of Copenhagen, in honor of Bohr who is Danish. The 
discovery of hafnium ended a long controversy over the atomic weight of zirconium ; 
samples used by different investigators contained different amounts of hafnium, so the 
discrepancies were rather large. 

The Bohr theory of the atom destroyed the last pockets of resistance to the quantum 
concept. Yet the wave attributes of light were there too. The nature of light took on a dual 
aspect. This duality in the nature of light is accepted now, though to some in the beginning 
it was a bitter pill. 

1 9 . 1 1 PARTI C LES A N D lO U I S  D E  B R O G LI E  

In 1924, Louis de Broglie argued on theoretical grounds that particles should have a 
wavelength associated with them. The de Broglie formula for the wavelength is 

Il = � = � p mv ' ( 19.25) 
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where p = mv is the momentum of the particle. We cannot reproduce de Broglie's argu
ment here, since it requires some knowledge of electromagnetic theory as well as relativity 
theory. However, if a particle does have a wavelength, then that fact must be capable of 
experimental demonstration. 

A demonstration of the wave property of electrons was provided by the experimental 
work of Davisson and Germer in 1927. A beam of light reflected from a ruled grating 
produces a diffraction pattern ; diffraction is a property exclusively of wave motion. 
Davisson and Germer directed an electron beam at a nickel crystal. The rows of nickel 
atoms served as the ruling. The intensity of the diffracted beam was measured as a function 
of the diffraction angle. They found maxima in the intensity at special values of the 
diffraction angle. From these values ofthe diffraction angle and the usual diffraction formula 
they computed the wavelength of the electrons. This value of the wavelength agreed with 
that predicted by the de Broglie formula for electrons having the experimental velocity. 

This confirmation of de Broglie's prediction brought duality into the concept of the 
nature of fundamental particles. A particle was not simply a particle but had a wave aspect 
to its nature. This idea led very quickly to the development of wave mechanics, or quan
tum mechanics, by Heisenberg and Schrodinger. All of our modem ideas on atomic and 
molecular structure are based on wave mechanics. 

The distinct concepts, wave or particle, of 19th century physics are now inseparably 
mingled. Wave mechanics, so essential to our ideas now, would have been a contradiction 
in terms in the 19th century. The question of whether an electron, or a photon, is a wave or 
particle has lost all meaning. We can say with precision in what circumstances it is useful 
to treat the electron as a classical particle or the photon as a classical wave. We know when 
we must consider the wave aspects of the classical particles and the particle aspects of the 
classical wave. Any final classification into particle or wave would be artificial. Both 
particles and waves have a more general nature than their names indicate. We use the old 
names, fully realizing the more general character of the entity in question. 

In 1925 Werner Heisenberg and in 1926 Erwin Schrodinger independently formulated 
the law that governs the motion of a particle. The discussion here will be more closely 
related to Schrodinger's treatment. 

* 1 9 . 1 2 T H E C LASS I CA L  WAVE E Q U ATI O N  

The classical law governing wave motion is the wave equation 
i}zD i}zD i}zD 1 i}zD 

- + - + - = - i}xz i}yZ i}zz VZ i}tZ '  (19 .26) 

where x, y, z are the coordinates, t the time, v the velocity of propagation, and D the dis
placement of the wave. If v does not depend on the time, then the displacement is the pro
duct of a function of the coordinates only, t/I(x, y, z), and a periodic function of time, eiZ"vt, 

where v is the frequency of the wave, and i = .j=l. Then 
D = t/I(x, y, z)eiZ"vt, (19 .27) 

which means that if we sit at a fixed position x, y, z, and observe the value of D, then at an 
arbitrary time t = 0, eiZ"vo = 1 and D = t/I. At a later time, 

t = ° + 1/v, 

* Remember that eix = cos x + i sin x. Therefore eix has the period 2n. 
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and the displacement D = ljI, the same value as at t = O. Thus the value of D at any point 
varies with a period, to = 1/v . By the mean value theorem, we can calculate the average 
value of the displacement D in the time interval to : 

<D) = - D dt = - ljI(x, y, z) ei2nvt dt. 1 ito 1 fto 

to a to a 

Evaluation of the integral yields <D) = O. This result is physically obvious ; since in one 
complete period D is positive for half the time and negative for half the time, the values 
sum to zero. We avoid this difficulty by computing the average value of the square of the 
absolute value of the function : 

Since D may be a complex function, to compute I D I 2 we use the formula I D I 2 = D*D, 
where D* is the complex conjugate of D obtained by replacing i in the function by - i. Then 

1 D 1 2 = ljI*ljIei2nvte - ilnvt = ljI*ljI. 

Putting this value in the integral, we obtain 

(19.28) 

By Eq. (19.28) the time average of the square of the absolute value of the displacement is 
equal to the square of the absolute value of the space-dependent part ljI. The function ljI is 
called the amplitude of the wave. 

Using the value of D given by Eq. (19 .27), we can form the second derivatives and put 
them into the wave equation, Eq. (19 .26). The result, after division by ei2nvt, is 

a2lj1 a2lj1 a2lj1 4n2v2lj1 
-;--2 + --;--2 + ;:;-z + 2 = O. 
ux uy uZ V 

(19 .29) 

In Eq. ( 19.29) only the space coordinates appear ; this equation governs the spatial de
pendence of the amplitude ljI. After solving this differential equation for ljI, we can write 
down the value of ljI* immediately. Multiplying ljI and ljI* yields, through Eq. (19.28), a 
value of the time average of the square of the absolute value of the displacement. It is the 
time average that is of interest in the discussion of stationary states. 

* 1 9 . 1 3 T H E S C H R O D I N G E R  E Q U ATI O N  

Now we can make an argument for the Schrodinger equation.* If, as de Broglie says, the 
particle has some of the properties of a wave, then it likely will have some property that is 
analogous to the displacement of a classical wave. Since in an atomic system we cannot 
follow the detailed motion of a particle in time, perhaps we should concentrate on the time 
average value of the displacement analogue, which can be calculated if we know the 
amplitude. The classical amplitude ljI is governed by Eq. (19 .29) ; we can translate this 
equation into a nonclassical one by using de Broglie's equation, A = h/mv. But for any 

* This must be regarded as " argument for ," not " proof of" or " derivation of." 
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wave, the frequency times the wavelength is the velocity, AV = v. Combining this with de 
Broglie's relation, we have v/v = mv/h. Using this in Eq. (19.29), we obtain 

02lj1 02lj1 02lj1 4n2m2v2 
ox2 + oy2 + OZ2 + h2 ljI = O. (19 . 30) 

For the moment we will think of ljI as some analogue of the classical amplitude. As yet we 
have no meaning for ljI, but using Eq. (19 . 30), we can express a familiar mechanical variable, 
the velocity v, in terms of ljI and its derivatives. Suppose we solve Eq. (19 . 30) algebraically 
for v and then calculate the kinetic energy, !mv2 . This yields 

E . ljI = � [ _ h2 02lj1 _ h2 0
2lj1 _ h2 o

ZljI] kill 2m ox2 oy2 ox2 ' ( 19. 3 1) 

where we have used h = h/2n. !f it were not for the ljI function in Eq. (19 .3 1), we would be 
tempted to see a similarity between this equation and the classical one, 

1 2 2 2 Ekin = 2m (Px + Py + pz )· (19 . 32) 

Since ljI bothers us, suppose we just leave a blank where it appears in Eq. ( 19. 3 1) ;  then 

K = _1 [ - hZ � - h2 � - h2 �J 2m ox2 oy2 OZ2 ' (19 .33) 

where K has replaced Ekin , since the right-hand side of Eq. (19 .33) is an operator ; this 
operator tells us to perform the operation of taking the second partial derivatives of some 
function, multiply each by - h2/2m, and add them together. We can see an analogy between 
the classical equation, Eq. (19 . 32), and Eq. (19 .33). Corresponding to the classical Ekin , in 
the quantum mechanics there is an operator K. Corresponding to the classical momentum 
Px , there is an operator Px ' We find the momentum operator easily using Px as an example. 
Comparing Eqs. (19 . 32) and (19 .33), we get 

p = - h � = I h � = - lh - - lh -2 2 02 '2 Z 02 ( . 0 ) ( . 0 ) 
x ox2 ox2 ox OX ' 

where i = Fl. Therefore the operators corresponding to the momenta in the three 
directions are 

. 0 
px = - ih ox ' 

. 0 Py = - lh oy ' 
o " = - ih ;>'z oz ' (19 . 34) 

All of this is very puzzling, but let's go a step further. Using Eq. (19. 3 1), we calculate the 
total energy E = Ekin + V, where V is the potential energy and is usually a function of the 
coordinates ; then we have 

(19 .35) 

which could be written in operator form as 

EljI = KljI + VljI. (19 . 36) 
Either ofEqs. ( 19. 35) or (19 . 36) is the Schri:idinger equation, which bears some similarity to 
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the classical equation for the conservation of energy : 

(19 .37) 

Indeed, the Schrodinger equation is the quantum-mechanical analogue of this classical 
equation. 

* 1 9 . 1 4  T H E I NT E R P R ETATI O I\,l O F  '" 

A problem with Eq. (19 .36) is that this partial differential equation often has complex 
solutions, solutions with real and imaginary parts. The physical quantities we measure are 
real quantities. We can convert the equation into one containing only real quantities if we 
multiply both sides by the complex conjugate of tj;. Then we have (E is a constant !) 

tj;* Etj; = tj;*Ktj; + tj;*Vtj;. 
Since tj;*tj; = 1 tj; 1 2 , and Vtj; = Vex, y, z)tj;, this equation can be written as 

E 1 tj; 1 2 = tj;*Ktj; + Vex, y, z) 1 tj; 1 2 . (19 . 38) 

Having derived this equation, which contains only real quantities, let us divert our atten
tion for a few moments. 

Suppose we wish to compute the average potential energy of a classical particle 
(moving in one dimension) in the interval X. Then, if V is a function only of x, by the mean 
value theorem of the calculus, 

< V) = � LX V dx = LX V (�) dx, 

where dxjX is the probability of finding the particle between x and x + dx, multiplied by 
the value of the potential energy at x. 

If V is a function of the three coordinates, we would have an expression such as 

<V) = f V (i) dr, 
where dr is the small element of volume, and IN is the probability per unit volume of find
ing the particle at the position x, y, z. 

Now it seems that we could do something similar with Eq. (19 .38). First multiply by 
the small volume element dr, 

E I tj; 1 2 dr = tj;*Ktj; dr + Vex, y, z) I tj; 1 2 dr. 
If we interpret 1 tj; 1 2 as a probability per unit volume, the second term on the right is the 
potential energy of the particle at the position x, y, z, multiplied by the probability of find
ing it in the volume element at that position. If we integrate over the entire coordinate space, 
that second term should be the average potential energy. Thus 

E f 1 tj; 1 2 dr = J tj;*Ktj; dr + f vex, y, z) 1 tj; 1 2 dr. (19 . 39) 

The integration extends over all space, and E is removed from the integral, since it is a 
constant. The sum of the probability density 1 tj; 1 2 times dr must be the total probability of 
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finding the particle and this must be unity ; the particle must be somewhere ! 

(19 .40) 

Equation (19 .40) is called the normalization condition ; if ljJ fulfills this condition, ljJ is 
called a normalized wave function. Then Eq. (19 . 39) becomes 

or, more symmetrically, 

This equation can be written 

where 

E = J lj;*Klj; dr + f V I ljJ  1 2 dr, 

E = J ljJ*KljJ dr + f ljJ*VljJ dr. 

and < V) = f ljJ*VljJ dr. 

(19 .41) 

(19 .42) 

(19.43) 

The <Ekin) and < V) are average values, and these are sensible analogues of the classical 
mechanical properties. Now we have a name for the wavefunction. Since I ljJ  1 2 is a prob
ability density, ljJ is called a probability amplitude. 

The Schrodinger equation, Eq. (19 .36), can be written in the form 

HljJ = EljJ, (19 .44) 
in which 

H = K + Y (19.45) 
The Hamiltonian operator, H, is the sum of the operators for the kinetic energy and the 
potential energy. The Hamiltonian operator is the operator for the total energy of the 
system. 

1 9 . 1 5 R ET R O S P E CTI O N  

The Schrodinger equation can be written in the form 

HljJ = EljJ. 
This differential equation can be solved for a property of the particle, ljJ, the wave function 
of the particle. The wave function itself does not have any immediate physical significance. 
However, the quantity I ljJ  1 2 dr can be interpreted as the probability of finding the particle 
in the volume element dr at the position x, y, z. Since the wave function is continuous, this 
interpretation yields the extraordinary result that everywhere in space there is a finite 
probability of finding the particle. This is in marked contrast to the classical picture of a 
strictly localized particle. For example, the Bohr model and the Schrodinger model of the 
hydrogen atom are quite different pictorially. If we could shrink ourselves and sit on the 
nucleus of the Bohr atom, we would see the electron moving around the nucleus in a cir
cular orbit having a radius of precisely ao . Sitting on the nucleus of the Schrodinger atom, 
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we would see a fog of negative charge. (This supposes that our eyes take a " time exposure " 
of the electron motion.) Near the nucleus the density of the fog is high, but if we walk out 
along a radius, the fog thins out. When we are several atomic diameters away from the 
nucleus, we look back and see a spherical cloud of negative charge ; with keen eyesight we 
can discern the nucleus in the center of the cloud. (Rutherford's model of a uniform sphere 
of negative charge with the nucleus imbedded in it was not so far wrong after all !) The 
electron in the Bohr atom moves in an orbit much like a satellite about a planet ; in the 
Schr6dinger atom the electron is smeared out into an electron cloud, much like a puff of 
cotton candy. 

Another important property of the wave function is its relation to average properties 
of physically observable quantities, illustrated by Eq. (19 .43). Knowing the wave function 
of a system, we can calculate the average value of any measurable quantity. Thus, in a 
somewhat mysterious way, the wave function has hidden in it all of the physically important 
properties of the system. 

The Schr6dinger equation opened the way to the systematic mathematical treatment 
of all atomic and molecular phenomena. The predictions of this equation for atoms and 
molecules have been confirmed without exception. It is therefore the basis for any modern 
discussion of atomic and molecular structure. 

Q U ESTI O N S  

19.1 Describe the " ultraviolet catastrophe " and its empirical resolution by the Planck radiation law. 
19.2 Describe how the Rutherford IX-particle scattering experiment (a) overturned the Thomson model 

of the atom and (b) led to a conflict with the predictions of classical physics. 
19.3 What is a photon ? What are its properties ? 
19.4 In the Bohr model of the atom, why is the energy higher for larger values of n ? 
19.5 In what way does Eq. (19 .41) differ from a standard average over the probability density 1 1/I 1 2 ? 

P R O B LE M S  

19.1 Calculate the energy density of the radiation in a cavity at 100 K, 300 K, and 1000 K. 
19.2 a) In a cavity at 1000 K estimate the fraction of the energy density that is provided by light in 

the region between 780 nm and 800 nm. 
b) Repeat the calculation for 2500 K. 

19.3 For parts (a) through (c) estimate the fraction of the radiant energy in the visible range ; that is, 
between 400 and 800 nm. Assume that the object is a blackbody. (Hint : In the denominator 
of Ul ,  set exp (hcIAkT) - 1 � exp (hcIAkT). The integration is simpler if A is replaced by clv.) 

a) The glowing coals in a fireplace ; T = 1000 K. 
b) The filament of an incandescent bulb ; T = 2800 K. 
c) The surface of the sun ; T = 6000 K. 

19.4 At what wavelength does the maximum in the energy density distribution function for a black
body occur if 
a) T =  300 K?  
b) T =  SOO K?  

19.5 I f  the energy density distribution function has a maximum at 600 nm, what i s  the temperature ? 
19.6 Assume that a flat sheet of iron at 300 K does not receive any radiation from its surroundings. 

The metal is 10 cm x 10 cm x 0 .1  cm ; the heat capacity is 25 J/K mol ; the density is 7 .86 g/cm3• 



466 The Structu re of M atter 

a) How many joules per second are lost by radiation initially ? Assume that one flat side only 
radiates into space. 

b) After 20 minutes, what is the temperature of the metal plate ? 
19.7 The radius of the sun is 7 x 105 km, and the surface temperature is 6000 K. What is the total 

energy loss per second from the sun's surface ? How many metric tons of matter are consumed per 
second in the nuclear reactions that supply this energy? 

19.8 Derive the Wien displacement law from Eq. ( 19. 1 1 ) . 
19.9 About 5 eV are required to remove an electron from the interior of platinum. 

a) What is the minimum frequency of light required to observe the photoelectric effect using 
platinum? 

b) If light with A = 200 nm strikes the platinum, what will be the velocity ofthe emitted electron? 
19.10 a) Calculate the wavelength of the line emitted as n changes from 3 to 2 in the hydrogen atom . . 

b) What is the angular momentum in the lowest energy state of the Bohr atom? 
c) What is the velocity of the electron in the state with n = 1 ?  

19. 1 1  If an electron falls through an electric potential difference of one volt, it acquires an energy of 
one electron volt. 
a) If the electron is to have a wavelength of 0 . 1  nm, what potential difference must it pass 

through ? 
b) What is the velocity of this electron ? 

19.12 Through what electric potential difference must a proton pass if it is to have a wavelength of 
0 . 1  nm? 

19.13 Show that the wavelength of a charged particle is inversely proportional to the square root of 
the potential difference through which it is accelerated. 

19.14 What is the wavelength of a ball bearing having m = 10 g, and v = 10 cm/s ? 
19.15 What is the kinetic energy of an electron that has a wavelength of 10 nm? 
19.16 Use the value of D given by Eq. ( 19.27) in Eq. (19 .26) and prove Eq. ( 19.29). 
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20. 1  I NT R O D U CTI O N  

Although in Chapter 1 9  we patched the De Broglie relation onto the equation for classical 
wave motion to lend plausibility to the time-independent Schrodinger equation, this pro
cedure has dubious merit. In a certain sense it is as if we were to attempt to justify New
tonian mechanics by appealing to the Pythagorean music of the spheres. Experience has 
shown that the Schrodinger equation is the correct one for atomic and molecular problems ; 
whether or not it is " derivable " from other equations is not a matter that need concern us 
greatly here. For a systematic treatment of atomic and molecular problems we can most 
easily proceed by stating a series of postulates and using them to discuss the behavior of a 
system. 

20. 2  P O ST U LATES O F  T H E QUANTU M M E C H A N I CS 

20. 2 . 1  Post u l ate I 

There exists a function, 'P(x, y, z, t), of the coordinates and time that we call a wave function 
and describe as a probability amplitude. This wave function is in general a complex func
tion ; that is, 

'P(x, y, Z, t) = u(x, y, z, t) + iv(x, y, z, t), (20. 1) 

where i = J=1, and u and v are real functions of coordinates and time. The complex 
conjugate of 'P is designated by 'P* and is obtained from 'P by replacing i by - i ;  

'P*(x, y, z, t) = u(x, y, z, t) - iv(x, y, z, t). (20.2) 
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The product, 'P*'P, is a real function of x, y, z and t, 
'P*'P = 1 'P 1 2 = u2(x, y, Z, t) + v2(x, y, z, t), (20. 3) 

and is equal to the square of the absolute value of 'P. The product, 'P*'P dx dy dz = 

'P*'P dr, is the probability at time t that the system will be in the volume elementdr at the 
position x, y, z. Thus, 'P*'P is a probability density. In view of this, if the probability of 
finding the system in the volume element dr is summed over all possible positions of the 
volume element, the result is unity. We must have unit probability of finding the system 
somewhere. Thus we have the property 

f 'P*'P dr = f:
"" 
dx f:

""
dY f:"" '¥*(x, y, z, t)'¥(x, y, z, t) dz = 1 , (20.4) 

where the limits in the integral are understood to be such as to cover the entire coordinate 
space. 

The value of the integral in Eq. (20.4) must be independent of the time, t. This implies 
that the time dependence of the wave function must have the form 

'¥(x, y, z, t) = tJ;(x, y, z)eif(q . t), (20.5) 

in which f(q, t) is some real function of the coordinates, symbolized by q, and time. 
Using Eq. (20.5) in Eq. (20 .4) yields 

f tJ;*(x, y, z)tJ;(x, y, z) dz = 1 .  (20.6) 

The requirement expressed by Eqs. (20.4) and (20.6), namely that the wave function be 
quadratically integrable, imposes severe restrictions on tJ;. The wave function must be 
single-valued, continuous, and may not have singularities anywhere of a character that 
result in the nonconvergence of the integral in Eq. (20.6). In particular, at the extremes of 
the Cartesian coordinates, x = ± 00, y = ± 00, and z = ± 00, the wave function, as well as 
well as its first derivative, must vanish. 

20 . 2 . 2  Postu late I I  

The expectation value, <A), of any observable is related to the wave function of the system 
by 

<A) = 
J tJ;* AtJ; dr 
J tJ;*tJ; dr ' (20.7) 

in which A is an operator corresponding to the observable A. If the wave functions have 
been normalized, then Eq. (20.6) is fulfilled ; Eq. (20.7) becomes simply 

<A) = f tJ;* AtJ; dr. (20.8) 

Since we are dealing with wave functions that are functions only of coordinates, then, 
as was pointed out in Section 19 . 14, to obtain the expectation value of any function of the 
coordinates we multiply that function by tJ;*tJ;, the probability density, and integrate over 
the entire space. Thus, for a function, f(x, y, z), we have 

<f) = f f(x, y, z)tJ;*tJ; dr = f tJ;*f(x, y, z)tJ; dr = f tJ;*ftJ; dr. (20 .9) 
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So we may conclude that the operation corresponding to any function of the coordinates 
only is multiplication by that function ; for example, 

fljJ = f(x, y, z)ljJ . (20. 10) 
The situation is not quite so simple if the observable is a momentum component. In 

this case, it turns out that we must have, for example, 

, 'n ol}; 
Px l/l = - 1 o� · (20. 1 1) 

The proof of this statement is beyond our scope here ; an argument for plausibility appeared 
in Section 19 . 13 .  For the component of momentum along any Cartesian coordinate q, we 
associate the differential operator, 

h a a p = - - = - in - .  (20. 12) q 2ni oq oq 
The quantity <A> in Eq. (20.8) is sometimes called the " average " value of A ;  for example, 
in Section 19 . 14 we used this terminology. The meaning of " average " in this context can 
be misinterpreted ; see the discussion of this point in Section 20.4 in relation to Eqs. 
(20.29) through (20.3 1). 

20. 3  M AT H E M ATICAL I NT E R LU D E : O P E R ATO R ALG E B RA 

An operator changes a function into another function according to a rule. Suppose we have 
a function w(x, y, z) and an operator x, defined by 

xw(x, y, z) = xw(x, y, z) . (20. 1 3) 
The function w(x, y, z) is the operand ; the operator acting on w changes w into xw. This is 
one example of the type of operator described in Eq. (20. 10). Similarly we may have a 
differential operator such as the one in Eq. (20. 12) : 

Ow 
Px w = - in ax ' (20. 14) 

This operator replaces the function w by its partial derivative with respect to x multiplied 
by the constant, - in. 

Operators may be combined by addition ; if ot and � are two operators on the same 
function, then 

(0: + P)w = IXW + pw, (20. 15) 
since the new functions o:w and pw are simply functions, it is clear that operator addition is 
commutative ; that is, 

(ot + P)w = (P + ot)w . (20. 1 6) 
Operators may also be combined by multiplication, which may be defined by 

(20. 17) 
This equation states that to form the function corresponding to otPW, we first form the 
function pw, then perform the operation 0: on the new function pw. For example, suppose 
that for w(x, y, z) 

Otw = xw and 
Ow 

pw = ax ; 
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then 

but, note that 

expw = ex(pw) = ex - = x - ; (aw) aw 
ax ax 

a(xw) aw pexw = P(exw) = P(xw) = -- = w + x -. ax ax 
It is apparent that in general operator multiplication is not commutative. 

expw 1= pexw. 

(20. 18) 

(20. 19) 

The commutator y is defined by exp -'- pex = y. In this example, (exp - pex)w = - w so that 
the commutator, y, is multiplication by - 1 ;  yw = -w. If, for all w, 

(exp - pex)w = 0 (20.20) 
then the operators commute. As will be seen in Section 2004, the commutation properties 
of quantum-mechanical operators have great significance for the properties of a system. 

Repeated applications of an operator are handled in the manner of Eq. (20. 1 7) :  
ex2w = ex( exw). 

If, for example, exw = xw, then 

If exw = (aw/ax), then 
exzw = ex(exw) = ex(xw) = x(xw) = xzw. 

2 (aw) a (aw) a2w ex w = ex( exw) = ex ax = ax ax = ax2 ' 

If an operator ex is such that in operating on two different operands, v and w, the 
relation 

(20. 2 1) 
is fulfilled, in which C l and Cz are constants, the operator is said to be linear. For example, 
let ex = a/ax, then 

a av aw 
ax (cl v + cz w) = C l ax + C2 ax ' 

so that the differential operator is linear. All the quantum-mechanical operators are 
linear. 

As an example of a nonlinear operator, suppose that ex! = ef and cxg = ego Then 
ex(c l! + c2 g) = ec 1 f+ C29, which is obviously not equal to c lef + c2 eg• This operator is 
therefore not linear. 

20 .4 TH E S C H R O D I N G E R  EQUATI O N  

20 .4 . 1  Post u l ate 1 / 1  
The probability amplitude, 'P(x, y, Z, t), must satisfy the differential equation 

a'P H'P - ih Tt = 0, 

in which H is the Hamiltonian operator. 

(20.22) 
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To construct the Hamiltonian operator for one particle we write down the classical 
expression for the total energy, 

1 2 2 Z -2 (Px + Py + pz ) + Vex, y, z). 
m 

The first three terms are the kinetic energy ; the fourth term is the potential energy. Then we 
replace the classical momentum components by their quantum-mechanical operators : 

so that 

8 
P ---t n - - ih -x Yx - 8x 

- ih � (- ih �.) = 8x 8x 

h2 [ 8Z 82 82 ] 
H = - 2m 8x2 + 8y2 + 8z2 + Vex, y, z) . 

We can conveniently introduce the abbreviation 

82 82 82 V2 
== 8xz + 8y2 + 8z2 ' 

where V2 is the Laplacian operator, to obtain 

h2 H = - 2m V
2 + Vex, y, z). 

The first term on the right is the operator for the kinetic energy of the particle, 

h2 
K = _

_ V2 
2m 

' 

while the second term is the operator for the potential energy, 

V = Vex, y, z). 

(20.23) 

(20.24) 

(20.25) 

If there are two particles, masses ml and m2 , with coordinates Xl ' Yl ' Zl and x2 , Y2 ' Zz , 
then the classical energy would have the form 

The corresponding Hamiltonian operator would be 

hZ hZ H = - -2 vi - -2 V� + V(X l ' Yl ' Zl ' Xz , Yz , ZZ), m 1 mz 

in which vi is the Laplacian operator containing the coordinates of the first particle and 
V� is the operator containing the coordinates of the second particle. The extension to a 
system of many particles is obvious. 

In the simple case where the potential energy is time independent, the solution to 
Eq. (20.22) has the form 

\f(x, y, z, t) = tf;(x, y, z)f(t). (20.26) 
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Then, H'P = f(t)Hl/f, and the Schrodinger equation, Eq. (20.22), becomes 

df f(t)Hl/f - inl/f dt = O. 

Dividing by l/ff and transposing we obtain 

1 in df 
V; Hl/f = f(t) dt " (20. 27) 

The left-hand side of this equation is a function only of the coordinates, while the right
hand side is a function only of time. If we vary the coordinates keeping time constant, the 
left-hand side would appear to vary but in fact it does not since the right-hand side remains 
constant. It follows that both the members of Eq. (20.27) are equal to a constant, which we 
designate by E. Then 

and therefore 

where A is a constant ; also, 

1 df E iE 
f dt in n 

Hl/f = El/f. 

(20.28) 

(20.29) 
Equation (20.29) is a differential equation, the time-independent SchrOdinger equation. 

By solving the Schrodinger equation, we obtain the function l/f(x, y, z) from which we can 
calculate expectation values of the observables associated with the system by use of the 
appropriate forms of Eq. (20. 8). 

The Schrodinger equation has a special form. Whenever we have an operator, IX; such 
that 

IXf = af (20. 30) 
where a is a constant, then a is called an eigenvalue of the operator and f is called an 
eigenfunction of the operator IX. (Rather less frequently these are called characteristic values 
and characteristic functions.) 

Thus, by Eq. (20.29), l/f is an eigenfunction of the Hamiltonian operator and E is the 
corresponding eigenvalue. This means that the energy of the system has the exact value E. 
Since the Hamiltonian operator corresponds to the total energy of the system, we calculate 
the expectation value of the total energy, <E), by applying Eq. (20. 8) : 

<E) = f l/f*Hl/f d?:. 

Substituting for H from Eq. (20.29) we obtain 

<E) = f l/f* El/f d?: = E f l/f*l/f d?: ; 

<E) = E, (20. 3 1) 
where the second form follows since E is constant and the final form since f l/f*l/f d?: = l .  
Eq. (20. 3 1) says that the expectation value for the total energy of the system i s  precisely 
equal to the constant E introduced in solving Eq. (20.22), or Eq. (20.27). 
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The apparently obvious result in Eq. (20. 3 1) is important enough to make us digress for 
a moment. Suppose we calculate the expectation value of the square of the energy of the 
system : 

(E2) = J ljJ*H2ljJ de = f ljJ*H(HljJ) de 

= J ljJ*H(EljJ) de = E J ljJ*(HljJ) de = E J ljJ*EljJ de ;  

(E2) = E2 = (E)2 . (20. 32) 

In Eq. (20.32) we have the result that the expectation value of the square of the energy is 
equal to the square of the expectation value of the energy. This could not be correct if the 
energy were in some way distributed. The reader will recall that in dealing with the Maxwell 
distribution of molecular speeds we found that 

2 3RT J8RT (c ) = M' (c) = 
reM ' 

Of these, the first, (c2 ), is not equal to the square, (C)2, of the second. In averaging the 
square of a value over a distribution, the higher values are always accentuated. The fact 
that Eq. (20.32) is correct means that we are not averaging bits of energy here and there in 
space using ljJ*ljJ as some kind of distribution function ; if we were, Eq. (20.32) could not be 
correct. The energy of the system in the state described by ljJ has a precise value, determined 
by the Schrodinger equation as well as additional conditions that we will discuss further. 
Such a state of the system is called an eigenstate (or characteristic state) of the system. 

This result is general in the following sense. Whenever the wave function of a system is 
an eigenfunction of an operator corresponding to an observable, then that observable has 
a precise value. 

In general, solution of the Schrodinger equation for a system yields a set of functions, 
ljJj (j = 1 , 2, . . .  ), each of which describes a particular state of the system. Each such state 
would have its particular expectation values of the observables. Assume that in any state 
of the system two different observables, A and B, have precise values. This implies that ljJj is 
an eigenfunction of both of the operators A and B ; that is 

where aj and bj are the eigenvalues. Then if ljJj is normalized, 

(A) = f ljJj(AljJ) de = f ljJjaj ljJj de = aj . 

and 

If we construct the commutator, AB - RA, and operate on the wave function, we have 

(AB - BA)ljJj = A(BljJj) - B(AljJj) = A(bjljJ) - B(aj ljJ) 
= biAljJ) - a/BljJ) = bj aj ljJj - aj bj ljJj = (bj aj - aj bj)ljJj = O. 

Thus the operators A and B commute : 

ABljJj = BAljJj . 
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Conversely, it can be shown that if the operators for two observables commute then 
the two observables can have precise values simultaneously. If the two operators do not 
commute, then it is not possible for the corresponding observables to have precise values 
simultaneously. Consider the operators for the x coordinate and the x component of 
momentum ; then xt/J = xt/J and Px t/J = - ih at/J lax, so that 

xPxt/J - Pxxt/J = - ih[X �� - a� (xt/J)] = - ih[ - t/J] = iht/J 

These operators do not commute ; consequently, x and Px cannot simultaneously have 
precise values. This is the basis for the Heisenberg uncertainty principle, which we will 
discuss in more detail later. 

One final remark on the Schrodinger equation. For physical sense we require that the 
constant E, the energy, be a real quantity. This requires that E* = E ;  consequently, since 

E = f t/J*(Ht/J) dT, and E* = f t/J(Ht/J)* dT, 

then we must have 

f t/J*(Ht/J) dT = f t/J(Ht/J)* dT. (20.23) 

An operator that satisfies the condition in Eq. (20.33) is said to be Hermitian. Con
versely, the eigenvalues of Hermitian operators are all real quantities. In quantum mechanics 
we deal only with Hermitian operators. The definition of an Hermitian operator is some
what more general than Eq. (20. 33) would imply. The operator H is Hermitian if 

(20. 34) 

in which t/J 1 and t/J 2 are the same or different operands. 

20 . 5  TH E E I G E NVA LU E S P ECTR U M  

The Schrodinger equation 

Ht/J = Kt/J + V t/J = Et/J 
of itself admits a variety of solutions, depending on the nature of the potential function V. 
However, we must impose further restrictions. Even with a particular potential function, 
among the possible solutions wefrequentlyfind solutions that are inadmissible ; for example, 
the requirement that the wave function be single valued everywhere eliminates some 
functions ; the requirement of quadratic integrability is a very restrictive condition ; the 
imposition of particular boundary conditions in some problems reduces the number of 
acceptable solutions. 

The net effect of these restrictions is that in some cases, E may have any value ; then we 
speak of a continuous spectrum of eigenvalues of E. In other cases, E may be restricted to 
certain particular values ; then we have a discrete spectrum of eigenvalues. In these latter 
cases we say that E is quantized. Ordinarily, for each boundary condition we impose, we 
introduce a quantization of some observable. 
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If the energy is quantized and restricted to certain values, E1 , E2 , E3 , . . .  , En ' . . .  , 
then corresponding to each of these values there is at least one eigenfunction tf; n ' such that 

Htf;n = En tf;n , 
so that in general we deal with a set of eigenfunctions, tf; l ' tf; 2 , . . .  , tf;n . If for each energy 
level (eigenvalue), there is only one eigenfunction, then the set of eigenfunctions and the set 
of eigenstates is nondegenerate. If for the nth eigenstate there are gn eigenfunctions, 
tf;n 1 , tf;n2 , . . .  , such that 

k = 1 , 2, · · · , gn , (20.35) 
then the nth eigenstate is gn-fold degenerate. To speak of a three-fold degenerate level 
simply means that corresponding to one particular energy value there are three distinct 
eigenfunctions. 

The existence of a degeneracy poses a problem in describing the state. Suppose the 
eigenstate with energy E is three-fold degenerate, with eigenfunctions tf; l ' tf; 2 , and tf; 3 . 
This means that 

Since the Hamiltonian operator is linear, this implies that if we construct a linear 
combination, 

¢1 = C l l tf;1 + C1 2 tf;2 + C1 3 tf;3 , 
where c 1 1 ' c 1 2 ' and c 1 3  are constants, then in view of the linear character of H, 

H¢1 = cl lHtf; 1 + C 1 2 Htf;2 + C1 3  Htf;3 
= cl lEtf;1 + c1 2 Etf;2 + C 1 3 Etf;3 
� E( c 1 1  tf; 1 + C 1 2 tf; 2 + c 1 3  tf; 3) 

H¢1 = E¢1 · 
The linear combination ¢1 is also an eigenfunction of the Hamiltonian operator with E as 
an eigenvalue ; therefore ¢1 is an appropriate description of the eigenstate. We may con
struct two additional independent linear combinations of the same type : 

¢2 = c 2 1 tf; 1 + C 22 tf; 2 + c 2 3 tf; 3 ; 
¢3 = C3 1tf; 1 + C3 2 tf;2 + C3 3 tf;3 · 

In general, we cannot prefer the description tf; 1 , tf; 2 , tf; 3 to the description ¢ 1 , ¢2 , ¢3 . Out 
of the entire collection of possibilities, we are required for completeness to choose any three 
linearly independent eigenfunctions. * Beyond that, it is a matter only of convenience. As we 
shall see later, in systems with certain symmetry properties, some combinations are more 
convenient than others. 

The foregoing gives an example of the principle of superposition. Because of the linear 
character of the Schrodinger equation (linear character of the Hamiltonian), if a state is 
equally well described by either of two functions, for example, then it is equally well 
described by any two independent linear combinations of those functions. 

* Linearly independent functions are such that no relation al <P I + a2<P2 + a3<P3 = 0 exists (the a, are 
constants) other than the trivial one, al = a2 = a3 = o. 



476 I nt roduct ion  to Quantum M echan ica l  P r inc ip les 

* 20. 6  EXPA N S I O N  T H E O R E M  

The Hermitian property of quantum-mechanical operators leads to an important result. 
Consider two eigenfunctions, 1f;n and 1f;k , of the Hamiltonian operator ;  we have 

and (20.36) 
We take the complex conjugate of the second equation, (H1f;k)* = Ek 1f;: ; then we multiply 
the first equation by 1f;: and the second by 1f;n , and integrate over all space. This yields 

Subtracting these two equations and transposing, 

By Eq. (20. 34), the Hermitian property, the two integrals on the right are equal ; hence 

(En - Ek) f 1f;:1f;n dT = O. 

k =P n. (20.37) 

Equation (20. 37) is the orthogonality relation. Two eigenfunctions of a linear Hermitian 
operator corresponding to distinct eigenvalues are orthogonal. * Note that if k = n, our 
normalization requirement is 

(20. 38) 

These two conditions are usually written 

f 1f;:1f;n dT = bnk > (20.39) 

where the function bnk (of n and k) is called the Kronecker delta and is defined by 

* 

n = k, 
n =P k. (20.40) 

This concept of orthogonality can be obtained by extension from the concept of orthogonality of two 
ordinary vectors in three-dimensional space. If the x, y, and z components are ax , ay , az for the first vector 
and bx , by , bz for the second vector, then the condition for orthogonality is 

or 
i = l  

A s  a simple illustration, take the first vector along the x-axis and the second along the y-axis, 
then ay = az = 0 and bx = bz = 0 ;  the left-hand side becomes ax · 0  + o · by + 0 · 0  which is clearly equal 
to zero. The sum of products on the left-hand side is called the scalar product of the two vectors, the sum
mation is taken over the components. The integral in Eq. (20-37) is called the Hermitian scalar product of 
the two functions I/Ik and I/In ; summation over the components in the ordinary vector is replaced by inte
gration over the variables of the functions. 
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(Note that (jnk = (jkn ') The set of functions ljJn that satisfies Eq. (20.39) is called an ortho
normal set. This property of the eigenfunctions of Hermitian operators allows us to 
expand an arbitrary function in the domain of definition of the orthonormal set in terms of 
members of that set . 

Suppose ¢ is a function defined in the domain of the orthonormal set ; then assume 
that we can write ¢ as a series with Cn as constant coefficients 

00 
¢ = L cn ljJn · (20.41) 

n = l 
To determine the coefficients of this series we multiply by ljJt and integrate over the entire 
space, so that 

By Eq. (20.39) this becomes 

In view of the properties of (jnb the sum on the right-hand side reduces to one term, Ck , 
so we have for the coefficients : 

Ck = f ljJt¢ dT. (20.42) 

This very simple and very elegant means of expanding a function in terms of an ortho
normal set is extremely useful not only in quantum mechanics but in many other areas of 
theoretical physics. 

20. 7  C O N C L U D I N G  R E M A R KS O N  T H E  G E N E R A L  E Q U ATI O N S  

Thus far we have developed equations that are not restricted to particular systems, 
although in the main we have kept to systems that are in stationary states. These are 
systems having energy that is precise and unchanging in time. 

A great deal more could be said in general ; nothing has been said of the uncertainty 
principle, for example. The postulates of quantum mechanics have not been exhausted by 
those presented in this chapter. However, at this point we take up particular examples, in 
the belief that the skeleton presented so far will be less repulsive if it is fleshed out a bit. 

Finally, a remark or two about the treatment at the end of Chapter 19, which attempts 
to relate the classical wave equation and the Schrodinger equation. It should be clear that 
whether or not the Schrodinger equation is correct depends only on its predictions of 
behavior and not in the least on whether or not there is some means of transforming the 
classical wave equation into the Schrodinger equation. On the other hand, the Schrodinger 
treatment of a system is required to reduce to Newtonian mechanics in the limit as Planck's 
constant approaches zero, or in the limit of large masses and distances. Suffice it to say that 
the Schrodinger equation does reduce properly in these circumstances. 

In passing, it should be mentioned that since I ljJ  1 2 is a probability per unit volume, it 
follows that ljJ has dimension (length) - 3/2 in three-dimensional space. For a one-dimen
sional problem, the volume element is simply a length, so the dimension ofljJ is (length) - 1/2 . 
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QU ESTI O N S  

20. 1 What are the consequences for measurement when two operators commute ? When they do not 
commute ? 

20.2 Show why the expectation value <p,) of the x component of momentum cannot be written 
either as J (- iii ojox)(lj;*lj;) dr or S lj;*lj;( - iii ojox) dr. 

20.3 What is the distinction between an operator and its associated eigenvalues ? 
20.4 Why are quantum-mechanical operators Hermitian ? 
20.5 Criticize the statement : If wave functions lj; I and lj; 1 are orthogonal, then lj; I vanishes everywhere 

that lj; z is finite. 

P R O B LE M S  

20. 1  Consider the differential equation, dlujdx2 + Fu = 0. Show that two possible solutions 
are : U I = sin kx and Uz = cos kx. Then show that, if a l and al are constants, alu l + aZ u2 
is also a solution. 

20.2 Show that the function Aeax is an eigenfunction of the differential operator, (d jdx). 
20. 3 Iff = x", show that x(dfldx) = nf, and thus that f is an eigenfunction of the operator xed jdx). 
20. 4 Find the commutator for the operators, Xl and d2 jdXl . 
20. :; The operators for the components of angular momentum are : 

M = - ili(Y �  - z �) x oz oy 
, M = - ili(Z�  - x �) y 

ox oz ' 

Show that : MxMy - MyMx = iliM. , and that MlMz = MzM2, in which M2 == M� + M; + M;. Derive the corresponding commutation rules for My and M. , for Mz and Mx, and for MZ 
with Mx and with My . 

20.6 The function, J(x) = 3Xl - 1, is an eigenfunction of the operator, A = - (1 - xl)(d2jdxl) + 
2x(d jdx). Find the eigenvalue corresponding to this eigenfunction. 

20.7 Show that the function, fey) = ( 16y4 - 48yl + 12)e- y2/l is an eigenfunction of the operator, 
B = - (dz jdyl) + y2, and calculate the eigenvalue. 

20.8 Show that the function,J(y) = y(6 - y)e- Y/3 is an eigenfunction ofthe operator, F = - (dZ jdyZ) 
- (2jy)(d jdy) - (2jy) + (2jyl), and calculate the eigenvalue. 

20.9 Show that in the interval - 1 ::::; x ::::; + 1  the polynomials, Po(x) = aD ,  PI (x) = al + b1x, 
Pz(x) = az + bz x + Cz XZ are the first members of an orthogonal set of functions. Evaluate the 
constants aD ,  ai , b l , . . .  , and so on. 

20. 10 Show that in the interval ° ::::; ¢ ::::; 2n the functions, einq" where n = 0, ± 1, ± 2, . . .  , form an 
orthogonal set. 



2 1  
T h e  Qu a ntu m M ec h a n i cs of 
S o m e  S i m p l e  Systems 

21 . 1  I NT R O D U CTI O N  

In the quantum mechanical discussion of a system the following general scheme should be 
kept in mind. To begin, in prin_ciple we obtain the wave function for the system by solving 
the Schrodinger equation for that system. In practice we may have to guess at the form of 
the wave function. After obtaining the wave function we calculate expectation values for 
any observable by application of the equation 

(a) = f ljJ*a.ljJ dT, (21 . 1) 

in which a. is the operator corresponding to the observable a. It follows that, in spite of its 
lack of direct physical significance, the wave function is implicitly a complete description of 
the system. In fact, we will often refer to ljJ as " the description of the system" rather than 
the "wave function of the system." 

The wave function is such that the product ljJ*ljJ = I ljJ  1 2 is the probability density. 
Therefore I ljJ  1 2 dT is the probability of finding the particle in the volume element dT. Since 
the particle has unit probability of being somewhere, 

(21 .2) 

where the integration is carried over the entire coordinate space. 
Finally, the Schrodinger equation is a linear differential equation. The solutions of the 

equation are an entire set of functions : ljJl , ljJ2 , ljJ3 , ljJ 4 ,  . . .  , each of which describes a state 
of the system. The property of linearity in the differential equation means that linear 
combinations of these descriptions, or of a subset of them, are also descriptions of the 
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system. The descriptions of a system can thus be superposed to obtain new descriptions of 
the system (the principle of superposition). For example, if ljJl  and ljJ2 are two descriptions 
of the system, then the linear combinations, 

(21 . 3) 

where the a's and the b's are arbitrary constants, are also descriptions of the system. 
With these four fundamental properties in mind, we can understand a great deal of the 

consequences of the quantum mechanics. We begin by discussing a few simple systems in 
detail. 

21 . 2  T H E F R E E  PARTI C L E  

Consider a particle of mass m which moves in the absence of external forces along the 
x-axis only ; the absence of forces implies that the potential energy is constant, so for con
venience we may choose V = O. The components of momentum along the y- and z-axes are 
zero ; that along the x-axis is PX ' The total energy is a constant and is equal to the kinetic 
energy ; the classical description is 

2 
E = � 

2m 
(21 .4) 

Replacing Px by Px ' as in Section 20.4, we obtain the Schr6dinger equation for this system, 

EljJ = 
2m dx2 ' 

or 

Since E is a constant, this differential equation has two solutions : *  

and 

where A and B are arbitrary constants. 
If we operate on ljJ 1 with the momentum operator, we obtain 

Similarly, 

PxljJl  = - ih dt1 = - ih(iJ2mE/h)ljJl 

= J2mEljJl ' 

PxljJ2 = - J2mEljJ2 ' 

(21 . 5) 

These equations are typical eigenvalue relations ; the constant J2mE appearing on the 
right is an eigenvalue of the momentum operator. 

The interpretation is that in a state described by ljJ 1 the momentum ofthe particle has a 
fixed precise value, J2mE. The classical values of momentum according to Eq. (2 1 .4) are 
Px = ±J2mE. Thus ljJl describes a particle moving in the + x direction (Px is positive) with 

* The solutions are readily verified by substituting them into the equation. 
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the classical momentum. On the other hand, t/t z describes the particle moving in the - x 
direction (Px is negative) with the classical momentum. Since no other conditions are 
specified, the energy may have any value, and so may the momentum. The spectrum of 
energy eigenvalues is continuous, as is that of the momentum eigenvalues. 

Using t/t l '  suppose that we calculate the probability density t/trt/t l'  Since 

then 
Therefore 

(21 . 6) 

But A is a constant ; therefore I A l z is a constant and is independent af the value afx. This 
means that the probability of finding the particle is the same everywhere along its path. 
Therefore, we can make no statement about its position. The momentum has a definite 
value, Px , but we can know nothing about the position of the particle. If we use t/tz , the 
momentum is definite, - Px , but as with t/t 1 the position is completely indefinite. 

21 . 3  PARTI C L E  I N  A " B OX " 

21 . 3 . 1  Wave F u n ct ions  

In  view of  the indefiniteness in the position of  the free particle, suppose that we  enclose the 
particle in a " box " so that we know that its position lies within the boundaries ofthe " box." 
The " box " is made in the following way : let the potential energy of the particle be zero 
inside the box and infinitely large at the walls and everywhere outside the box. Since the 
particle cannot have an infinite potential energy, it will stay in the box where its potential 
energy is zero. Again we restrict the particle to move only along the x-axis. A plot of the 
potential energy as a function of x is shown in Fig. 21 . 1 ; L is the width of the box. 

Since V = ° inside the box, the Schrodinger equation has the same form as for the 
free particle, so the solutions are 

However, we must place the following boundary conditions on the wave function (Fig. 
21 . 1) : 

ao 

i 
V 

t/t = 0, 
t/t = 0, 

i 
V 

when x ::;; 0, 
when x :2:  L. 

----I-------L---_�Jb_ X F i g u re 21 . 1  T h e  potenti a l - energy " box," 
o L 
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If these conditions were not fulfilled, the probability density ljJ*ljJ would be finite at the 
edges and outside of the box, where the potential energy is infinite. This is not possible. 

These conditions cannot be satisfied by ljJ 1 or ljJ 2 individually. For example, at x = 0, 
ljJ 1 (0) = A ; to satisfy the condition ljJ 1 = 0, A would have to be zero. But if A is zero, then 
ljJ 1 is zero everywhere. This would mean that I ljJ  1 1 2 = ° everywhere ; the particle isn't any
where ! The same difficulty appears with ljJ 2 ' To avoid this we use the principle of super
position to construct a more general description, 

(21 .7) 
and apply our conditions to ljJ. 

At x = 0, ljJ = 0, so Eq. (21 .7) becomes ° = A + B, or B = -A. Using this result, we 
obtain 

ljJ = A(eij2mEx/1i _ e - ij2mEX/Ii). 

By the Euler equation, eiy - e - iy = 2i sin y, this becomes 

, I, 2 'A ' (�EX) C ' (J2mEx) '1' = 1 SIn = SIn . h h (21 .8) 

The first condition being satisfied, we look to the second : that ljJ = ° when x = L. 
At x = L, ljJ becomes . ( 0.;;ill L) ljJ(L) = C SIll Y £.r�r. = 0. 

This condition cannot be met by setting C = 0, because again the particle would be 
nowhere. The condition must be met by requiring that sin (J2mEL/h) = 0. If the argu
ment of the sine is an integral multiple of rc, then the sine is zero : that is, 

sin ( ± nrc) = 0, n = 1 , 2, 3, . . . 

The boundary condition is therefore fulfilled if, and only if, 

J2mEnL 
h = ± nrc, n = 1, 2, 3, . . .  (21 .9) 

Since Eq. (21 .9) indicates that the energy depends on n, E has been replaced by En - Using 
this result in Eq. (21 .8), we obtain 

, I, C . nrcx 'I' n = ± SIll y . (2 1 . 10) 

The final condition is that the total probability of finding the particle in the box is unity : 

f ljJ;;ljJn dx = 1 .  

Since ljJ;; = ± C* sin (nrcx/L), we have 

C*C sin2 
- dx = l .  fL nrcx 

o L 

The integral is equal to L/2 so C*CL/2 = 1 or I C 1 2 = 2/L. Choosing C as a real number, 



we have C = J2iL. The final description is 

, I, = � sin 
nnx . 'rn ·{i L 

There are several curious things about this problem. 
First of all, we write Eq. (2 1 .9) in the form 

n = 1 , 2, 3, . . .  
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(2 1 . 1 1) 

(21 . 12) 

Since n may have only integral values, E may have only the special value given by Eq. (2 1 . 12) 
and may not have any other value. The energy in this system is quantized, and the integer n 
is called a quantum number. The spectrum of energy eigenvalues is discrete. In contrast, 
the energy of the free particle could have any value. In retrospect, we see that the quantiza
tion entered when we restricted the particle to the interior of the box. 

The classical momentum corresponding to the energy value En is given formally by 

nnn nh Px = ± y = ± 2L ' n = 1 , 2, 3, . . .  (21 . 1 3) 

Another aspect of the situation is displayed if the de Broglie wavelength is introduced 
in Eq. (2 1 . 1 3). The de Broglie relation is A = h/ I Px I ,  where we have used the absolute value 
of Px , since A is not a vector quantity ; then Eq. (2 1 . 1 3) becomes 

(21 . 14) 

which requires that an integral number of half-wavelengths fit exactly in the length L. 
This situation is analogous to the possible vibrations of a string that is clamped at positions 
o and L. The permissible modes of vibration of the string are given by the same formula as 
Eq. (21 . 14). The value of the wave function for several values of n is shown in Fig. 2 1 .2(a) 
and the probability density ljJ*ljJ is shown in Fig. 21 .2(b). Note that the values of ljJ in 
Fig. 21 .2(a) look exactly like the displacements of a vibrating string clamped at 0 and L in 
its various modes of vibration. 

The probability density in Fig. 21 .2(b) is curious. When n = 1 the most probable 
position is at L/2, but all positions in the box have fairly large probability density. When 
n = 2, ljJ*ljJ vanishes at L/2 ! The particle has zero probability of being at L/2. Yet it has 
high probability of being at either side of the midpoint. This situation can be legitimately 
viewed in two ways. 

1. The particle can get from one side of the midpoint to the other without ever passing 
through the midpoint. Surprising as this may seem, it is correct. 

2. The particle is " smeared " over the entire space, the density of the smear being large on 
both sides and exactly zero at the center. This is the point of view we will usually adopt. 
After getting used to the notion of a "  smeared " particle, this idea is quite comfortable. It is 
also a bit easier to become accustomed to than the idea of the particle being now here, then 
there, but never in between. This latter notion also tends to keep us entangled with classical 
ideas of mechanical motion. The smearing of the particle may be regarded as what we 
would see if we attached a light to the particle and took a time exposure of the motion. The 
probability densities in Fig. 21 .2(b) represent this time average. 
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(a) 

F i g u re 21 .2  Wave funct ions and probab i l i ty 
densit ies for the part ic le  i n  the box. 

21 . 3 . 2  E n e rgy Leve ls  

(b) 

The allowed values of energy given by Eq. (21 . 12) are called the energy levels of the system. 
The least energy the particle may possess is called the zero-point energy, or the ground
state energy Eo . Note that if n = 0, the wave function vanishes everywhere and we lose 
our particle. For the particle in the box the least energy value is that for n = 1 , so that 
Eo = n2h2j2mL2 = h2jSmL2. Then 

and the spacing, or energy gap, between the levels n + 1 and n is 

En + l - En = [en + 1)2 - n2]Eo = (2n + l)Eo . 
Since h = 6.626 X 10- 34 J S, 

E 
. _ 5.49 X 10- 6 8 J2 S2 

0 - mL2 

We apply Eqs. (2 1 . 1 5) through (2 1 . 17) to three examples. 

(21 . 1 5) 

(21 . 1 6) 

(21 . 17) 
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l1li EXAMPLE 2 1 . 1  Consider a ball bearing, m = 1 g (0.001 kg), in a box 10 cm (0. 1 m) 
in length ; then 

Eo = 5.49 X 10- 6 3 J. 

If the ball bearing has a velocity of 1 cm/s, then its kinetic energy is t(O.OOl kg) 
(0.01 m/s)2 = 5 x 10- 8 J. The quantum number n would be 

2 = En = 
5 X 10- 8 J 

:::::; 105 5  n EO 5.49 x 10 6 3 J ' 

SO that n = 3 x 102 7 . The spacing between levels for this value of n is 

[2(3 x 102 7) + 1] 5.49( 10- 6 3 J) :::::; 3 X 10 - 3 5 J. 
Thus to observe the quantization in this system would require us to distinguish between an 
energy of 5 x 10 - 8 J and 5 x 10 - 8 ± 3 x 10 - 3 5 J. This type of precision is impossible, 
of course, so we do not observe the quantization in the kinetic energy of the ball bearing ; 
it behaves as though it could have any value of kinetic energy, and the most convenient 
way to treat this system is to use the classical mechanical laws of Newton. This example 
illustrates the Bohr " correspondence principle," a rough statement of which is : in the limit 
of high quantum numbers, the results of quantum mechanics approach those of classical 
mechanics. Whenever we deal with massive particles such as ball bearings and golf balls, 
quantum mechanics reduces to classical mechanics. 

II! EXAMPLE 2 1 .2 Consider an electron, m :::::; 10 - 30 kg, in a box the size of an atom, 
10 - 1 0 m;  then 

Eo = 5 .5 X 10 - 1 8 J :::::; 34 ev' 
This 34 eV is in the energy region of very short x-rays. The spacing between levels with 
n = 1 and n = 2 is E2 - E1 = 102 eV. lf the electron dropped from level 2 to level l ,  
a quantum of x-radiation of energy = 102 e V would be emitted. The energy 
quantization is readily observed here. 

II EXAMPLE 21 .3 Consider an electron, m :::::; 10 - 30 kg, in a box the size of the nucleus, 
10- 14 m; then 

Eo = 5 .5 X 10- 1 0 J = 3 .5 X 109 eV = 3500 MeV. 

This is a fantastic energy. The coulombic energy that might be expected to hold an electron 
in the nucleus would be 

_ e2 - (1 .6 x 1O- 1 9 C)2 V = -- = 1 2 14 m) = -2.3 x 10- 14 J = - 0. l4 MeV. 4nfo r 4n(8 .85 x 10 C/V m)(l0 

It is clear that if the electron were confined in the nucleus, it would have an inordinately 
large kinetic energy, which would not be compensated by the electrostatic attraction of 
the positive charge. It could not be held there. For this reason, among others, only 
heavy particles such as protons, neutrons, and so on, are supposed to be present within 
the nucleus. This argument also explains why the electron in the hydrogen atom does 
not fall into the nucleus ; for it to exist in the nucleus this fantastically high kinetic 
energy is required. 

Finally, we observe that for the allowed energy levels in the box, the 
half-wavelength of the particle must fit in the box exactly an integral number of times. 
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If we are to fit the electron in the nucleus, its half-wavelength must be the size of the 
nucleus or smaller. This very small wavelength implies, by the de Broglie equation 
P = hlA., a very high momentum and consequently the inordinately high kinetic energy. 

21 . 3 . 3  Expectat i o n  Va l ues of Pos it i o n  a n d  M omentu m 

We return now to the composite description of the system given by Eq. (2 1 .7). The first 
term in Eq. (21 .7) represents motion of the particle along the + x-axis with momentum 
+ Px , while the second term represents motion of the particle in the - x direction with 
momentum - Px . Confining the particle in the box forces us to use a composite description 
embodying motion in both directions. In a certain sense the particle is moving in both 
directions ! Or rather, we cannot decide from the description whether the particle is 
coming or going ! 

To calculate the expecta!ion value of the momentum of the particle in the box, we 
rewrite Eq. (21 . 10) in the form 

Normalization requires A = ( 1.)2£) . Hence 

(2 1 . 1 8) 

At this point we observe that the functions 

(2 1 . 19) 

are eigenfunctions of the momentum operator corresponding to different discrete eigen
values ; that is, 

. o4> - n  nrch -J.. -J.. 
Px 4> - n  = - zh ax = - L 'f' - n = - Pn 'f' - n · 

Consequently, 4>n and 4> - n are members of an orthonormal set in the interval 0 ::;; x ::;; L. 
(This was not true in the case of the free particle where the spectrum of eigenvalues of Px 
was continuous.) Thus we can write Eq. (21 . 1 8) in the form 

which is the series expansion of t/J n in terms of the appropriate orthonormal set of functions ; 
the coefficients, en = - e n = l/j2, are the appropriate series coefficients required to 
normalize t/J n · 
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• EXAMPLE 2 1 .4 Find the expectation value of PX ' The expectation value of Px 
is given by 

(Px) = {L l/I:PxV1n dx = 1L(c:cP: + c� n cP�n) (cn Px cPn + cnPx cP- n) dx 

= 1\c:cP: + c�n cP- n) (cnPn cPn + cn( -Pn)cP- n) dx 
= c:cnPn f: cP:cPn dx + c:cnC -Pn) 1L cP:cP- n dx 
+ C�n CnPn 1LcP� n cPn dX + C�nCn(-Pn) 1LcP� n cP - n dX. 

In view of the orthonormality condition, we have 

1L cP:cPn dx = 1L cP�n cP- n dx = 1 
This reduces the expression for <Px) to 

and 

<Px) = c:cnPn + c� ncnC - Pn) = I cn l 2Pn + I cn I 2( - Pn)· 
Putting in the values of 1 Cn 1 2 = 1 Cn 1 2 = !, we have 

<Px) = !Pn + !C -Pn) = O. (21 .20) 
The expectation value of Px is zero ; we could have shown this more easily by using the 
value of l/In from Eq. (2 1 . 1 1) :  

<Px) = 1L Ji sin (n�x) ( - in d[foi S!: (nnx/L)])dX = _ � sin2 (n�x) I : = O. 

However, the lengthier procedure given above is more instructive. The short calculation 
might erroneously be taken to mean that the momentum of the particle is precisely zero, 
while the longer calculation shows quite clearly that the zero value is composed equally 
of a 50 % probability of the particle moving with Px = + nnn/L and a 50 % probability 
of the particle moving with Px = - nnn/L. (The square of the absolute value of the 
series coefficient, 1 Cn 1 2 , is the probability of finding the situation described by the 
function cPn .) 

Compare this situation with the classical description in which at some time, to , we 
would specify precisely a value of momentum, PX ' At any subsequent time the 
momentum can be calculated from the classical laws. In quantum mechanics this 
precision is replaced by a probability. At any randomly chosen time, if by some magic 
we could ask the particle in the box for its momentum, it could only reply " Plus nnn/L, 
with 50 % probability," or " Minus nnn/L, with 50 % probability." Thus a statistical 
element is present in quantum mechanics. Certainty in classical mechanics is replaced 
by probability, or uncertainty, in quantum mechanics. 

We can give precision to the meaning of uncertainty in an observable by defining it as 
the root-mean-square deviation from the expectation value. Thus, if I1px is the uncertainty 
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in Px , then 
(/}.Px? = <(Px - <Px) )2 ) 

= « p; - 2px<Px) + <Px)2» = <P;) - <Px)2 ; 

/}.Px = J <P;) - <Px)2 . 

(21 .2 1) 

!Ill EXAMPLE 2 1 .5 Find the uncertainty in Px ' In view of the fact that <Px) = 0, and 
that p; = 2mH, it follows that 

<P;) = L
L 
l/l;p;l/ln dx = 2m r l/l;Hl/ln dx = 2mEn L

L 
l/l;l/ln dx 

and we have 

(2 1 .22) 

iii EXAMPLE 2 1 .6 Find <x) and <x2) . In a similar way we calculate the expectation 
value of the particle position, 

<x) = L
L 
l/l;(xl/ln) dx = L

L 
l/l;xl/ln dx. 

Introducing l/ln and l/l; from Eq. (2 1 . 1 1), we find 

which integrates to 

2 f
L nnx <x) = - x sin2 

- dx, 
L 0 L 

<x) = -!L. (21 .23) 
Not surprisingly, the expectation value of the position of the particle is at the middle of 
the box. If we calculate <x2), using Eq. (2 1 . 1 1) for l/ln , we obtain 

<x2 ) = L
L
l/l;x2l/ln dx = � L\2 sin2 (n2x) dx. 

Direct evaluation of the integral yields the expression 

Then, defining the uncertainty in the position in the analogous way to the definition 
of /}.Px , 

/}.x = J <x2 ) - <X)2 

/}.x = (�)2 [(2nn)2 _ 2J _ 
L2(nn)2 = � J(nn)2 

_ 
2 

= � J1 + 
n2n2 - 32 

2nn 3 4(nn)2 2nn 3 2nn 3 



Multiplying /1px by /1x, we obtain 
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Since the radical is greater than unity for all values of n, we have the result, 

h /1p · /1x > -x 4n ' (21 .24) 

The inequality (2 1 .24) is the statement of the Heisenberg uncertainty principle for the 
particle in the box. 

21 .4  T H E U N C E RTAI N TY P R I N CI P L E  

The situation for the free particle compared with the particle in the box may b e  summarized 
as follows. 

1. The free particle has an exactly defined momentum, but the position is completely 
indefinite. 

2. When we try to gain information about the position of the particle by confining it 
within the length L, an indefiniteness or uncertainty is introduced in the momentum. 
The product of these uncertainties is given by the inequality (2 1 .24) /1Px/1x > h/4n. 

3. If we attempt to give the particle a precise position by letting L --> 0, then to satisfy 
(2 1 .24), /1px --> 00 ;  the momentum becomes completely indefinite. 

These facts are given general expression by the Heisenberg uncertainty principle, 
which we may state in the form : the product of the uncertainty in a coordinate and the 
uncertainty in the conjugate momentum is at least as large as h/4n. (By the conjugate 
momentum of a coordinate we mean the component of momentum along that coordinate.) 
In Cartesian coordinates we can state the uncertainty principle by the relations 

h /1p · /1x > -x - 4n ' 
h /1p . /1y > -Y - 4n ' 

h /1p · /1z > -Z - 4n ' (21 .25) 

In passing, we reiterate that the operators for Px and x do not commute. Variables having 
operators that do not commute are subject to uncertainties that are related as in (21 .25). It 
follows from this principle that it is not possible to measure exactly and simultaneously 
both the x position and the x component of the momentum of a particle. Either the position 
or the conjugate momentum may be measured as precisely as we please, but increase in 
precision in the knowledge of one results in a loss of precision in the knowledge ofthe other. 

Suppose that we attempt a precise measurement of the position of a particle using a 
microscope. The resolving power of a microscope is limited by the wavelength of the light 
used to illuminate the object ; the shorter the wavelength (the higher the frequency) of the 
light used, the more accurately the position of the particle can be defined. If we wish to 
measure the position very accurately, then light of very high frequency would be required ; 
a y-ray, for example. To be seen, the y-ray must be scattered from the particle into the 
objective of the microscope. However, a y-ray of such high frequency has a large momentum ; 
if it hits the particle, some of this momentum will be imparted to the particle, which will be 
kicked off in an arbitrary direction. The very process of measurement of position introduces 
an uncertainty in the momentum of the particle. 
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y-ray 
E = hv 

Py =l1J! 

Scattered 
E' = hv' ray 

P ' 
E = -2m 

, hv' pY =c 

F i g u re 21 .3 The Compton effect. 

The scattering of a y-ray by a small particle and the accompanying recoil of the particle 
is called the Compton effect (Fig. 2 1 . 3). Let p be the momentum of the particle after the 
collision ; the momentum of the y-ray is obtained from the energy hv, which according to 
the Einstein equation, must be equal to my c2 • Therefore the momentum of the y-ray is 
myc = hv/c before the collision and hv'/c after the collision. Energy conservation requires 
that 

I p2 
hv = hv + 2m ' 

while momentum conservation requires that for the x component 

and for the y component 

hv hv' 
- = � cos ¢ + P cos e, c c 

hv' 
o = - sin ¢ - p sin e. c 

In addition to the original frequency v, these three equations involve four variables : Vi, p, ¢, 
and e. Using two of these equations, we can eliminate e and v', and reduce the third to a 
relation between p and ¢. If the particle is to be seen, the y-ray must be scattered into the 
objective of the microscope, that is, within a range 11¢. Since 11¢ is finite, there is a cor
responding finite range of values, an uncertainty, in the particle momentum p. The process 
of measurement itself perturbs the system so that the momentum becomes indefinite even if 
it were not indefinite before the measurement. Since no method of measurement has been 
devised that is free from this difficulty, the uncertainty principle is an accepted physical 
principle. Examination of the equations for the Compton effect shows that this difficulty is 
a practical one only for particles with a mass of the order of that of the electron or of that 
of individual atoms. It does not give trouble with golf balls. 

Another important uncertainty relation occurs in time-dependent systems. We can 
take the result for the particle in a box, which classically is written E = p;/2m ; if the 
momentum has an uncertainty I1px , then there is a corresponding uncertainty in the energy, 
I1E = (8E/8pJl1px , and thus 

I1E = (l/m)px I1px = {l/m) (mvJ I1px = Vx I1px ' 
However, the velocity, vx , can be written Vx = I1x/l1t ; using this result in the equation for 
I1E yields I1E . I1t = I1px . I1x ; extending this argument to the general case we have 

h I1E · l1t > �. - 4n (21 .26) 
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This relation says that there is an uncertainty in the energy of a particle and an uncertainty 
in the time at which the particle passes a given point in space ; the product of these uncer
tainties must equal or exceed h/4n. 

Heisenberg's development of quantum mechanics began with the uncertainty 
relations and led to the quantum mechanical equation. Schrodinger's treatment began 
with the wave equation and, as we have seen, we can argue from that to the uncertainty 
relations. 

21 . 5  T H E H A R M O N I C  O S C I L LATO R 

The particle in the " box " was strictly confined to a particular region of space by the 
infinitely high potential energy " walls " erected at the boundaries. We now ask how the 
system behaves if the walls are not infinitely high at any particular point in space but rise 
gradually to infinity. The simplest potential energy function that has this property is 
Vex) = 1kx2, in which k is a constant. The potential energy is parabolic (Fig. 21 .4). Choice 
of this potential-energy function has a double advantage. It displays the behavior if the walls 
are not infinitely high and, since this is the potential function for the harmonic oscillator, 
the results will be applicable to real physical oscillators insofar as they are harmonic 
oscillators. For example, the vibration of a diatomic molecule such as N 2 , or O2 , in the 
lower energy states is nearly harmonic. We begin with a brief outline of the classical 
mechanical problem and then discuss the quantum mechanical behavior. 

21 . 5 . 1  C lass i ca l M echa n i cs 

Consider a particle moving in one dimension, along the x-axis, and bound to the origin 
(x = 0) by a Hooke's law restoring force, -kx. Newton's law, ma = F, then reads 
m(d2x/dt2) = -kx, or 

d2x k 
-d 2 + - x = O. t m (21 .27) 

Define a circular frequency, OJ, such that OJ2 = kim ; this is related to the frequency v, by 
OJ = 2nv or v = ( l/2n)�. Equation (21 .27) becomes : 

v 

d2x 
dt2 + OJ2X = O. 

F i g u re 21 .4 Potent ia l  energy for 
the harmon ic  osc i l l ator. 
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This equation has the solution, 

The velocity, v = dxldt, is obtained by differentiating Eq. (2 1 .28) : 
v = ico[Aeirot - Be- irot] . 

(2 1 .28) 

(21 .29) 
The constants A and B are determined by specifying the position, x, and the velocity, v, at 
some time to . For a simple solution suppose that at t = to , x = xo , and v = 0 ;  then Eqs. 
(2 1 .28) and (2 1 .29) become 

Xo = Aeiroto + Be- iroto, 
0 = Aeiroto _ Be- iroto• 

Solving for A and B, we obtain 

A = !xo e- iroto and 

Then, using these values in Eq. (2 1.28) gives 

Since cos y = (eiy + e- iY)/2 and sin y = (eiy - e- iY)/2i, we obtain 

x = Xo cos co(t - to) 
and 

dx . ( ) v = 
dt 

= - coXo sm co t - to , 

(2 1 . 30) 

(2 1 . 31) 

Equation (21 .30) shows that the particle moves between - Xo and + xo with a sinusoidal 
motion. Equation (21 . 3 1 )  shows that the velocity varies between - coXo and + coxo and is 
90° out of phase with respect to the position. The total energy is 

or, using Eqs. (21 . 30) and (2 1 . 3 1 ), we have 

E = !m[co2x6 sin2 co(t - to)] + !kx6 cos2 co(t - to), 

which, since co2 = kim, reduces to 
E = !kx6 . 

(2 1 . 32) 

(21 . 33) 
Note that the energy of the classical oscillator depends only on the force constant, k, and 
on the maximum displacement, xo , which is an arbitrary quantity. The oscillator may have 
any total energy, depending on how large we make Xo . 

In terms of the momentum, p = mv, we can write the total energy at any time in the 
form 

p2 kx2 
E = - + - . 2m 2 (2 1 . 34) 

The total energy, E, is a constant throughout the motion. When the particle reaches the 
extreme value, ± xo , then the momentum, p = O. When x = 0, the momentum has its 
largest value. Thus the particle moves very slowly at the extremes of the displacement and 
moves very quickly near x = O. 



The H a rmon ic  Osc i l l ator 493 

21 . 5 . 2  Qua ntu m M echa n i cs 

The classical energy of the harmonic oscillator is given by Eq. (2 1 .34). We obtain the 
Hamiltonian operator by replacing p by p = - ili(d/dx). Then H = ( - li2/2m) (d2/dx2) + 
!kx2 . The Schrodinger equation becomes 

li2 d2t/J - - -d 2 + !kx2t/J = Et/J. 
2m x (21 . 35) 

Before we can deal with a differential equation such as Eq. (2 1 . 35) we must remove the 
garbage. To do this we introduce dimensionless variables. Let x = f3�, where the constant, 
f3, is some unit of length and � is dimensionless. Then Eq. (2 1 . 35) becomes 

Now we observe that each term in the equation contains t/J so the dimensions oft/J, whatever 
they are, do not matter. However, since t/J is multiplied by E on the right side, it follows 
that every term in the equation is multiplied by a quantity of energy. Thus both li2/2mf32 
and !kf32 must have the dimensions of energy. We observe that by adjusting the value of f3 
properly we can make these two quantities of energy equal ; therefore we determine f3 by the 
condition 

li2 1 2 
2mf32 = "fkf3 or p4 = � mk or f32 = �Ii _ 

fo' 
Then we  find that our unit of energy is 

.lkf32 = .lk (l!.-) _1 = (�) � J&k = .lh 2 2 2 r::::i: 2 2 2 v. n y mk n m 

Next we write E as a multiple of this unit of energy ; 

E = !hv(2n + 1) 

(2 1 . 36) 

(21 . 37) 

(21 . 38) 
in which n is a dimensionless parameter. (We could have written E = !hvo:, with 0: dimen
sionless, of course. The choice of 2n + 1 rather than 0: is convenient because it reduces the 
equation to a well-known standard form.) Introducing Eqs. (2 1 .36) through (2 1 . 38) into 
the Schrodinger equation, dividing by !hv, and rearranging yields 

d2t/J 2 
d�2 + (2n + 1 - � )t/J = 0, 

which is considerably less cumbersome than Eq. (2 1 . 35). 

(2 1 . 39) 

To solve this equation we observe that at very large values of �, such that �2 � 2n + 1, 
it becomes approximately 

d2t/J = e.!, . d�2 'I' 

This equation has approximate solutions 

and 

The first solution, t/J 1 l  is unacceptable as a wave function since t/Ji is not quadratically 
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integrable. The second solution, ljJ2 , becomes zero at � = ± 00 and is quadratically 
integrable. 

Having an approximate solution, e- �2/2, we attempt an exact solution of Eq. (21 . 39) 
by choosing a solution in the form 

ljJ = u(�)e- �2/2 . 
Then, using prime and double prime for first and second derivatives, we have 

ljJ" = u"e- �2/2 _ 2�u 'e - �2/2 + u( - 1 + �2)e- �2/2 . 

(2 1 .40) 

If we use this value for ljJ" and the value of ljJ from Eq. (2 1 .40), Eq. (2 1 .39) becomes, after 
dividing out e- �2/2, 

u" - 2�u' + 2nu = O. (21 .41) 
This is Hermite's differential equation. Two cases occur. 

Case I. The parameter n is either nonintegral or is a negative integer. If n is nonintegral, 
the solution of Eq. (21-41) behaves as e�2 for large values of � and we would have 
ljJ = e�2e - � 2/2 = e�2/2 for large values of � .  This function is not quadratically integrable 
and is therefore unacceptable. The case for negative integral values of n also yields 
functions that are not quadratically integrable . 

Case II. The parameter n is either zero or a positive integer . The solutions of Eq. (2 1-41 ) 
are polynomials of nth degree, the Hermite polynomials, usually written Hn( �) . Then the 
wave function has the form 

ljJn = p- 1/2 AnHn(�)e - �2/2 , 
in which An is a constant. The integral 

f:oo ljJ: dx = A: f:oo H:(�)e- �2 d� = 1 

(21 .42) 

converges since H:(�) is a polynomial of 2nth degree and any polynomial multiplied by 
e- �2 will yield a convergent integral. The constant An is determined by requiring that the 
integral equal unity. Evaluation of the integral yields 

An = Crn�nn !Y
I2

. (2 1 .43) 

The grand conclusion from all of this is that the condition of quadratic integrability 
requires n to be a positive integer or zero. Looking back, we realize that n governs the 
energy through Eq. (21 . 38), which can be written 

En = (n + !)hv, n = 0, 1, 2, . . . (2 1 .44) 
As in the case of the particle in a box, the energy is quantized. Only the special values given 
by Eq. (21 .44) are permitted ; these are the energy levels of the harmonic oscillator. Note 
that the energy levels are evenly spaced, En + 1 - En = hv, while in the case of the particle in 
a box the spacing increased with the value of n. 

The lowest permissible value of the energy is the zero-point energy, obtained by 
setting n = 0 in Eq. (2 1 .44) : 
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In this lowest energy state, there is still some motion of the oscillator. If the motion ceased 
altogether, this would require Px = 0 and x = 0 precisely. This is not permitted. A com
promise is reached, which leaves a small residual motion and uncertainties in both position 
and momentum in conformity with the uncertainty principle. 

The general expression for the Hermite polynomials is 

Explicitly, we may write 

HnC�) = ( _ 1)ne�2 d
n�;n�2) . 

Hnm = I 
( _ 1)kn !(2��n� 2k 

k = O (n - 2k) .k . 

(21 .45) 

(21 .46) 

Since the factorial of a negative integer is infinite, all terms for which 2k > n have vanishing 
coefficients so the series reduces to a polynomial. When n is even, the upper limit of k is n/2 ; 
when n is odd, the upper limit is (n - 1)/2. The first few Hermite polynomials are given in 
Table 2 1 . 1 .  

Since the functions I/In = [3- 1/2 AnHn(�)e- �2/2 are eigenfunctions of an Hermitian 
operator, they form an orthonormal set in the interval - 00 < � < + 00. Thus 

or 

(2 1 .47) 

Note that the product of two Hermite polynomials by themselves would not yield a con
vergent integral, but when each is weighted by the function e- �2/2, the integral does con
verge. The polynomials are said to be orthonormal with respect to the weighting function 
- �2/2 e . 

We can easily show, using either Eq. (21 .45) or (21 .46), that Hn( - �) = ( - l)nHnC�) ; 
the polynomial is even or odd as n is even or odd. 

For the evaluation of integrals involving Hermite polynomials two formulas are very 
useful : the differential relation 

(21 .48) 

and the recurrence formula 

(2 1 .49) 

Tab le  21 . 1  
T h e  H ermite polynomia ls  

n even n odd 

HoCO = 1 H1CO = 2� 
H2CO = 4e - 2 H3C�) = 8�3 - 12� 
Hi�) = 1 6�4 - 48e + 12  H5C�) = 32�5 - 160�3 + 120� 
H6C�) = 64�6 - 480�4 + 720e - 120 H7C�) = 128C - 1 344�5 + 3360�3 - 1 680� 
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Equation (21 .48) is easily derived from either Eq. (2 1 .45) or Eq. (2 1 .46) ; Eq. (21 .49) is then 
obtained by evaluating derivatives, using Eq. (2 1 .48) and combining with the Hermite 
equation, Eq. (21 .41). 
III EXAMPLE 2 1 .  7 Find the value of < O.  To evaluate <O we need an integral of the 
form 

<0 = J:oo l/ln Nn dx = I:oo A;Hn(�)�Hn(�)e� �2 d�. 

Using the value for �Hn(�) from Eq. (2 1 .49), we obtain 

<0 = A� J:oo Hn(�) [nHn� lm + tHn + l(�)Je� �2 d�, 

<0 = nA; f:oo Hn(OHn � 1 (�)e � �2 d� + tA; J:oo Hn(OHn + 1 (�)e� �2 d�. 

By the orthogonality relation, Eq. (2 1 .47), both of these integrals vanish, so <0 = o. 
We could have predicted this from the first form of the integral since H;( Oe � �2 is 
an even function of �, so that when multiplied by � it becomes an odd function, which 
vanishes on integration over the symmetrical interval. 

The wave functions shown in Fig. 21 . 5  indicate that there is a finite probability of 
finding the particle at very large distances from x = o. Classically the particle may not pass 
beyond the point at which the kinetic energy is zero ; that is, where the potential energy is 
equal to the total energy. If Xo is the maximum displacement allowed classically, then 

(a) (b) 

F i g u re 21 . 5  H a r m o n i c  osc i l lato r :  ( a )  wave fu nctions ;  (b )  densit ies .  

2 



The H a rmon ic  Osc i l lator 497 

!kx� = E, odkf3z �� = (n + !)hv, which yields �� = 2n + 1. Thus, for n = 0, the maximum 
displacement allowed classically would correspond to �o = ± 1. The density function 
shown in Fig. 21 . 5(b) is substantial at �o = ± 1 .  

• EXAMPLE 2 1 . 8  What i s  the total probability, Pen), of  finding the particle in  the 
classically forbidden region? We obtain Pen) by integrating the probability density over 
the forbidden region. 

Pen) = f - Jzn + 1 
A;H;(�)e- �2 d� + fOO A;H;(�)e - �2 d�. 

- 00  + JZn + 1  

From symmetry these two integrals are equal, so we have 

Pen) = 2A; fOO H;(�)e- �2 d�. 
JZn + 1 

If n = 0, we have A� = l/Jn, and HM�) = 1 ,  

2 foo 
P(o) = In J 1 

e- �2 d� = 1 - erf(1), 

in which erf(x) is the error function of x. From Table 4.2 we find erf(l) = 0.8427, so 
that P(O) = 0. 1 573. This indicates that in the ground state the particle spends 1 5 .73 % of 
its time in the classically forbidden region. This is by no means a negligible figure. The 
values for some other values of n are : 

n 0 1 2 3 4 

Pen) 0. 1 573 0. 1 1 16 0.0951 0.0855 0.0785 

As n increases, Pen) decreases and approaches the classical value, zero, as n -+ 00 .  
The ability of a particle t o  penetrate into a class.ically forbidden region i s  the basis of 

the quantum mechanical " tunnel effect." Consider a particle for which the potential 
function looks like that in Fig. 21 .6 . Two regions of low potential energy are separated by a 

E 

F i g u re 21 . 6  Barr ier  for tunne l  

x effect. 
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barrier. Assume that the particle has a total energy corresponding to E1 and is in the left
hand region. The energy E1 is less than the height of the potential barrier so that classically 
the particle would be confined to the left side. However, quantum mechanically there is a 
finite probability of finding the particle in the forbidden region and therefore there is a 
probability of the particle leaking or " tunneling " through the barrier. The probability of 
this event decreases as the mass of the particle increases and as the barrier gets higher and 
wider. 

21 . 6  M U LT I D I M E N S I O N A L  P R O B L E M S  

21 . 6 . 1  P a rt i c l e  i n  a Th ree- D i m e ns i o n a l  Box ' 

The majority of interesting problems involve more than one coordinate and momentum. 
Immediately the SchrOdinger equation becomes a partial differential equation and the 
solutions become more complicated. One of the simplest cases that illustrates a general 
method of solving the partial differential equation is the example of the particle in a three
dimensional box. 

We assume that the potential energy is defined by 

v = o 

v --+ + oo 
0 <  x < L1 0 <  y < L

2 

Y =:;; O, y � L
2 

Since the particles cannot exist in a region of infinite potential energy, we know that l/J = 0 
outside of and at the walls of the box. Since V = 0 in the interior of the box, we have the 
SchrOdinger equation in the form 

(2 1 . 50) 

We now assume that l/J is a product of functions of the individual coordinates ; that is, 

l/J(x, y, z) = X(x) . Y(y) . Z(z), (2 1 . 5 1 )  
then 

and so on. 

We insert these expressions for the partial derivatives in the Schrodinger equation and 
divide through by l/J ; this reduces the equation to the form 

(2 1 . 52) 

Now suppose we keep x and y constant ; then the first terms in the equation, since they 
depend on x and on y respectively, remain constant. If we vary z, the third term would 
appear to vary since it depends on z. But in fact it cannot vary, since the addition of a vary
ing third term to the two constant ones would make E vary and E is a constant. Thus, we 
may write 

- - ---- = E  h2 ( 1 d2Z) 
2m Z(z) dz2 z '  
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where Ez is a constant. The analogous argument may be applied to show that the first and 
second terms in Eq. (2 1 . 52) must also be constants, Ex and Ey . The partial differential 
Schr6dinger equation has thus been reduced to three ordinary differential equations, which 
can be written 

d2Z 2mEz 
dz2 + � Z = O. (21 . 53) 

Comparison of these equations with that for the one-dimensional particle in the box shows 
that both the equation and the boundary conditions are the same. The solutions are 
therefore 

Thus, by Eq. (2 1 . 5 1), 

if . (nxnx) X(x) = - sm --Ll Ll if . (n ny) Y(y) = - sm -y-L2 L2 if . (nz nz) Z(z) = - sm --L3 L3 

nx = 1, 2, 3, . . .  ; 

ny = 1, 2, 3, . . .  ; 

nz = 1 , 2, 3, . . .  

(21 .54) 

The energy is given by E = Ex + Ey + Ez , and since each term has the form for a particle 
in a box, we have 

If the dimensions of the box are all equal, that is, if Ll = L2 = L3 = L, then 

(n2 + n2 + n2)h2 
E = 

x y z 
"x, "y,  "z 8mL 2 

(21 . 55) 

In this case, we have an interesting case of degeneracy ; for example, the quantum number 
combinations (nx , ny , nz) = ( 1 12), ( 121), (21 1) represent different states of the system 
having the same energy. This energy state is three-fold degenerate. 

21 . 6 . 2  Sepa rat i o n  of Va r iab les 

We may generalize the result for the particle in the three-dimensional box in the following 
way. If the Hamiltonian operator can be written as a sum of groups of terms, each of which 
depends only on one coordinate or one set of coordinates, then the wave function can be 
written as a product of functions each of which depends only on the one coordinate or the 
one set of coordinates ; correspondingly, the total energy is the sum of the energies associated 
with each coordinate or each set of coordinates. 

For example, suppose there are two sets of coordinates, ql and q2 ; further, suppose that 
the Hamiltonian operator can be arranged in the form 

H = Hi + H2 , 
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where Hl depends only on the first set of coordinates q 1 and H2 depends only on a second 
set q2 ' Then the wave function will have the form 1/1 = fl(ql) '  fiq2) and the energy will 
have the form E = El + E2 . The proof is simple : 

Dividing by fd2 yields : 

H1/I = E1/I 
(Hl + H2)fd2 = Efd2 

fiHd;') + fl (H2 f2) = Efd2 ' 

1 1 it (Hdl) + Tz (H2 f2) = E. 

The first term depends only on the set ql ; the second term depends only on the set Q2 ' 
Keeping the members of the set Ql constant and varying the members of Q2 shows that the 
second term is a constant, E 2 ' Similarly, the first term must be a constant, E l '  Thus we can 
write 

(21 .56) 
(21 . 57) 

We see that if the energy is made up of contributions from independent modes of motion, 
the wave function will be a product offunctions each of which is a wave function describing 
an independent mode of motion. If, for example, as a first approximation, the internal 
energy of a diatomic molecule is made up of a sum of contributions, 

E = Eelectronic + Erotational + Evibrational , 
then, in the first approximation, the wave function will be a product, 

tjJ = I/J electronic ' ljJ rotational . t/J vibrational , 
where 1/Ielectronic depends only on the electronic coordinates ; 1/Irotational depends only on the 
angular coordinates ; and 1/Ivibrational depends only on the vibrational coordinates, in this 
case the internuclear distance. We shall have numerous examples of the use ofthis theorem. 

21 . 7  TH E TWO- B O DY P R O B LE M  

The classical energy of a system of two point masses, m1 and m2 , has the form 

1 2 2 2 1 2 2 2 E = -2 (PX l + PY1 + pz') + -2 (PX2 + PY2 + pz') + V(Xl ' Yl ' Zv X2 , Y2 ' Z2), m1 mz 
in which Xl ' Yl ' Zl and X2 ' Yz , Zz are the coordinates of the masses ml and mz respectively. 
Replacing the momenta by the corresponding quantum mechanical operators yields the 
Hamiltonian operator 

In general, the potential energy is not separable into terms involving only certain sets of the 
six Cartesian coordinates but depends on the internal coordinates of the system. So to 
simplify the problem we transform these six Cartesian coordinates into three coordinates 
for the center of mass X, Y, and Z and three internal coordinates, X, y, z. 
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* 21 . 7 . 1  M athemat ica l D eta i ls ;  C h a n g e  i n  Va r i a b l es 

The center-of-mass coordinates (X, Y, Z) are determined by the condition that the sum of 
the first moments of mass about the center of mass vanish for each axis ; that is, 

or 

x = �m-=l�x-=-l �+_m-=2,---x-=-2 
m1 + m2 

Y = 
m1Y1 + m2 Yz 

m1 + m2 

Z = m1z1 + m2 z2 , m1 + m2 
In addition, we define the three internal coordinates, x, y, z, by 

Since Xl and X2 depend only on X and X, we have 

a�l 
= (:�) a� + (::J :x = (m1 :1 

mJ a� - :x ' 

In the second expression, the derivatives have been evaluated from the definitions of X and 
x. Then, 

Similarly, we find 

and 
a2 

( 
m2 ) 2 a2 

(
2m2

) 
a2 a2 

ax� = m1 + m2 ax2 + m1 + m2 ax ax + ax2 ' 

These two terms are combined as they appear in the Hamiltonian, 

1 a2 1 a2 m1 a2 2 a2 1 a2 
- -- + - -- = - - -- + - --
m1 axi m2 ax� (m1 + m2)2 ax2 m1 + m2 ax ax m1 ax2 

m2 a2 2 a2 1 a2 
+ - + -- + - --(m1 + m2)2 ax2 m1 + m2 ax ax m2 ax2 

_ 1 a2 
+ (

� + �
) 

� 
- m1 + m2 ax2 m1 m2 ax2 ' 

The algebra for Yl ,  Y2 and Zl ' Z2 proceeds in exactly the same fashion, so the Hamiltonian 
becomes 
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in which 11 is the " reduced mass " of the system, defined by 1/11 = 1/ml + 11m2 , In the 
problems of interest here, the potential energy will be independent of the position of the 
center of mass, hence we have written vex, y, z) . 

21 . 7 . 2  The Wave Equat ion  for  the  I nterna l M ot i o n  

The transformation has separated the Hamiltonian into two groups of terms, the first 
group depending only on X, Y, Z, the second group depending on x, y, z. Thus we may write 
by the theorem, Eq. (21 . 56), 

ljItotal = ljItrans(X, Y, Z) · ljI(x, y, z), 

Etotal = Etrans + E, 

and 

(21 .58) 

The wave function, ljItrans ' is the wave function of a free particle of mass ml + m2 , moving 
with the center of mass of the system. Correspondingly, Etrans is the translational energy of 
the total system. This motion has no particular interest to us, so we may ignore it. We are 
interested in ljI = ljI(x, y, z), which will provide a description of the internal motions of the 
system ; E is the energy of these internal motions. For any system we can always separate 
out the center-of-mass coordinates in this way, discard the energy associated with them 
and consider only the internal coordinates. In the future we will assume that this has been 
done. 

It is convenient now to transform Eq. (2 1 . 58) into spherical coordinates with ml at the 
center and m2 at the position r, e, ¢. (Fig. 21 .7.) The transformation equations are 

x = r sin e cos ¢ 

y = r sin e sin ¢ 

z = r cos e 

or 

z 

tan ¢ = �
. x 

-----------1"----- --r--- Y 

x 

F i g u re 21 .7  Spher ica l  coord i n ates. 

(21 . 59) 



The R i g i d  Rotor 503 

The calculation of the differential operators goes as above ; for example, 

� = or � + 0(J � + o¢ � 
ox ox or ox 0(J ox o¢ ' 

but is tedious. The final result takes the form 

_ h2 [�� (r2 Oljl) + 1 a (sin (J Oljl) + 1 82lj1] + VCr (J ¢)ljI = EljI. 2/1 r2 or or r2 sin (J o(J of) r2 sin 2 (J 8¢2 ' , 

(21 .60) 
Depending on the form ofthe potential, this equation is applicable to a number of problems. 
We consider them in turn. 

The volume element in spherical coordinates is 

dr = r2 sin (J d(J d¢ dr (21 .61) 
If  the entire coordinate space is  to be covered, the limits of integration are 0 :s; (J :s; n ;  
o :s; ¢ :s; 2n ; 0 :s; r :s; 00. 

21 . 8  T H E R I G I D  R OTO R 

Suppose the two masses are held rigidly apart at some fixed distance ro . Since there is no 
momentum in the r direction, the derivative with respect to r cannot appear in the equation. 
The potential energy is equal to zero since the system rotates freely. Then Eq. (21 .60) 
becomes 

_ � [_1_ �  (Sin (J oY«(J, ¢») + �1 _ 0
2 Y«(J, ¢)] = EY«(J ¢) (21 .62) 211'6 sin (J 0(J 0(J sin2 (J 0¢2 ' . 

In which we have written Y«(J, ¢) for the wave function. 
Suppose the center of mass is at the position R ;  then the sum of the second moments 

of mass about the center of mass is the moment of inertia, I, about any axis perpendicular 
to the axis of the rotor (Fig. 21 . 8). From the figure, we have I = m1(0 - R)2 + miro - R)2. 

z 

x 
q / F i g u re 21 .8 Coord i nates for ca lcu lat ion 

Axis of rotation of moment of i nert ia .  
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As usual, R is determined by the vanishing of the sum of the first moments. 

or 

1 = ml ( m1 ) \'6 + m1 (1 - m1 ) lr6 = m1m2 r6 = W6 . m1 + m1 m1 + m1 m1 + m1 
Introducing I for W6 , Eq. (21 .62) becomes 

/11 [ 1 a ( . ay) 1 a2Y] - 21 sin e ae 
sm e fiij + sin2 e a¢l 

= E Y. 
The classical energy of a rigid rotor is given by 

M1 � = E 21 ' 

(2 1 .63) 

where M2 is the square of the total angular momentum of the system. Comparing these 
equations, we conclude that the operator for the square of the total angular momentum is 

2 2 [ 1 a ( . a ) 1 a1 ] 
M = - /1  sin e ae 

sm e ae + sin2 e a¢2 . (2 1 . 64) 

We further observe from dimensionality that the energy E must be some multiple of /12/21, 
so we write 

/12 
EJ = l(J + 1) 21 ' 

in which J is a dimensionless parameter. Equation (21 .63) becomes 

1 a ( . ay) 1 a1 y 
sin e ae 

sm e fiij + sin2 e a¢l + l(l + l)Y = O. 

We observe that multiplying the equation through by sin2 e brings it to the form 

sin e :
e 
(Sin e ��) + l(l + 1) sin1 ey  + ��� = O. 

(2 1 .65) 

By our earlier arguments, since only the last term depends on ¢, we can substitute y(e, ¢) 
= 0(e)<l>(¢), and divide through by 0(e)<l>(¢) to obtain 

1 . d ( . de) . 1 1 d1<l> 
0(e) 

sm e de 
sm e dfi + l(J + 1) sm e + 

<l>(¢) d¢l 
= O. 

The terms in this partial differential equation have been separated into a group depending 
on e and a single term depending on ¢. It follows that each of these sets of terms must be a 
constant so we write 

or 

This equation has the solution <l> = AeimeJ>. We note that when ¢ -+ ¢ + 2n we return to 
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the same set of points in space so that our boundary condition must be 

(J)( <p + 2n) = (J)( <p) ; 

This relation is satisfied only if m is zero or a positive or negative integer. We may write 

m = 0, ± 1 , ± 2, . . .  
For normalization we require, since <p varies from ° to 2n, 

A = _1_ 
foe 

where we have chosen A as a real number ; then 

m = 0, ± 1, ± 2, ± 3, . . .  

The remaining part of the equation can be written 

sin e :
e 
(sin e �:) + [J(J + 1) sin2 e - m2]0 = 0. 

(21 .66) 

(2 1 .67) 

In this equation we change variable to � = cos e ;  then d/de = (d�/de) (d/d�), but d�/de = 
- sin e, and sin2 e = 1 - cos2 e = 1 - �2 ; then Eq. (21 .67) becomes, with 0(e) = P(�), 

(1 - e) :� [(1 - �2) d���)J + [J(J + 1 ) (1 - �2) - m2]p(�) = 0. 

Dividing by (1 - �2) we get 

d2P dP [ m2 ] ( 1 - e) d�2 - 2� 
d� 

+ J(J + 1) - (1 _ 
�2) 

P = 0. (2 1 .68) 

Since � = cos e, and the limits of e are ° and n, the corresponding limits of � are + 1 and 
- 1 . Equation (2 1 .68) is the associated Legendre equation and it may be shown that the 
only case in which this equation possesses continuous, single-valued, and quadratically 
integrable solutions in the interval - 1 :::;; � :::;; + 1 is that in which J is a positive integer or 
zero. The solutions depend on the integers J and m and are written p}m l(�). It is clear from 
Eq. (2 1 .68), which contains only m2, that the function p}m l (�) can therefore depend only on 
the absolute value of m. The function of p}ml(�) is the associated Legendre function of 
degree J and order 1 m I .  The first few of these functions are shown in Table 21 .2. 

Using this result in Eq. (21 .65) we find that the energy of the rigid rotor is quantized : 

h2 
EJ = J(J + 1) 21 ' J = 0, 1, 2, 3, . . . (21 .69) 
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� 0 1 

0 1 � 
1 - (1 _ �2) 1 /2 -, L - -
3 - -
4 - -

Tab le  21 . 2  
The  assoc iated legendre functions 

2 

t(3e - 1) 
3�(1 _ �2) 1 /2 
3(1 - e) 

-
-

3 

t<S�3 - 3�) 
¥Se - 1)(1 _ �2)1 /2 
l S�(l - e) 
l S(l _ �2)3/2 

-

4 

t(3S�4 - 30e + 3) 
�(7�3 - 3�)(1 _ �2) 1 /2 
¥cn2 - 1)(1 - �2) 
lOSW - e)3/2 
lOS(l - e)2 

Similarly since E = M2/2I, it follows that the square of the total angular momentum is 
quantized 

J = 0, 1, 2, 3, . . .  (2 1 .70) 
The interesting result here is that, in contrast to the case of the particle in the box and 
the harmonic oscillator, when J = ° the lowest energy is zero, corresponding to a precise 
value, zero, for the angular momentum. This is possible since the angles of orientation, 
e and cp, are completely unspecified, in conformity with the uncertainty principle. 

The meaning of the integer m remains to be investigated. To do this we consider the 
classical z component of angular momentum in Cartesian coordinates. This has the form 

Mz = XPy - YPX ' 
The quantum mechanical operator for the z-component is then 

Mz = - ih(X :Y - Y :
X
)
. (2 1 . 7 1) 

If we transform Mz into spherical coordinates using the same method as above, we obtain 
the very simple result a 

Mz = - ih acp ' 
The wave function for the rigid rotor has the form 

in which the normalization constant, AJ, m ' is 

Then 

A = [(2J + 1) (J - I m l ) !] 1 /2
. J, m 2 (J + 1 m ! ) ! 

M Y - A plml ( i') _1_ M im¢ 
z J m - J m J <, M: z e , , y 2n 

= - ih(im)YJ , m ; 

(2 1 .72) 

(21 .  73) 

(21 .74) 

(21 .75) 
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Therefore we find that r" m is an eigenfunction of Mz with the eigenvalue mho The z com
ponent of the angular momentum is therefore quantized ; the quantum number is m = 0, 
± 1, ± 2" " . Again, precise values of the z component of angular momentum are permitted 
since the angle <p is totally unspecifiable. Repeating the application of Mz on Eq. (2 1 .  7 5), we 
obtain 

M; r" m = mli(Mz r" m) = m21i2r" m , (21 .76) · 
so that the square of the z component of angular momentum is m21i2 • The total angular 
momentum is the sum of squares of the components : 

M2 = M� + M; + M;. (2 1 .77) 
Replacing M2 and M; by their values from Eqs. (2 1 .70) and (2 1 .76), we obtain after re
arranging 

[J(J + 1) - m2]li2 = M� + M;. 

Since the right-hand side is a sum of squares, it cannot be negative ; hence we have the 
condition 

J(J + 1) - m2 � 0. 
It is apparent that this condition is fulfilled so long as I m I � J. The values of m are therefore 
restricted to m = 0, ± 1, ± 2, . . .  , ± J. For a given value of J, there are 2J + 1 values of m. 
The energy is determined by J only, hence each energy level has a degeneracy of 2J + 1 .  

The possible orientations of  the angular-momentum vector for J = 1 are shown in 
Fig. 21 .9. When J := 1 , 

JAi2 = J J(J + 1)1i 
= J2h. 

Any position of the vector in the conical surface above the xy-plane as shown in Fig. 21 .9( c) 
will yield a projection of the vector equal to + Ii on the z-axis, while any vector in the 
conical surface below the plane will have a projection - Ii  on the z-axis. The permissible 
projections for J = 2 are 2, 1 and 0. 

z 

m =  - 1  

(a) 

z 

m = O  

(b) 

z 

m =  + 1 

(c) 

F i g u re 21 .9  The z components of angu la r  momentu m for J = 1 : 
(a )  m = - 1 ; (b)  m = 0; (c)  m = + 1 . 
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Q U ESTI O N S  

21.1  What is the physical origin of quantization for the particle in a box? For a harmonic oscillator ? 
For a rigid rotor ? 

21.2 The eigenfunctions for a particle in a box oscillate more rapidly in space as n increases. Connect 
this behavior with the increasing momentum magnitude as n increases. 

21.3 For the ground state of a particle in a one dimensional box, (APx)2 = (p;)  = 2mEo . Use the 
uncertainty principle to estimate the zero point energy Eo . 

21.4 Why is there no zero point energy for a free particle ? 
21.5 Why is there no uncertainty principle for the product Apx ' Ay ? 
21.6 Sketch l{!?; for the harmonic oscillator versus displacement for n = 0 to n = 5. What is the 

connection between increasing oscillation of l{!;; as n increases and the increasing momentum 
magnitude ? 

2.17 Give a sketch illustrating the orthogonality of l{! 0 and l{! 1 for a harmonic oscillator. 
21.8 In Eq. (21 . 61), sin e de d¢ gives the area element dA on a sphere of unit radius. Sketch this 

element on a sphere for e near 0° and for e near 90° to see why the sin e term is present in dA. 
21.9 Why are there two quantum numbers for a rigid rotor ? What is their meaning? 

21.10 Classically, a rigid rotor that has its angular momentum directed exclusively along the z-axis 
is rotating solely in the xy-plane. Argue that this would violate the uncertainty principle for a 
quantum rotor. 

21.11  The wavefunction l{! of a certain system is the linear combination 

l{! = jl l{!1 + j1 l{!2 , 

where l{! 1 and l{! 2 are energy eigenfunctions with (nondegenerate) energy eigenvalues El and 
E2 respectively. What is the probability that the system energy will be observed to be EI ? To 
be E2 ? 

P R O B LE M S  

21.1  Calculate the probability of finding the particle in the " box " in the region between tL and iL. 
21.2 The electrons in a vacuum tube are confined in a "box " between filament and plate that is 

perhaps 0. 1 cm in width. Compute the spacing between the energy levels in this situation. Do 
the electrons behave more like waves or like golf balls ? In a simple tube the energy of the electron 
is about 100 e V. What is the quantum number of the electrons ?  

21.3 I f  the energy o f  the electron i s  5 eV, what size box must confine i t  s o  that the wave property 
will be exhibited ? Assume we can observe 0 . 1  % of the total energy. 

21.4 The muzzle velocity of a rifle bullet is about 900 m/s. If the rifle bullet weighs 30 g, with what 
accuracy can the position be measured without perturbing the momentum by more than one 
part in a million ? 

21.5 Evaluate (x2) for the harmonic oscillator and from this value obtain 
Ax = [(x2) - (X)2J I/2 . 

21.6 Evaluate (p;)  and (Px)2 for the harmonic oscillator and calculate the uncertainty in the 
momentum, Apx ' 

21.7 By combining the results of Problems 21 .6  and 21 .7  find the uncertainty relation for the harmonic 
oscillator. 
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21.8 Calculate the expectation value for the kinetic energy and for the potential energy of the harmonic 
oscillator, in the states n = 0 and n = 1 .  

21.9 Calculate the uncertainty i n  the value o f  the kinetic energy i n  the states n = 0 and n = 1 .  
21.10 Show that for n = 1 ,  the probability o f  finding the harmonic oscillator in the classically for

bidden region is 0. 1 1 16 .  
21.11  Derive Eq. (21 .49) using the hint suggested in the text. 
21.12 For a particle in a cubical box, Ll = Lz = L3 = L, tabulate the energy values in the lowest 

eight energy levels, (as multiples of hZ /8mL 2), and the degeneracy of each level. 
21.13 Calculate the moment of inertia, the angular momentum, and the energy in the first rotational 

state above the ground level, J = 1, for 
a) Hz in which ro = 74.6 pm ; MH = 1 .007825 g/mol. 
b) O2 in which ro = 120.8 pm ; Mo = 15 .9949 1 g/mol. 

21.14 From the definitions in Eqs. (21 . 7 1 )  and (21 . 59), prove Eq. (21 . 72). 





2 2  
T h e  H yd rog e n  Ato m  

22 .1 T H E C E N T R A L -F I E L D  P R O B L E M  

Returning to Eq. (21 .60), we consider the case in which V(r, e, ¢) is, in fact, a function 
only of r, the distance between the two bodies. Then any forces act only along the line of 
centers of the two bodies ; this defines a " central-field " problem. To discuss the central
field problem, we multiply Eq. (21 .60) by 2W2, and rearrange to 

2 0 ( 2 Ol/!) 2 [ 1 0 ( . Ol/!) . 1 o2l/! ] 2 - h or 
r a;: - h 

sin e oe 
sm e oe 

+ 
sin2 e O¢2 + 2W [V(r) - E]l/! = O. (22 . 1 )  

We recognize immediately from Eq. (2 1 .64) the operator for the square of the total 
angular momentum ; then Eq. (22. 1) becomes 

_ h2 :
r 
(
r2 ��) + M2l/! + 2w2[V(r) - E]l/! = O. 

Since the set of terms, M2l/!, depends only on e and ¢ and not on r, we may write 

l/!(r, e, ¢) = R(r)Yj m(e, ¢). 

Then, since M2 Yj, m = J(J + 1)h2 Yj, m , we find that M2l/! = R(r)M2 Yj, m(e, ¢) = J(J + 1)h2R(r)Yj, m(e, ¢). Using this result in the equation and dividing through by 
Yj, m(e, ¢) and 2W2 yields 

- - - r - + + V(r) - E R(r) = O. 
h2 d ( 2 dR) [J(J + 1)h2 ] 

2W2 dr dr 2W2 (22.2) 

This result simply tells us that the angular momentum in the presence of a central field is 
quantized in exactly the same way as for the rigid rotor. The rotational energy, on the other 
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hand, is affected by the fact that r is not constant ; consequently, the moment of inertia is 
not constant. 

Equation (22.2) also shows that the total energy is made up of three contributions : 
the first term in the equation is the contribution of the kinetic energy of the motion along 
the line of centers ; the second term is the kinetic energy associated with the rotation ; the 
third term is the potential energy, VCr). 

22 . 2  TH E H YD R O G E N  ATO M 

The hydrogen atom is a typical case of the central-field problem. As was shown in Fig. 19 .5, 
the proton is at the center with a charge + e while the electron is at a distance r with a 
charge - e. The coulombic force acts along the line of centers and corresponds to a 
potential energy, VCr) = - e2/4nfo r. 

We can rewrite Eq. (22.2) in the form 

_ � �  (r2 dR) + [1(1 + 1)112 - �JR - ER 2W2 dr dr 2W2 4nfo r - . (22.3) 

We have replaced the rotational quantum number J by I, since this is the usual notation 
in atomic systems. The quantum number I is called the azimuthal quantum number and 
characterizes the total angular momentum of the atom, 

I = 0, 1 , 2, 3, . . .  

The quantum number m has the same interpretation as before ; it characterizes the 
z component of the angular momentum. 

Mz = ml1, m = - I, - (l - 1), . . .  , - 1 , 0, 1, . . .  , I - 1, I. 
In this situation, m is called the magnetic quantum number, for reasons that will be 
apparent later. 

* 22 . 2 . 1  M athemat i ca l D eta i ls ;  S o l ut i o n  of the  R ad i a l  E q u at i o n  

Again we introduce dimensionless variables ; r = f3p and E = - ( l/n2)(112/2/lf32), where n 

is a parameter characterizing the energy. Note that the energy has been chosen as a 
negative quantity ; this implies that the discussion will deal only with the bound states of 
the hydrogen atom. The zero of potential energy is at r -4 00, in which state the two 
particles move independently. The equation becomes 

It is convenient to determine f3 by requiring that 

112 e2 
2/lf32 = 8nfo f3 or f3 - 4nfo l12 -- --2- - ao ,  /le 

in which ao is the first Bohr radius ; compare to Eq. ( 19 .20). Then we have 

� � (p2 dR) + (� _ 1(1 + 1) _ �)R = 0, p2 dp dp P p2 n2 
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or 
d2R + � dR + (� _ 1(1 + 1) _ �)R = O. dp2 P dp P p2 n2 

As p -+ 00, this equation becomes d2Rjdp2 = ( ljn2)R, which yields the values 

and Roo = e- p/n ; 
only the second value is finite at p = 00 ,  so we choose our solution in the form 

R = u(p)e- p/n• 

(22.4) 

(22. 5) 
Calculation of d2Rjdp2 and dRjdp and substitution in Eq. (22.4) yields, after dividing 
out e - p/n, 

d2u + � (2 _ 2P) du + � [2P (n _ 1) - 1(1 + 1)JU = O. dp2 p n dp p2 n 
If we set (2pjn) = x in this equation it simplifies immediately to 

d2u + (2 - x) du + � [(n _ 1)x _ l(l + l)]u = O. dx2 X dx x2 

Solutions to this equation have the form 

then 
u(x) = xIL(x) ; 

du _ I dL 
1 1 - 1V dx - x dx + x , 

d2u I d2L 1 - 1 dL 1 - 2 
dx2 = X dx2 + 21x dx + 1(1 - 1)x L. 

These values reduce the equation, after division by xl - \ to 

d2L dL x dx2 + [2(1 + 1) - x] dx + [n - (I + 1)]L = O. 

(22.6) 

(22.7) 

(22.8) 

The only solutions, L(x), of this equation that are quadratically integrable are those for 
which the coefficient of L is zero or a positive integer ; this condition requires that the 
parameter n be an integer such that n - (I + 1) � 0 or n � I + 1 .  Since the least value of 
I is zero we have the quantization conditions 

n = 1 , 2, 3, . . .  , O :::;; I :::;; n - 1 .  (22.9) 
We recognize these conditions as the familiar requirements on the value of n, the principal 
quantum number, of the hydrogen atom. 

The functions L(x) are the associated Laguerre polynomials, which depend on n 
and I ;  if we write 8 = n + 1 and t = 21 + 1 ,  then the equation becomes 

Xd2L�(x) ( 1 _ ) dL�(x) ( _ ) t ( ) - 0 dx2 + t + x dx + 8 t Ls x - . 

The general form for the polynomial L�(x) is 
s - t ( ,)2 k 

V( ) _ _ � ( _ 1)k 8 . X 
s X -

k�O (8 - t - k) ! (t + k) !k ! ' 

(22. 10) 

(22. 1 1) 
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Tab le  22.1  
The associated Laguerre polynomia ls  

n = 1 ; 1 = 0  Lf{x) = - 1  
n = 2 ; 1 = 0  L�(x) = - 2 !(2 - x) 

1 = 1 L�(x) = - 3 !  
n = 3 ;  1 = 0  L�(x) = - 3 !(3 - 3x + tx2) 

1 = 1 L�(x) = - 4 !(4 - x) 
1 = 2 L�(x) = - 5 ! 

n = 4 ;  1 = 0  Li(x) = - 4 !(4 - 6x + 2X2 - ix3) 
1 = 1 L�(x) = - 5 !(1O - 5x + tx2) 
1 = 2  L�(x) = - 6 !(6 - x) 
1 =  3 Li(x) = - 7 !  

n = 5 ;  1 = 0  L�(x) = - 5 !(5 - lOx + 5x2 - ix3 + l4X4) 
1 = 1 L�(x) = - 6 !(20 - 15x + 3x2 - ix3) 
1 = 2  L�(x) = - 7 !(2 1  - 7x + tx2) 
1 = 3 L�(x) = - 8 !(8 - x) 
1 = 4 L�(x) = - 9 !  

x = 2p 
x = p 

x = ip 

X = tp 

X = �p 

It should be observed that in contrast to the Hermite and Legendre polynomials, the 
Laguerre polynomials contain both odd and even powers of x. The first few are given in 
Table 22. 1 .  

22 . 2 . 2  Wave F u nct i o ns f o r  the  H yd rogen  Atom 

The normalized radial wave functions have the form _ Q {(n - l i- 1) !}1 /2 - x/2 1 2 1 + 1 Rnz{r) - - n2a�/2 [(n + 1) !J 3 e x Ln + 1 (x) 
in which x = 2r/nao . 

The complete wave function for the hydrogen atom has the form 

t/ln, l , m(r, (J, ¢) 

(22. 12) 

_ _ _ 2_ {(n - 1 - 1) ! (21 + 1)(1 - I m l ) !} 1 /2 - x/2 IL2 l + 1 ( )pl m l ( (J) im4> (22. 1 3) - n3a�/2 [(n + l) !J 34n(1 + 1 m ! ) ! e x n + 1 X 1 cos e . 
A list of the complete hydrogen atom wave functions is given in Table 22.2. 

22 . 2 . 3  R eca p itu l at i o n  on the  H yd rogen  At o m  

The hydrogen atom consists of two particles, a proton and an electron. Six coordinates 
and six momenta, three for each particle, are needed to describe the mechanical state of 
this system. The six coordinates of such a system can always be transformed to three 
coordinates of the center of mass of the system and three internal coordinates. After this is 
done the Schr6dinger equation separates into two independent equations. The first 
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involves only the coordinates of the center of mass and the translational energy of the 
atom as a whole ; since the translational part has no interest to us, we discard it. The 
remaining equation involves the internal coordinates of the atom and the internal energy. 
It is this energy and this part of the description that is of interest. We Will refer to this 
internal energy simply as. the energy of the atom. 

The internal coordinates are the usual spherical coordinates r, e, and 1>, displayed in 
their relation to the Cartesian coordinates in Fig. 21 .7. The nuch:;us is at the origin, r is 
the distance between the nucleus and the electron, e is the angle between the z-axis and 
the radius vector connecting nucleus and electron, and 1> is the angle between the + x-axis 
and the projection of the radius vector on the xy-plane. The potential energy is - e2/4nfo r, 
resulting from the electrical attraction of the charges + e on the nucleus and - e on the 
electron. The Schrodinger equation can be solved for tf; as a function of the coordinates 

Tab le  22.2 
Complete hyd rogen-atom wave funct ions,  t/!n. l.m {r, 0, l/J) (p = r/so) 

n = 1, 1 = 0, m =  O. 

n = 2, 1 = 0, m = 0. 

n = 2, 1 =  1 ,  m = O .  

n = 2, 1 =  1 ,  m = ± 1 .  

n = 3, 1 = 0, m = 0. 

n = 3, 1 =  1, m = 0. 

n = 3, 1 = 1 , m = ± 1 .  

n = 3, 1 = 2, m = 0. 

n = 3,  1 = 2, m = ± 1 .  

n = 3, 1 = 2, m = ± 2. 

( 1 fZ 
t/11 00 = -3 e- P  

nao 
1 ( 2 fZ 

t/1zoo = "8 na� 
(2 - p)e - p/z 

1 ( 2 fZ 
t/1Z l O = - -3 pe- p/Z cos (j 

8 nao 
1 ( 1 fZ . 

t/1Z 1 1  = - -3 pe- p/z sin (j eUP 
8 nao 
1 ( 1 fZ . 

t/1z 1 - 1 = - I -3 pe- P/z sin (j e- up 
8 nao 
1 ( 3 fZ 

t/1300 = -.- --3 (27 - 18p + 2pZ)e- p/3 
243 nao 
1 ( 2 fZ 

t/13 1 0 = - -3 p(6 - p)e- p/3 cos (j 
8 1  nao 
1 ( 1 fZ 

t/13 1 1  = - -3 p(6 - p)e-p/3 sin (j ei¢ 
8 1  nao 
1 ( 1 fZ 

t/13 1 - 1 = - -3 p(6 - p)e- p/3 sin (j e- i¢ 
8 1  nao 
1 ( 6 fZ 

t/132 o = - -3 pZe- p/3(3 cosz (j - 1 )  486  nao 
1 ( 1 fZ 

t/132 1 = - -3 pZe- p/3 sin (j cos (j ei¢ 
8 1  nao 
1 ( 1 fZ . 

t/13 Z - 1 = - -3 pZe- p/3 sin (j cos (j e- '¢ 
8 1  nao 

t/1 = - - pZe- p/3 sinz (j e'z¢ 1 ( 1 fZ . 
3 Z Z  1 62 na� 

t/1 _ = - - pZe- p/3 sinz (j e- 'z¢ 1 ( 1 fZ . 
3 Z Z 162 na� 
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r, e, and ¢. The wave functions obtained by solving this equation are descriptions of the 
states of the hydrogen atom. 

If the solutions of the Schr6dinger equation are to make physical sense, certain 
integers, quantum numbers, must be introduced. Just as in the case of the particle in the 
box, these integers enter because of the constraints that are placed on the system. For 
example, if the probability density 1 t/I 1 2 is to have a unique value at every point in space, 
the description t/I must have the same value at ¢ = 2n and at ¢ = 0, since these values of 
¢ correspond to the same set of points in space. This restriction together with the form of 
the equation requires t/I to depend on ¢ through either eimc/> or e- imc/>, where m is an integer. 
Two other integers, n and 1, are introduced by the requirement that the probability density 
be finite everywhere. It is clear that we may not have an infinite probability of finding the 
electron at any point in space. 

The final description, t/lnlm(r, e, ¢) or, more concisely, t/lnlm , is a function of the co
ordinates r, e, and ¢, and of the quantum numbers n, 1, and m. Since t/lnlm depends on the 
integers in a unique way, the integers by themselves constitute a convenient, abbreviated 
description of the system. Knowing the integers, we can look up the corresponding t/lnlm 
in a table such as Table 22.2 if we need it. For the most part we shall use only the quantum 
numbers to describe the system. 

22 .3  S I G N I F I CA N C E  O F  T H E QUANTU M N U M B E R S  I N  T H E 
H Y D R O G E N  ATO M 

22 . 3 . 1  T h e  P r i n c i p a l  Qua ntu m N u mber  

The integer n ,  the principal quantum number, describes the energy of  the hydrogen atom 
through the equation 

En = 
- 2!2 (4n:: ao ) = 

- (2!2 )Eh (22. 14) 

with allowed values n = 1 , 2, 3, . . .  In Eq. (22. 14), ao is the first Bohr radius and Eh is the 
hartree energy defined by Eh = e2/4nf.o ao . (In atomic and molecular problems it is 
convenient to express energies as multiples of the hartree energy.) The energies given by 
Eq. (22. 14) are the same as those given by Bohr's initial calculation, Eq. (19 .22). However, 
in the Schr6dinger model, n has nothing directly to do with angular momentum, while in 
the Bohr model, n was a measure first of the angular momentum of the system. This 
difference in interpretation should be kept in mind. 

The energy of the hydrogen atom is quantized, so it has a system of energy levels. The 
lowest permissible energy is that corresponding to n = 1 in Eq. (22. 14). 

e2 
-!Eh = 

-
--- = - 2. 17872 X 10 - 1 8 J. 8nf.o ao 

Then the permitted energies are -!Eh ' -tEh ' - /8Eh '  - l2Eh ' . . .  The energy levels and 
the possible transitions between them are shown in Fig. 22. 1 .  

In  making a transition between a high energy state and one of  lower energy, the atom 
emits a quantum of light having a frequency determined by hv = dE, where dE is the 
difference in energy of the two states. The spectrum of the atom therefore consists of series 
of lines having frequencies corresponding to the possible values of the energy differences, 
represented by the lengths of the arrows in Fig. 22. 1 .  There are several series of lines in the 
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Balmer 
series 

Lyman 
series 

series 

F i g u re 22 .1  Energy l evels - t Eh -J.-1-Ll..--------- n = l i n  the hyd rogen atom .  

spectrum. The general form for the energy difference between two states, from Eq. (22. 14), 
IS 

1 ( 1 1 ) 
I'lE = hVnk = zEh n2 - k2 . (22. 1 5) 

This is equivalent to the Rydberg formula, Eq. (19 . 16). 
Transitions from the upper states to the ground state, n = 1 ,  involve large differences 

in energy ; the Lyman series of lines is in the ultraviolet region of the spectrum. Transitions 
from higher states to the level n = 2 involve smaller differences in energy ; the Balmer 
series of lines lies in the visible and near ultraviolet. Transitions to the level n = 3 yield 
the Paschen series of lines in the infrared. Transitions to n = 4 and to n = 5 yield the 
Brackett and Pfund series in the far infrared. Note that as the transitions to any particular 
level occur from higher and higher levels, the energy difference, and therefore the fre
quency, does not change much. The lines in the spectrum come closer together and 
approach a series limit. 

If a hydrogen atom absorbs light, only those frequencies that match the allowed 
energy differences will be absorbed. The absorption spectrum and the emission spectrum 
therefore have the same lines. The absorbed quantum lifts the hydrogen atom from one 
permitted energy level to a higher one. 

22 . 3 . 2  T h e  Az i m utha l Quantu m N u m be r  

The integer I, the azimuthal quantum number, describes the total angular momentum of 
the hydrogen atom through the equation 

(22. 1 6) 
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with allowed values 1 = 0, 1 ,  2, . . .  , n - 1 ;  M2 is the square of the total angular momen
tum. The principal quantum number n could have any positive, nonzero, integral value ; 
in contrast, 1 may be zero, and may not exceed n - 1 .  It is customary to designate the 
values of 1 by letters ; the correspondence is : 

Value of 1 

Letter designation 
o 1 2 3 4 5 

s p d f g h 
(The letters s, p, d,f originated in the initial letters of sharp, principal, diffuse, and funda
mental ; words originally used to describe lines and series in spectra.) Mter 1 = 3, the 
letter designation proceeds alphabetically. The possible combinations of values of n and 
1 for n = 1 to n = 4 are : 

Value of n 
Value of 1 

Notation 

1 

o 

Is  

2 

o 1 

2s 2p 

3 

o 1 2 

3s 3p 3d 

4 

o 1 2 3 

4s 4p 4d 4f 

The notation on the third line is that usually employed for the particular combination of 
values of n and 1 ;  the number is the value of n, the letter is the letter designation of the 
value of 1. 

In making a transition from one state to another in the absorption or emission of 
radiation, there is a restriction on 1, called a selection rule. The value of 1 must change by 
± 1. Thus, if a hydrogen atom in the ground state, Is state, absorbs radiation and goes to 
level n = 2, then it must be finally in the 2p state. Any other transition between levels 1 
and 2 is forbidden by the selection rule. The existence of selection rules helps enormously 
in the interpretation of spectra. 

Although we know the magnitude of the total angular momentum from Eq. (22. 16), 
we do not know the sign. Therefore the orientation of the angular momentum vector is 
indefinite, and so the orientation of the orbit is indefinite. 

Suppose we compare the values of angular momentum in the Bohr and the 
Schr6dinger models : 

Bohr 
SchrOdinger 

M2 = n2h2, 
M2 = 1(1 + l)h2, 

n = 1 , 2, . .  . 
1 = 0, 1 , 2, . .  . 

(Incidentally, the Bohr-Sommerfeld model required the Schr6dinger value of the angular 
momentum.) In the Bohr atom, the angular momentum always had a nonzero value, 
while in the modern theory the angular momentum is zero in the s states for which 1 = O. 
The absence of angular momentum in the s states makes it impossible to imagine the 
motion of the electron in these states in terms of a classical orbital motion. It is better not 
to try. Where it may help to visualize it, the electronic motion will sometimes be described 
as ifit were moving in a classical orbit ; this description must not be accepted literally, but 
analogically. 

22 . 3 . 3  The M ag n et i c  Quant u m  N u mber  

The integer m ,  the magnetic quantum number, describes the z component of  the angular 
momentum Mz through the equation 

Mz = mh, (22. 1 7) 
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with allowed values m = - 1, - 1  + 1, - 1  + 2, . . .  , - 1, 0, + 1, + 2, . . .  , + 1. Any integral 
value from - 1  to + 1 including zero is a permitted value for m. There are 21 + 1 values of 
m for a given value of 1. If 1 = 0, then m = 0. But if 1 = 1, then m may be - 1, 0, + 1. If 
1 = 2, then m may be - 2, - 1, 0, + 1, + 2. In the absorption or emission of a light quantum, 
the selection rules require either Llm = 0, or Llm = ± 1 .  

22 .4  P R O BA B I LITY D I ST R I B UTI O N  OF T H E E L E CT R O N  C LO U D  
I N  T H E  H Y D R O G E N  ATO M 

22 .4 . 1  P ro ba b i l ity D istr i but ion  i n  s States 

The requirements of the uncertainty principle make it necessary to visualize the hydrogen 
atom as a nucleus imbedded in a " fog " of negative charge. This electron cloud has a 
different shape in the different states of the atom. To discover the shape of the cloud, we 
construct the probability density I l/Inlm l 2, for the state in question. 

For the ground state, 1s state, of the hydrogen atom, the wave function is 

_ 1 - r/ao 1/118 - ( 3) 1 /2 e . 
1tao 

(22. 1 8) 

This equation shows that in the 1s state, the wave function and the probability density are 
independent of the angles () and cp. Consequently, the electron cloud is spherically sym
metric. Let per) be the probability density ; then 

(22. 19) 

This function is shown in Fig. 22.2(a). The probability density is high near the nucleus 
and decreases rapidly as r increases. Since the volume near the nucleus is very small, the 
total amount of the cloud near the nucleus is very small. So we ask a different question. 
How much of the cloud is contained in the spherical shell bounded by the spheres of 
radius r and r + dr ? 

The volume of this spherical shell is dY.hell = 4nr2 dr, so that the amount of the cloud 
in the shell is P 1 .(r)4nr2 dr. The function 4nr2 per) = fer) is the radial distribution 

1 

S £ 0.5 
� 

O LO ------����2�-
r/ao 
(a) 

rlao 
(b) 

F i g u re 22 .2  The 1 s state of the hydrogen atom.  (a )  Probab i l ity density. 
(b) Rad i a l  d i str ibut ion funct ion .  

5 
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function : 
4r2 f (r) = 4nr2p (r) = - e- 2r/ao l s l s 3 . ao (22.20) 

The radial distribution function is the total probability of finding the electron in the 
spherical shell (Fig. 22.2b). In the 1s state the probability of finding the electron is a 
maximum in the spherical shell which has a radius ao ,  the radius of the first Bohr orbit. 
The probability of finding the electron in a spherical shell near the nucleus is very small, 
as is that of finding it very far away from the nucleus. 

The distance of the electron from the nucleus in the 1s state can be calculated using 
the theorem on expectation values, Eq. (20.7). For an s state the volume element may be 
taken as the volume of the spherical shell ; the operator for r is simply multiplication of the 
wave function by r ;  so we get 

(rl s) = f "'ls npls dt = f "'ls r"'ls dt. 
Putting in the values of "'ls and the volume element, this becomes 

(r 1 s) = � f" (�:re- 2r/ao d(�:) = � 3 !  = !ao ·  (22.21) 

By the same method, using the appropriate wave function, we can show that for any s 
state of principal quantum number n, 

(22.22) 

In states with larger values of n (higher energies) the average distance of the electron from 
the nucleus is larger. This is apparent in Fig. 22.3, which shows the radial distribution 
function for hydrogen is the 1s, 2s, and 3s states. Also, note that as n increases, the distri
bution function becomes " lumpier " ;  this " lumpiness " is characteristic of the larger 
values of the kinetic energy in these states. 

F i g u re 22.3 Rad i a l  d istr ibut ion fu nct ion 
for  1 5,  25, and  35 states. 
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22 .4 .2  P ro ba b i l i ty D istr i but ion  in  States 
with  A n g u l a r  M omentu m 

In states having angular momentum, the z component has a precise value. This fact has 
the consequence, through the uncertainty principle, that the angle of orientation of the 
electron around the z-axis is completely indefinite. The electron has equal probability of 
having any orientation about the z-axis ; therefore the charge cloud is symmetric about the 
z-axis. In contrast to s states, which have spherical symmetry, states with angular momen
tum have axial symmetry, conventionally associated with the z-axis. 

To be concrete, consider the p states. In these states,1 = 1, so that by Eg. (22. 16) the 
total angular momentum is M = jl(f+l)1i = J21i. Since m may be - 1, 0, or + 1 ,  
the possible values of the z component are, by Eq .  (22. 17), 

0, + Ii. 
Figure 22.4(a) shows the possible orientations of the angular momentum vector, of 
magnitude J2 Ii, which have M z = - Ii. Any vector lying in the conical surface fulfills 
this requirement. In Fig. 22.4(b) it is apparent that any vector lying in the xy-plane has 
Mz = 0. Any vector lying in the conical surface of Fig. 22.4(c) has Mz = + Ii. 

The corresponding charge density distributions are shown in Fig. 22.5 .  Note that a 
large z component, either positive or negative, squeezes the charge cloud nearer the 

z 

m = - 1  

(a) 

z 

m =  - 1  

(a) 

z 

m = O  

(b) 

z 

m = O  

(b) 

z 

m =  + 1 

(e) 

z 

m = + 1 

(e) 

F i g u re 22.4 The z 
components of angu l a r  
momentu m fo r  / = 1 .  
( a )  m = - 1 .  (b)  m = O.  
(c ) m = + 1 . 

F i gu re 22 .5  Charge 
c louds for p states. 
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Old description 

p+ 1(m = + 1) 
p- 1(m = - 1) 
poem = 0) 

Tab le  22.3 

New description 

Px 
Relation between old and new 

Px = !j2(P+ 1  + P- 1) 
Py = - i!j2(P+ 1  - P- 1) 
pz = Po 

xy-plane. If M z = 0, the charge cloud density vanishes in the xy-plane. The only distinction 
we can make between the charge clouds for Mz = + h and - h is by supposing that for 
Mz = - h the rotation of the electron is in a clockwise sense, and for Mz = + h that the 
rotation of the electron is counterclockwise. 

Since for m = ± 1 we cannot distinguish the shapes of the clouds, we use the principle 
of superposition to construct new descriptions. Let the old P functions be designated by 
the proper values of m ;  we write P + l and P- l ' By taking linear combinations of these 
descriptions, we obtain the new descriptions which we designate by Px and py . This 
procedure is shown in Table 22. 3 . 

The advantage of the new description is that the three charge clouds shown in Fig. 
22.6 for Px , Py , pz look equivalent ; each consists of two lobes that lie along the X-, y-, and 
z-axis, respectively. The function Px corresponds to Mx = 0, Py to My = 0, and pz to 
Mz = 0. For each of the P functions in the new description, the maximum in the probability 
density is along the particular axis. The probability density is zero in the coordinate plane 
perpendicular to that axis ; this is evident in Fig. 22.6. 

There are five d states corresponding to values of m = - 2, - 1, 0, + 1 ,  + 2. The 
charge clouds for these states are shown in Fig. 22.7. The charge cloud has the same 
appearance for d + 2 as for d _ 2 ' The direction of motion is counterclockwise for d + 2 and 
clockwise for d_ 2 ; the same is true for d+ l and d_ l . We will not need alternative descrip
tions of the d functions. Note the axial symmetry for all values of m in Fig. 22.7 and that 
the higher the value of m, the closer the charge cloud is to the xy-plane. 

We can compare the extension of these charge clouds in space by calculating the 
average distance of the electron from the nucleus for the state in question. Using the 
appropriate wave function, we do the calculation by the same method we used to obtain 
<rls) in Eq. (22.21). We omit the tedious details and write only the result, which is quite 

z 

x 

z z 

Y ----::li:"'------- Y 

x x 

F i g u re 22 . 6  Charge c louds for p x '  p y '  a n d  pz · 
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z 

F i g u re 22.7 Charge c louds i n  the d states. 

z 

y 

simple. The average distance of the electron from the nucleus depends only on n and I : 
(22.23) 

Equation (22.23) shows that for a specified value of n in states having high angular 
momentum, high values of I, the average distance of the electron from the nucleus is less 
than in states of low angular momentum. As we shall see later, this is the underlying 
reason for the great similarity in the chemistries of the rare earth elements. 

22 . 5  E L E CT R O N  S P I N  A N D T H E M AG N ET I C  P R O P E RT I E S  O F  ATO M S  

Before development of the Schrodinger equation, it was shown by Uhlenbeck and 
Goudsmit that certain troublesome features of atomic spectra could be explained if the 
electron itself possessed an intrinsic angular momentum. If we do not take the picture too 
seriously, we may imagine the electron as a tiny ball of negative charge that is spinning 
on its axis. If the square of the total spin angular momentum is M;pin = s(s + 1)h2, and 
if s = !, then the experimental data are explained. The z component of the spin angular 
momentum has the value 

M z(spin) = ms h. (22.24) 

The quantity ms is the spin quantum number ;  it may have only the values +! or -l The 
Schrodinger equation in its usual form gives no indication of the existence of the electron 
spin. However, Dirac has shown that if the Schrodinger equation is cast into a form that 
satisfies certain requirements of relativity theory, then four quantum numbers, the fourth 
being the electron spin quantum number, appear in the solution for the hydrogen atom. 
Thus the spin is a coherent part of the fundamental theory and is not tacked on just to 
patch things up. 

If the electron spins on its axis, the fact that it is electrically charged implies that there 
is a current flow around the axis. This flow of current gives the electron a magnetic 
moment, just as the flow of current in a coil of wire gives the coil a magnetic moment. The 
magnetic moment is perpendicular to the plane of the current flow and so is parallel to 
the angular momentum vector, but directed oppositely because of the negative charge on 
the electron. According to Eq. (22.24), the z component of the spin angular momentum 
may be either +!f:l or -!h. Consequently, the z component of the magnetic moment may 
have either of two corresponding values, - !lB or + !lB ' where !lB , the Bohr magnet on, is a 
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natural unit of magnetic moment. The magnetic moment of the electron made the first 
observations of the spin property possible. 

If in an atom the orbital angular momentum is not zero, 1 =f. 0, then the atom has an 
orbital magnetic moment as well as a magnetic moment caused by the spin of the electron. 
In states having angular momentum, the electronic motion constitutes a current flowing 
around the atom, which produces the magnetic moment. The z component of the orbital 
magnetic moment is proportional to the z component of the angular momentum and is 
equal to - mpB ; for this reason m is called the magnetic quantum number. 

Two electrons in an atom that differ only in the value of the spin quantum number are 
called paired electrons. The z component of spin angular momentum of the second 
electron is equal and opposite in sign to that of the first electron. The net z component of 
spin angular momentum of the electron pair is the sum, !h + ( - !)h = 0 ;  thus the pair 
of electrons has no net spin angular momentum and no magnetic moment along any axis. 
The pairing of the spins is frequently indicated by arrows, tt , representing the spin 
quantum numbers, ms , of the electrons. A head-up arrow represents an electron with 
ms = +t a head-down arrow represents an electron with ms = -l 

Similarly, the net orbital angular momentum of  any filled subshell i s  zero. First o f  all, 
the orbital angular momentum in an s level is zero by definition. In a group of p levels, 
the possible values of m are - 1, 0, + 1. If we place a pair of electrons in each of these p 
levels, then two electrons have m = - 1, two have m = + 1 ,  two have m = O. The net 
z component for all of these is zero since 2( - 1) + 2(0) + 2( + 1) = O. A filled subshell has 
no net component of orbital angular momentum around any specified axis, and so it 
contributes no magnetic moment due to orbital motion. 

The magnetic moment of an atom is due entirely to partially filled subshells and 
unpaired spins. The completed subshells do not contribute to the permanent magnetic 
moment of an atom. In this connection we might remark that most molecules have an 
even number of electrons whose spins in the ground state are all paired. Also the subshells 
are usually complete so that there is no contribution to the magnetic moment from the 
orbital motion. It is unusual for a molecule to have a permanent magnetic moment ; the 
possession of a permanent magnetic moment is an important key to the electronic structure 
of the molecule. 

22 . 6 T H E ST R U CTU R E  O F  C O M P L EX ATO M S  

Using the hydrogen atom as a guide, we will assume that every electron in a complex 
atom (a complex atom is an atom with more than one electron) can be described by a set 
of four quantum numbers n, 1, m, ms . We also assume that the system of energy levels in a 
complex atom is generally similar to that of the hydrogen atom. Usually our attention 
will be confined to the state of lowest energy, the ground state, of the atom. It is worth 
noting that we are talking about the structure of the isolated atom ; for example, the 
structure of an isolated sodium atom, not that of a sodium atom in metallic sodium, where 
many atoms are very close together. 

If the electron is in the Is state, the hydrogen atom is in its lowest state of energy. In a 
polyelectronic atom such as carbon (six electrons) or sodium (eleven electrons) it would 
not seem unreasonable if all the electrons were in the Is level, thereby giving the atom 
the lowest possible energy. We might denote such a structure for carbon by the symbol 
Is6 and for sodium, Is 1 1 . This result is wrong, but from what has been said so far there is 
no apparent reason why it should be wrong. The reason lies in an independent and funda
mental postulate of the quantum mechanics, the Pauli exclusion principle : no two electrons 
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may have the same set offour quantum numbers. Only two sets of four quantum numbers 
exist for the Is level ; in the order (n 1 m l mJ ;  these sets are (lOO l i) and (lOO I -i). If more 
than two electrons are placed in the Is level, at least one of these sets would be duplicated, 
a situation forbidden by the Pauli principle. In this light it is clear why the structures, 
ls6 for carbon and lS 1 1  for sodium, are incorrect. 

The construction principle (Aufbau Prinzip) for the electronic structure of complex 
atoms is as follows. 

1. Each electron in a complex atom is described by a set of four quantum numbers, the 
quantum numbers being the same as those used to describe the states of the hydrogen 
atom. 

2. The relative arrangement of energy levels in the complex atom is roughly the same 
as that in the hydrogen atom. To make up the structure of the complex atom, the 
electrons are arranged in the lowest possible energy levels consistent with the restric
tion imposed by the Pauli principle. 

We divide the levels into shells, those levels with the same value of the principal 
quantum number, and subs hells, those within a shell that have the same value of the 
azimuthal quantum number. For a specified value of I, there are 21 + 1 values of m ;  for a 
specified value of m, the electron may have two values of ms . Hence there are 2(21 + 1) 
distinct combinations of m and ms . This is the maximum number of electrons permitted 
in any subshell. For an s subshell, 1 = 0, so only two electrons may occupy the subshell. 
For a p subshell, 1 = 1, and six electrons are required to fill the p subshell. Ten electrons 
fill a d subshell, 1 = 2, and so on. The shell with n = 1 , is the K shell ; that with n = 2, the 
L shell ; n = 3, the M shell ; and so on. The number of electrons required to fill the shells 
is shown in Table 22.4. The numbers 2, 8, 1 8, 32, . . .  in the last column are given by 2n2, 
where n is the principal quantum number. The numbers in this famous sequence are the 
numbers of elements in the periods of the periodic table. 

The number of electrons in a subshell is indicated by the superscript on the symbol 
of the subshell. Using the principles outlined above, we write the electronic configurations 
for hydrogen and helium as 

H :  Is, He : 

The K shell is complete with helium. The next electrons added must go into the shell with 
n = 2. The question is which subs hell, the 2s or the 2p, fills in first? In the hydrogen atom 
the energy of these subs hells is the same, but in complex atoms the energy depends on 1 
as well as on n. For a specified value of n, the order of the sublevels is s, p, d, . . .  , where s 
has the lowest energy. So in lithium the 2s level lies lower than the 2p, and the structure is 
Li : ls22s. Following Li we have Be : 1s22s2 . Then in the six succeeding elements the 2p 
shell fills ; B :  ls22s22p ; c :  ls22s22p2, and so on until neon is reached ; Ne : ls22s22p6 . With 

Value of n 

1 (K shell) 
2 (L shell) 
3 (M shell) 
4 (N shell) 

Tab le  22.4 

Subshells 
present 

s 

s, p 

s, p, d 
s, p, d, J 

Number of electrons 
in the filled shell 

2 
2 + 6 = 8  
2 + 6 + 10 = 1 8  
2 + 6 + 1 0  + 14 = 32 



1 H 
2 He 

3 Li 
4 Be 
S B 
6 C 
7 N 
8 0 
9 F 

10 Ne 

1 1  Na 
12 Mg 
13 Al 
14 Si 
I S P 
16  S 
1 7  CI 
1 8  Ar 

19  K 
20 Ca 
21  Sc 
22 Ti 
23 V 
24 Cr 
2S Mn 
26 Fe 
27 Co 
28 Ni 
29 Cu 
30 Zn 
3 1  Ga 
32 Ge 
33  As 
34 Se 
3S  Br 
36 Kr 

37 Rb 
38 Sr 
39 Y 
40 Zr 
41 Nb 
42 Mo 
43 Tc 
44 Ru 
4S Rh 
46 Pd 
47 Ag 
48 Cd 
49 In 
SO Sn 

Tab le  22 .5 
E lectron ic  confi g u rat ions of the gaseous atoms. 

Is 
I s2 

He 2s 
He 2S2 
He 2S2 2p 
He 2S2 2p2 
He 2S2 2p3 
He 2S2 2p4 
He 2S2 2p5 
He 2S2 2p6 

Ne 3s 
Ne 3s2 
Ne 3s2 3p 
Ne 3s2 3p2 
Ne 3s2 3p3 
Ne 3s2 3p4 
Ne 3s2 3p5 
Ne 3s2 3p6 

Ar 4s 
Ar 4s2 
Ar 3d 4s2 
Ar 3d2 4s2 
Ar 3d3 4s2 
Ar 3d5 4s 
Ar 3d5 4s2 
Ar 3d6 4s2 
Ar 3d7 4s2 
Ar 3d8 4s2 
Ar 3d1 0  4s 
Ar 3d1 0  4s2 
Ar 3d1 0  4s2 4p 
Ar 3d1 0  4s2 4p2 
Ar 3d1 0  4s2 4p3 
Ar 3d1 0  4s2 4p4 
Ar 3d1 0  4s2 4p5 
Ar 3d1 0  4s2 4p6 

Kr Ss 
Kr SS2 
Kr 4d SS2 
Kr 4d2 SS2 
Kr 4d4 Ss 
Kr 4d5 Ss 
Kr 4d6 Ss 
Kr 4d7 Ss 
Kr 4d8 Ss 
Kr 4d1 O 
Kr 4dl O Ss 
Kr 4d1 0  SS2 
Kr 4d1 0  SS2 Sp 
Kr 4d1 0  SS2 Sp2 

S I  
S2 
S3 
S4 

SS 
S6 
S7 
S8 
S9 
60 
6 1  
62 
63 
64 
6S 
66 
67 
68 
69 
70 
7 1  
72 
73 
74 
7S 
76 
77 
78 
79 
80 
8 1  
82 
83 
84 
8S 
86 

87 
88 
89 
90 
9 1  
92 
93 
94 
9S 
96 
97 
98 
99 

100 
101 

Sb Kr 4d1 0  4s2 Sp3 
Te Kr 4d1 0  SS2 Sp4 
I Kr 4d1 0 SS2 sl 
Xe Kr 4d1 0  SS2 Sp6 

Cs Xe 6s 
Ba Xe 6s2 
La Xe Sd 6s2 
Ce Xe 4f2 6s2 
Pr Xe 4f3 6s2 
Nd Xe 4f4 6s2 
Pm Xe 4f5 6s2 
Sm Xe 4f6 6s2 
Eu Xe 4f7 6s2 
Gd Xe 4f7 Sd 6s2 
Tb Xe 4f9 6s2 
Dy Xe 4j 1 ° 6s2 
Ho Xe 4f 1 1  6s2 
Er Xe 4f 1 2 6s2 
Tm Xe 4f 1 3 6s2 
Yb Xe 4f 14 6s2 
Lu Xe 4f 14 Sd 6s2 
Hf Xe 4f 14 Sd2 6s2 
Ta Xe 4f 14 Sd3 6s2 
W Xe 4f 14 Sd4 6s2 
Re Xe 4f14 Sd5 6s2 
Os Xe 4f 14 Sd6 6s2 
Ir Xe 4f 14 Sd9 
Pt Xe 4j 14 Sd9 6s 
Au Xe 4f 14 Sd1 0  6s 
Hg Xe 4f 14 Sdl O 6s2 
TI Xe 4f 14 Sd1 0  6s2 6p 
Pb Xe 4f 14 Sd1 0  6s2 6p2 
Bi Xe 4f 14 Sdl O 6s2 6p3 
Po Xe 4f 14 Sd1 0  6s2 6p4 
At Xe 4f 14 Sd1 0  6s2 6p5 
Rn Xe 4e4 Sd1 0  6s2 6p6 

Fr Rn 7s 
Ra Rn 7s2 
Ac Rn 6d 7s2 
Th Rn 6d2 7s2 
Pa Rn Sf2 6d 7s2 
U Rn Sf3 6d 7s2 
Np Rn Sf4 6d 7s2 
Pu Rn Sf6 7s2 
Am Rn SF 7s2 
Cm Rn Sf7 6d 7s2 
Bk Rn Sf8 6d 7s2 
Cf Rn Sf l O 7s2 
Es . Rn Sf l l  7s2 
Fm Rn Sf 1 2 7s2 
Md Rn Sf 1 3 7s2 



Some Genera l  Trends i n  the Per iod ic System 521 

neon the L shell is filled. Atoms such as helium and neon which have filled electronic shells 
are chemically inert . The completed group of eight electrons ns2np6, the octet, is the con
figuration of the inert gases (except He) and is always a very stable configuration chem
ically. The stability of this configuration is one of the bases for the Lewis rules of chemical 
valency. 

The electronic configurations of the elements are shown in Table 22. 5, in order of the 
number of electrons in the atom. Examination of the table shows immediately that 
chemically similar atoms have similar configurations of the outer electrons. For example, 
all the alkali metals have the configuration ns over a shell of eight. The coinage metals 
have the configuration (n - 1)d 1 0ns ; the lone s electron lies over a completed d subshell 
rather than a shell of S2p6 . This gives the coinage metals characteristically different 
properties from those of the alkalies. Other similarities can be picked out readily ; for 
example, the halogens, the inert gases, and so on. 

A number of points may be made about Table 22.5 . Argon has the configuration 
ls22s22p63s23p6 . Logically one might expect that the 3d subs hell would commence to 
fill with the element following argon. However, the interactions of the electrons give the 
4s level a lower energy than the 3d, so the 4s level fills first with the elements potassium 
and calcium ; then the 3d levels start to fill with the transition elements from scandium 
through nickel. Transition elements have a partially completed d subshell. A similar thing 
happens after krypton ; the 5s level fills first, then the Ad. The 4f shell is not filled until the 
5s, 5p, and 6s levels are complete. Following barium, the 5d level acquires one electron in 
lanthanum. Then the 4f level fills with 14 electrons in the inner transition elements from 
cerium to lutecium, the rare earths. The inner transition elements have two partially 
filled inner subs hells, the 5d and the 4f. 

In a level of high angular momentum such as the f level, I = 3, the electron is much 
closer to the nucleus than the other electrons of the same principal quantum number, 
as shown by Eq. (22.23). In lanthanum and the succeeding fourteen elements, the rare 
earths, the high value of I and the low value of the principal quantum number, n = 4, 
compared to n = 6 in the valence shell both contribute to burying the 4f electrons in the 
interior of the atom. As a result, the exterior electrons that give the atom its chemical 
properties are not much affected by the number off electrons present. The chemistries of 
the rare earths are remarkably similar, differing only by the number of 4f electrons present. 

22. 7 S O M E  G E N E R A L  T R E N D S I N  T H E P E R I O D I C  SYST E M  

22 . 7 . 1  Ato m i c  R ad i i  

The diameter of the hydrogen atom in its ground state is about 100 picometres. Using 
Eq. (22.23), we can show that in the 3s state the diameter of the atom would be of the order 
of 2500 pm. However, this is much larger than the diameter of the largest atoms. As we 
progress from hydrogen to the atoms of the heavier elements, the increased nuclear charge 
pulls the electrons much closer to the center than is possible with the simple hydrogen 
atom. Equation (22.23) therefore does not give an accurate indication of the radius of 
atoms other than hydrogen. 

If we compare the sizes of the atoms in a vertical family of the periodic table such as 
the alkali metals, we note that the size of the atom increases from the top to the bottom of 
the column. The valence electron is in the 2s, 3s, 4s, 5s, 6s, 7s level as we pass from lithium 
to francium. Thus we may retain the general statement that the radius of an atom increases 
with the principal quantum number of the electrons in the valence shell. The increase is 
not very rapid. 
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In passing through a horizontal row of the periodic table, the atom size is a maximum 
with the alkali metal, drops quickly to a minimum in about the third group, then rises 
irregularly to reach another maximum in the next alkali metal. Two tendencies are 
operative in this behavior. In passing, let us say from lithium to beryllium, the nuclear 
charge increases, pulling the electrons in and making the atom smaller. But there is an addi
tional electron, whose presence increases the mutual repulsions in the electron cloud and 
tends to make the atom larger. In the early part of the period, the electrons easily keep out 
of each other's way, and the effect of the nuclear charge is dominant ; the size decreases. 
Toward the middle and end of a period the mutual repulsion of the electrons in the shell 
increases and overbalances the effect of the increased nuclear charge ; the size increases. 

In speaking of sizes of atoms, we should keep in mind that the electron cloud does not 
end at any definite distance from the nucleus. As an experimental quantity the radius of 
the atom is found to depend a good deal on the environment of the atom during the 
measurement. The following values for the molecular diameter of argon are obtained by 
the method indicated : 

Method Gas viscosity Liquid density Solid density 

Diameter 297 pm 404 pm 384 pm 

This sort of variation is to be expected because of the lack of definition of the radius of the 
atom. In making comparisons of the sizes of atoms, situations should be chosen in which 
the atoms have about the same environment. It is possible to construct consistent tables 
of ionic radii, for example, or of covalent radii or metallic radii. If possible, it is best to 
compare the radii for situations in which the atoms have the same number of neighbors. 

22 . 7 . 2  I o n i zat i o n  E nerg i es 

The ionization energy of an atom is a measure of how strongly an electron is bound to the 
atom. The first ionization energy of an atom is the energy required to remove an electron 
from the atom to an infinite distance. 

A � A+ + e- . 

The second ionization energy of an atom is the energy required to remove an electron 
from the singly charged ion : 

A+ � A+ + + e - . 

An atom has as many ionization energies as it has electrons. 
For comparison, the first (I) and second (II) ionization energies of a number of atoms 

are recorded in Table 22.6. These elements have comparable electronic configurations : 

Element H 

Configuration 18 
I/(k:J/mol) 1 3 1 1 . 7  

II/(k:J Imol) 

Tab le  22 .6 
Ion izat ion energ i es 

Li Na 

28 38 
520 . 1  495.7 

7296 4563 

K Rb Cs 

48 58 68 
418 .6 402.9 375.6 

3069 2640 2260 
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a single s electron over an inert gas shell. It is clear that as the quantum number goes up, 
the electron is more easily removed. This is mainly because of the increase in the distance 
between nucleus and the outer electron as the quantum number goes up. The greatest 
difference is between hydrogen and lithium. Note that the second ionization energies of 
these atoms are 6 to 15 times larger than the first ionization energies. There are two reasons 
for this. First, there is the unbalanced positive charge, which always increases a second 
ionization energy compared with the first ionization energy. Secondly, to remove the 
second electron in these atoms requires that a very stable closed shell, the shell of eight, be 
opened. This increases the required energy enormously. 

The ionization energies for the inert gases are very high : 

He Ne Ar Kr Xe 

Ionization energy 
(kJ/mol) 2371 .6 2080. 1 1 520. 1 1 3 50.4 1 1 70 . 1  

The high values account for the inability of these elements to form compounds involving 
ions such as He+ , Ne + , and so on. 

If in removing the second electron it is not necessary to break into a closed shell, then 
the second ionization energy is not enormously greater than the first ; generally it is two 
to three times the first ionization energy. The energy required to remove the second 
electron is always greater than that required to remove the first ; the removal of the third 
requires more energy than the removal of the second. Roughly, provided that a closed shell 
of eight is not broken into, the second electron requires two to three times as much energy 
as the first ; the third requires 1 . 5  to 2 times as much as the second. If a closed shell of eight 
must be opened, the energy required is very much larger. These facts are illustrated by the 
data in Table 22.7. 

Tab le  22 .7 

Element H He Li Be Na 

Configuration Is Is2 Is22s ls22s2 Is22s22p63s 
I/(kJ/mol) 1 3 1 1 . 7  2371 . 6  520. 1 899.2 495 .7 

U/(kJ/mol) 5249 7296 1 756.6 4563 
I1I/(kJ/mol) 1 1 8 10 14840 21000 

Q U E STI O N S  

22. 1  What is the connection between the fact that the Coulomb potential binds the electron in the 
hydrogen atom and the origin of the quantum number n ?  

22.2 What i s  the physical origin o f  the quantum numbers I and m for the hydrogen atom? 
22.3 Give a qualitative uncertainty principle argument that accounts for the behavior of the Is state 

radial distribution near r = 0 in Fig. 22.2(b) (that is, that there is negligible probability of finding 
the electron near the nucleus). 

22.4 Order the n = 2 states of H in terms of increasing kinetic energy associated with rotation. 
22.5 Discuss the probability of observing M z values of + 1, - 1  and 0 for an electron in a Px state. 
22.6 What are the similarities and differences between the (a) orbital and (b) spin angular momentum 

of an electron ? 
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22.7 How many elements would be in the third row of the periodic table ifms could have three different 
values rather than two ? 

22.8 Correlate the trends in atomic radius and first ionization energy for the rare gases. 
22.9 Which ionization energy (first, second, and so on) should exhibit a large jump for each of the 

following species : Li, Be, B, C ?  

P R O B LE M S  

22. 1  Calculate (a) the wavelengths of the first three lines of the Lyman, Bahner, and Paschen series, 
and (b) the series limit, the shortest wavelength line, for each series. 

22.2 The radial distribution function for the 1s state of hydrogen is given by Eq. (22.20). Show that 
the maximum of this function occurs at r = ao . 

22.3 Calculate the radius of the sphere that will contain 90 % of the hydrogen atom's electron cloud, 
if the atom is in the (a) Is state, (b) 2s state, (c) 2p state, and (d) 3s state. 

22.4 The pz wave function for hydrogen has the form fer) cos e, where e is the angle between the 
radius vector and the z-axis (Fig. 21 .7) and may vary from 0 to n. For a fixed value of r, sketch 
the probability density as a function of e. 

22.5 a) Calculate <r) in the Is, 2s, 2p, and 3s states of the hydrogen atom ; compare with the results 
from Eq. (22.23). 

b) Calculate the expectation value of (r - <r» 2 for the same states as in (a). 
22.6 The operator for the radial component of the momentum in the hydrogen atom is 

Pr = - ih(� + �) 
8r r 

a) Calculate the expectation values of Pr and p;, and the uncertainty in Pr o in the Is, 2s, 2p, and 
3s states of the hydrogen atom. 

b) Using the results in (a) with the result of Problem 22.5, write the expression of the Heisenberg 
uncertainty principle for the radial coordinate and momentum in these states of the hydrogen 
atom. 

22.7 Calculate the expectation value of the potential energy, VCr) = - e2/4n£o r, for the hydrogen 
atom in the 1s state, the 2s state, the 2p state, and the 3s state. Also calculate the expectation 
value of the kinetic energy in each of these states. 

22.8 The force acting between the proton and the electron in the hydrogen atom is given by F = 
- e2/4n£o r2 . Compute the expectation value of this force for the 1s, 2s, and 2p states of the atom. 

22.9 a) Calculate the expectation value of the rotational energy, the energy associated with the 
angular motions of the electron, in the 2p, 3p, and 3d states of the hydrogen atom. Compare 
each with the expectation value of the total kinetic energy in these states. 

b) Calculate the fraction of each rotational energy that is associated with the z component 
of the angular motion for the same three states. 

22.10 Calculate the expectation value of the moment of inertia of the hydrogen atom in the 1s, 2s, 
2p, and 3s, 3p, and 3d states. 

22. 1 1  The possible values of the z component of the magnetic moment of an electron in an atom are 
given by flz = - (m + 2ms)flB ' What are the possible values of flz for an s, p, d, and f electron? 
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23. 1  G E N E RA L  R E M A R KS 

Until the advent of quantum mechanics the reasons for the stability of molecules were 
unknown. The cohesive energy of ionic crystals could be adequately interpreted on the 
purely classical basis of the electrical attraction of the oppositely charged ions. Some 
attempts were made to interpret the interaction of all atoms on the basis of the electrical 
interaction of positive and negative charges, electrical dipoles, induced dipoles, and so on. 
These classical calculations indicated that the bonding between two like atoms, such as 
two hydrogen atoms, should be very much weaker than it is. This is another problem that 
classical physics failed to solve. 

The quantum-mechanical problem is to calculate the energies of the individual 
atoms that make up the molecule, then calculate the energy of the molecule itself. The 
molecule is stable if the energy of the molecule is less than the sum of the energies of the 
individual atoms. The difference in these energies is a measure of the strength of binding 
in the molecule. To state the problem is easy ; to do the calculation in complete detail is 
apparently impossible. Fortunately, there are several simplifying circumstances. 

First of all, consider the hydrogen molecule H2 . It consists offour bodies : two protons 
and two electrons. The classical problem of the motion of three bodies, and the quantum
mechanical one as well, has escaped exact solution ; a larger number of bodies only 
aggravates this difficulty. However, since the nuclei are so much heavier than the 
electrons, their motion is sluggish in comparison ; the electronic motion is fast enough to 
adjust to any change in the position of the nuclei. Thus to a good approximation the 
nuclear motions, the vibrations and rotations of the molecule, can be treated as a com
pletely separate problem ; this is called the Born-Oppenheimer approximation. The inter
nuclear distances and the relative orientation of the nuclei thus enter the problem of the 
electronic motion as parameters ; if we wish, we can explore how changing those param
eters affects the energy of the molecule. 
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The energy of the molecule is given by the expression 

E = f 1/1 * HI/I dr, (23 . 1 )  

where 1/1 i s  the wave function or description of  all the electrons in the molecule, and H 
is the operator for the total energy, kinetic and potential, of the electrons in the nuclear 
skeleton of the molecule. And now a second fortunate thing happens. If instead of using 
the exact wave function in Eq. (23. 1), we use an approximate one (which we might even 
obtain by guessing !) the Schrodinger equation has the property that the value of the 
integral is always greater than the energy of the ground state of the molecule-the variation 
theorem. 

Let Eo be the lowest permitted energy of the system, the ground state energy. Then if 
¢ is the approximate wave function, we have 

f ¢*H¢ dr > Eo (23 .2) 

This is the variation theorem. It allows us to take a guess at the description 1/1, put adjust
able constants in the mathematical form of the guess, and evaluate the integral. Then we 
vary the constants to minimize the value of the integral ; this minimum value is still greater 
(by the theorem) than the ground state energy. With experience, our guesses become more 
refined and we come closer to the correct value of the energy. The theorem is helpful, 
since it tells us that a " guessed " description will never give us an energy below the correct 
value. 

Having agreed to be content with approximate descriptions of the system, we can 
gain some insight into the nature of the chemical bond. Two main approaches to this 
problem can be distinguished. The valence bond method, developed principally by Heitler, 
London, Slater, and Pauling, recognizes that two electrons are usually needed to form a 
chemical bond and then looks at the behavior of an electron pair. Each bonding pair in 
the molecule is described in a simple way, and a description of the molecule is built up by 
a description of its parts. The molecular orbital* method, developed by Hund and Mulliken, 
looks at the nuclear framework of the individual molecule and says that this framework 
must have a system of energy levels just as the hydrogen atom has such a system of levels. 
If we fit the molecule's electrons into this system of levels, observing the Pauli principle, 
we obtain a description of the molecular electronic structure. This approach is the method, 
modified appropriately for molecules, that we used to describe the electronic structure of 
"complex atoms. 

The molecular orbital theory is more satisfying esthetically, perhaps, but its lack of 
emphasis on a localized chemical bond has led many chemists to prefer the valence bond 
method, which gives them a better pictorial grasp of the situation. The above distinction 
between the two methods is a primitive one. If all the refinements in the present day 
valence bond and molecular orbital theories are included, any distinction between them is 
probably more imagined than real. 

23 . 2  T H E E LECTR O N  PAI R 

To describe the electron pair in a molecule, we investigate the behavior of two identical 
particles in the potential field supplied by the nuclei of the molecule. We begin by over-

* " Orbital " is not a fancy word for " orbit. "  Orbital and wave function are synonymous . 
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simplifying the problem. If we ignore the electrical repulsion between the two electrons, 
then each moves independently. The state of the first electron is described by a wave 
function l/In(Xl > Yb Zl) ; similarly, the second electron is described by a wave function 
l/Ik(Xl , Yz , Zl)' We will abbreviate these descriptions to l/In(1) and l/Ik(2), where (1) stands 
for (Xl > Y1 ' Z 1), the coordinates of electron 1 ,  and (2) stands for (Xl ' Yl ' Zl), the coordinates 
of electron 2. The subscripts n and k indicate that the states of the two electrons may be 
different. Since the particles move independently, the energy of the pair is the sum of the 
energies of the individuals : E = En + Ek • If the energy of the system is given by this sum, 
then the Schrodinger equation requires that the wave function for the pair be the product 
of the individual descriptions ; the electron pair is described by the function 

(23 .3) 

Since the electrons are indistinguishable, we have no way of discovering which is in state 
k and which in state n. An equally correct description is therefore 

(23.4) 

where the coordinates of the particles have been exchanged. The description in Eq. (23 .4) 
has the same energy as that in Eq. (23.3) . (States with the same energy are degenerate 
states ; these two states exhibit exchange degeneracy, since they differ only in the exchange 
of the coordinates.) If the particles do not interact, either description, or a superposition 
of them, is perfectly correct. 

The curious feature of the problem is that if the repulsion between the electrons is 
introduced, we are forced to use a superposition of these descriptions. The permissible 
combinations are 

(23 .5) 

and 

(23 .6) 

The two functions l/Is and l/I A have an important symmetry property. If we exchange the 
coordinates of electrons 1 and 2 (interchange the l 's and 2's in the parentheses), the 
function l/I s is unaffected ; l/I s is symmetric under this operation. The function l/I A changes 
sign under this operation and so is antisymmetric. 

Now we ask which of these descriptions is likely to describe a bond between two 
atoms. Consider the hydrogen molecule Hl , with two protons rather close together and 
two electrons. By themselves the two protons would repel one another. To form a stable 
molecule this repulsion must be reduced. To reduce it, the electrons must be for the most 
part in the small space between the two nuclei, which implies that the electrons must be 
rather close to one another. As the coordinates of electrons 1 and 2 approach in value, 

and 

Using these relations in Eqs. (23 .5) and (23 .6), we find 

2 
l/Is � .fi l/In(1)l/Ik(2) and 

Therefore, if the two electrons are described by l/IA , the probability, I l/IA l l , of finding the 
two electrons close together is very small, while if they are described by l/Is , there is a 
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sizable probability, I t/ls I 2 , of finding them close together. We conclude that it is t/ls which 
describes the state of the electrons in the electron-pair bond between two nuclei ; this 
conclusion is confirmed by detailed calculation of the energy of the molecule. 

However, the Pauli exclusion principle requires that the wave function of a system be 
antisymmetric under this operation of interchanging the coordinates of the particles. We 
save the situation by noting that the total wave function of an electron pair is the product 
of a space part, t/ls or t/I A , and a spin part. The spin part may also be symmetric, Ls , or 
antisymmetric, LA , under interchange of the particles. The possible combinations of 
space and spin functions that yield an antisymmetric total wave function are 

and 

The first, t/I 1> incorporates the function we need for the chemical bond. The anti symmetric 
spin function implies that the spins of the two electrons in the bonding pair have opposite 
orientations ; hence, their magnetic moments cancel one another. For this reason, the 
majority of molecules have no net magnetic moment. The possession of a magnetic 
moment by a molecule indicates that one or more of the electrons in the molecule are 
unpaired. 

The conclusions about the bonding electron pair can be summarized briefly. The 
requirement of the Pauli principle (antisymmetry of the wave function under exchange of 
identical particles) along with the requirement that the electrons concentrate in a small 
region of space between the nuclei, forces us to describe the electron pair in a chemical 
bond by the function 

(23 .7) 
The symmetric space function t/ls has a large electron cloud density between the nuclei 
and thus prevents electrical repulsion from driving the nuclei apart. The antisymmetric 
spin function requires the magnetic moments of the two electrons to be oppositely 
oriented (paired). Thus the proposal of G. N. Lewis in 19 16 that atoms are held together by 
electron pairs is confirmed and given deeper meaning by the quantum mechanics. Detailed 
calculation shows that the energy of the state described by t/I s is very much lower than that 
of the state described by t/I A ' These conclusions are general and can be applied to the 
electron pair holding any two atoms together. First we examine the hydrogen molecule 
in more detail. 

23 . 3  T H E H Y D R O G E N  M O L EC U LE ;  
VA L E N C E  B O N D M ET H O D  

We label the protons a and b, and the electrons 1 and 2 .  If the two hydrogen atoms are 
infinitely far apart, there is no interaction between the electrons or between the two 
protons. If electron 1 is with proton a, it is described by t/I aC1), which is any wave function of 
hydrogen atom a. Similarly, t/lb(2) describes electron 2 with proton b ;  t/lb(2) is any wave 
function of hydrogen atom b. Since we are concerned only with the state of lowest energy, 
we choose t/I a and t/lb as 1s functions on the respective atoms. As we have seen in Section 
23 .2, the description of the two-electron system is given by either ofthe products, t/I aC1 )t/lb(2) 
or t/I aC2)t/lb(1) . Regardless of which description is used, the energy of the system at infinite 
separation is E = 2E 1 . , the sum of the energies of the individual atoms in the 1s state. 

It is customary to write a "chemical " structure to correspond to each of these quantum 
mechanical descriptions. 
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I 

II 
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" Chemical" structure 

H�l 2 "Hb 

H�2 l " H b 

Description 

I{Ir = I{I aC1)l{Ib(2) 
I{In = l{IaC2)l{Ib(1) 

Energy 

E r = 2EIs 
En = 2EIs 

As the two atoms approach one another, the electrons no longer move independently ; 
they influence each other and are influenced by both nuclei. The descriptions I{Ir and I{In 
are no longer exact ; furthermore, neither by itself is satisfactory as an approximate 
wave function. We are forced to choose between the linear combinations, 

(23 .8) 
and 

(23.9) 
where N and N' are normalization constants. From what has been said, I{Is is the descrip
tion of the molecule with a stable bond between the two atoms. So far no one has devised a 
simple chemical representation of the description I{Is . We write the structures I and II, 
which are called resonance structures, and then describe the correct structure as a resonance 
hybrid of the two. 

Using I{Is , we can calculate the energy as a function of R, the internuclear distance ; 
this energy, relative to that of the two atoms at infinite separation, is shown by the curve 
labeled I{Is in Fig. 23. 1 .  The wave function I{Is predicts a minimum in the energy of the 
system at Ro , the equilibrium value of the internuclear distance. The existence of this 
minimum indicates that a stable molecule is formed ; the depth of the minimum, ED , is the 
binding energy or dissociation energy of the molecule. 

In Fig. 23. 1 the energy curve for I{I A shows that at all values of R the energy of the system 
is greater than that of the separated atoms. The lowest energy is obtained if the atoms 
remain apart. This state is an antibonding or a repulsive state of the system. 

If we ignore our principles and calculate the energy using either I{Ir or I{In by itself, we 
obtain the dashed curve in Fig. 23. 1 .  The difference in energy between this curve and that 

E 

o 1-+-T-''-+-::-;o--t--:�--+-RI10 - 10m 
3 

F igure 23 . 1  Energy of  H 2 as a fu nct ion o f  R.  
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F i g u re 23 .2  E lectron densit ies i n  the two states o f  H 2 .  

for IjJs is the resonance stabilization energy or the resonance energy. It is apparent that the 
resonance energy accounts for the greater part of the stability of the molecule. Physically 
we can understand why the simple descriptions, IjJr and IjJII , are not adequate in a molecule. 
Both positive nuclei attract an electron on an atom which has been brought close to another 
atom. Therefore the electron spreads itself over both nuclei. The remarkable thing is that 
spreading the electrons over both nuclei lowers the energy of the system so greatly. 

The probability density of the electron cloud is obtained by squaring the wave func
tions. The density along the internuclear axis is shown for the two states IjJs and IjJ A in 
Fig. 23.2. It is apparent that in the bound state described by IjJs , the electron cloud is very 
dense in the region between the nuclei, while in the state described by IjJ A ,  the cloud is 
comparatively thin between the nuclei. The electron density that builds up between the 
nuclei in the bound state of the molecule can be thought of as the result of the overlapping 
and interpenetration of the electron clouds on the individual atoms. Qualitatively, the 
greater the overlapping of the two electron clouds, the stronger is the bond between the two 
atoms ; this is Pauling's principle of maximum overlap. 

Normalization of the wave functions IjJs and IjJ A requires that 

and f 1jJ� dr = 1 .  
Using Eq. (23 .8), we obtain for J 1jJ� dr : 

NZ f (1jJ, + IjJn)Z dr = NZ(f IjJl dr + 2 f IjJrljJII dr + f IjJfI dr) = 1 .  

Since 1jJ, and IjJn are normalized, this becomes 

NZ(2 + 2 f 1jJ,ljJn dr) = 1 .  (23 . 10) 

Using the definitions of 1jJ, and IjJn in the integral, we find that 

f IjJrljJn dr = f ljJaCl)ljJb(2)ljJa(2)ljJb(1) dr1 drz , 

in which the general volume element dr has been replaced by the volume elements dr 1 and 
dr 2 for the two electrons. Then 

f IjJr ljJn dr = f ljJa(1)ljJb(l) dr1 f ljJa(2)ljJb(2) drz · 

Since the two integrals on the right differ only in the labeling of the coordinates, they are 
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equa1. We define S, the overlap integral, by 

S = f l/IaCl)l/Ib(1) dT1 = f l/Ia(2)l/Ib(2) dT2 · 

Then 

Finally, using Eq. (23 . 12) in Eq. (23. 10), we obtain for N2 : 

2 1 N = 2(1 + S2) or 

(23. 1 1) 

(23. 12) 

(23. 13) 

By a similar argument we can show that to normalize the function 1/1 A ,  we must have 

(23. 14) 

* 23 . 3 . 1  Construct i o n  of the  P roper  Wave F u n ct i o ns 

Equation (23. 12) shows that when S is not zero (R is not infinite), 1/11 and I/In are not 
orthogona1. Consequently, they are no longer proper wave functions for the system when 
R is not infinite. Two orthogonal wave functions can be constructed from 1/11 and 1/111 by 
taking them in linear combination. These orthogonal wave functions serve as the first 
approximate wave functions of the system. 

We develop the proper wave functions by requiring that they be symmetric or anti
symmetric under interchange of the two electrons. If the operator, I, interchanges the 
coordinates of the two electrons, then 

and similarly, 

11/111 = 1/11 ' 
If we construct the linear combination, 

I/Is = NI/II + A,I/III , 
in which N and A, are constants, and require that 

II/Is = I/Is ,  
then 

II/Is = N(II/II) + A,(lI/I� = NI/III + A,I/II ' 
If Eq. (23 . 1 7) is to be satisfied, it must be that 

N 1/111 + A,I/II = N 1/11 + A,I/In 
or 

(N - A,)(I/III - 1/11) = o. 

This condition can be satisfied for 1/111 - 1/11 1= 0 only if A, = N. Thus we obtain 

I/Is = N(I/II + 1/111)' 

where N is given by Eq. (23 . 1 3). 

(23. 1 5) 

(23 . 1 6) 

(23. 17) 

(23. 1 8) 
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If we require the wave function to be antisymmetric (that is ,  It/I A = - t/I A), then by a 
similar argument we obtain 

t/I A = N'(t/lJ - t/lII)' 
where N' is given by Eq. (23 . 14). It is easy to show that t/I A and t/ls are orthogonal. 

The energy corresponding to these wave functions is obtained by evaluating the 
integral 

(23 . 19) 

for each of the wave functions. Since none of these wave functions is exact when R is finite, . 
the variation theorem assures us that the energy obtained in this way is greater than the 
actual energy of the ground state of the system. 

23 . 4  T H E  COVA L E N T  B O N D 

The covalent bond between any two atoms A and B can be described by a wave function 
similar to the t/ls used for the hydrogen molecule. Consider the structures I and II : 

I 
II 

t/lI = t/laC1)t/lb(2), 
t/lII = t/la(2)t/lb(1), 

where t/la and t/lb are wave functions appropriate to atoms A and B, respectively. The 
structure is described by the symmetric combination of t/lI and t/lII : 

1 
t/ls = 

J2(1 + S2) (t/lI + t/lrr)· 

This description predicts a minimum energy corresponding to formation of a bond. The 
resonance energy is obtained by taking the difference between the energy computed for 
t/ls and that computed for either t/lI or t/lII ' 

Since the stability of the bond depends principally on the resonance energy, it is 
important to know what factors influence the magnitude of this energy. The resonance 
energy has its largest possible value if the energies of the contributing structures are the 
same, or nearly so. The greater the energy difference between the contributing structures 
the less the stabilization due to resonance between them. In the case of any molecule AB, 
the structures I and II differ only by the exchange of the electron coordinates, so they have 
exactly the same energy. Consequently, the stabilization conferred by resonance between I 
and II is large. 

The two ionic structures of the molecule AB, 

III A+ 
IV A : i -

also contribute to the overall structure of the molecule ; however, one of these structures is 
usually much lower in energy than the other ; and, of course, the energies are different from 
the energy of I or II. In many molecules one or several ionic structures contribute to the 
overall structure of the molecule. In the molecule of hydrogen chloride three structures are 
important : 

I II III 
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The overall structure of the molecule is a resonance hybrid of the structures I, II, and III. 
The quantum-mechanical description is a linear combination, 

t/J = c[ t/Jr + t/Jrr + ..It/Jm] . 
The coefficients of t/J, and t/Ju in the composite description are equal, indicating that these 
two contribute equally to the structure. The coefficient of t/Jm differs from the other two, 
indicating that t/JIII contributes differently. The contributions of the three structures in 
HCI are estimated to have the values : I, 26 % ;  II, 26 % ; III, 48 %. The structures I and II 
are covalent structures, so we may say that the bond in HCI is 52 % covalent and 48 % 
ionic. A bond in which the ionic contribution is significant is called a covalent bond with 
partial ionic character. 

Every covalent bond has more or less ionic character. Even if the two atoms are the 
same, there is a small contribution of ionic structures, � 3 % in Hz . The bond between 
two like atoms is usually called a pure covalent bond, nonetheless. 

There are restrictions on the structures that can contribute to the composite structure 
of a molecule. The structures that can " resonate " to produce a composite structure must : . 
(1) have the same number of unpaired electrons ; and (2) have the same arrangement of 
nuclei. For resonance to be effective, the structures should not differ greatly in energy. 

23 . 5  O V E R LA P  A N D D I R E CT! O N A L  C H A RACT E R  O F  T H E  
COVA L E N T  B O N D 

To form a covalent bond two things are needed : a pair of electrons with spins opposed, and 
a stable orbital, an orbital in the valence shell, on each atom. The strength of a bond is 
qualitatively proportional to the extent of overlap of the charge clouds on the two atoms. 
The overlap integral S is a measure of the overlap of two charge clouds : 

(23 .20) 

If we choose any point, the wave functions extending from nucleus a and nucleus b 
each have a particular value at that point. The product of these values summed over the 
entire coordinate space is the overlap integral. If the two nuclei are far apart, then near a, 
where t/J aCl ) is large, t/Jb(l) is extremely small and the product is extremely small ; similarly, 
near b, t/Jb( l )  is large but t/J a(l) is extremely small and the product is extremely small. Thus, 
when the nuclei are far apart, S is very small and, indeed, is zero when R is infinite. As the 
nuclei approach, S gets larger. We may think of S as a measure of the interpenetration or 
overlapping of the electron clouds on the two nuclei ; thus the name, overlap integral. 

Consider an electron in an s orbital on an atom. The s function does not depend on the 
angles, e, ¢. As a consequence we can represent the s function as a sphere, or in two dimen
sions as a circle. We can make the sphere large enough so that it include any desired frac
tion of the charge cloud. This sphere is called a boundary surface. 

Consider the 2pz function ; we have, from Table 22.2, 

t/J2pz = t/J2 1 0 = CZ 1 0 pe -P / 2 cos B. 

Since there is no dependence on ¢, the function is symmetric around the z-axis. More 
importantly, the sign of the function changes when e = n12. Thus above the xy-plane the 
function is positive ; below the plane it is negative. When we square the function to obtain 
the charge density the negative sign disappears and the charge density is positive on both 
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F i g u re 23.4 Over lap of s fu nctions .  

sides of the xy-plane. Clearly, if we set 1 l/12PY = constant, we would obtain a relation 
between p and f) that would define a dumbbell-shaped surface on which the charge density 
is constant. Choosing the constant appropriately would allow us to include any desired 
fraction of the charge cloud within this boundary surface. Rather than attempt to draw 
this boundary surface accurately, we will represent the 2pz wave function more conve
niently by drawing two circles. Figure 23 .3 shows a two-dimensional representation of the 
s, PY ' and pz orbitals. For an s orbital, the boundary surface is a sphere, so the circle is the 
two-dimensional representation. For the p orbital, the two-lobed surface shown in Fig. 
23 .3 is represented in two dimensions by two circles in contact. The signs + and - in 
Fig. 23 .3 are the algebraic signs of the wave function in the respective regions. 

23 . 5 . 1  T h e  Ove r l a p  of  s O rb ita ls  

I f  the electrons on the two atoms both occupy s orbitals, then the extent of  overlapping of 
the two clouds is independent of the direction of approach. Figure 23.4 shows the over
lapping in H2 for two different directions of approach. Since both functions are positive, the 
overlap integral, Eq. (23 .20), is positive. 

23 . 5 . 2  Ove r l a p  between s a n d  p O r b ita ls  

I f  the electrons that will form the bond are in  an s orbital on one atom and in  a p orbital 
on the other, then the overlap depends on the relative direction of approach of the two 
atoms. Figure 23 .S(a) shows the approach of an s electron to a p electron. The p function 
changes sign on passing through the plane of the nucleus. The s function is positive 
everywhere in space. The integral J l/1 s l/1 P dT is the sum of the values of the product l/1 s l/1 P 
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F i g u re 23 .5  Over lap o f  s and p fu nctions .  

everywhere in space. In the region to the left of the plane P, the product l/Isl/lp is always 
positive, since both l/I s and l/I p are positive in this region. The numerical value of l/I s l/I p is 
moderately large, since part of this region is close to both nuclei where both wave functions 
have sizable values. The integration over this region yields a sum of positive contributions. 
To the right of plane P, l/I p is negative and l/I s is positive ; their product is therefore negative 
and the integral is a sum of these negative contributions. The total integral has a positive 
contribution to which a small negative contribution is added. The positive contribution 
predominates, because the value of l/I s is smaller the greater the distance from the nucleus 
on which it is centered, and so is very small to the right of P. Thus, for this direction of 
approach of an s electron cloud to a p electron cloud, the overlap integral is positive and 
bond formation is possible. 

Consider the approach of an s cloud to a p cloud along the direction in Fig. 23 .5(b). 
The p function is positive above the plane and negative below it. Therefore the product 
l/I s l/I p is positive above the plane and negative below it. Because of the symmetry of the s 
and p clouds, the positive contributions are exactly balanced by the negative contributions. 
The overlap integral is equal to zero. There is no overlap and therefore no possibility of 
forming a bond if the clouds approach in this orientation. It is readily shown that the 
maximum overlapping of the two charge clouds occurs if the approach is along the axis of 
the p cloud (Fig. 23. 5a). Therefore the strongest bond is formed in this manner. 

23 . 5.3  Ove r l a p  of a p O rb i ta l  with a p O rb i ta l  

If we consider the approach of two atoms each having a p electron, there are several 
possibilities, as shown in Fig. 23.6 . By the same argument as above we can show that : the 
overlap is zero for the approach illustrated in Fig. 23 .6(b) ; maximum overlap is achieved 
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in the configuration of Fig. 23 .6(a) ; and a moderate value is obtained in the configuration 
of Fig. 23 .6(c). It should be noted that in Fig. 23 .6(c) the wave functions are both zero in 
the horizontal plane, and that the internuclear axis lies in this plane. This implies that the 
charge density is zero along the internuclear axis in this type of bond (n bond). 

The way in which electron clouds overlap gives the first indication of the reason an 
atom forms covalent bonds in a particular relative orientation. Directional character is a 
distinguishing attribute of the covalent bond ; other types of bonds do not prefer special 
directions. The ability to explain and predict the number of bonds formed and their 
geometric arrangement around the atom is one of the great triumphs of the quantum 
mechanics. In what follows note that very approximate methods suffice to provide the 
qualitative picture. 

23 . 6  M O L EC U LA R  G EO M ET R Y  

Knowing that the amount o f  overlap between the orbitals on  the two atoms forming the 
bond depends on the direction of approach, we can construct a crude theory of molecular 
geometry. 

The elements in the first row of the periodic table have only four valence orbitals, 
the 28, 2px , 2py , and 2pz . Since for every bond formed the atom must have an orbital in the 
valence shell, the number of bonds formed by these elements is limited to four. 

Consider the oxygen atom, which has the electron configuration, 

0 :  182 282 2p; 2p� 2p; . 

To form a bond we need a valence orbital on each atom and an electron pair. The two 
unpaired electrons in oxygen occupy two different p orbitals that lie along perpendicular 
axes. If we bring up two hydrogen atoms at 90° to one another we should get a maximum 
overlapping and thus maximum bond strength (Fig. 23 .7). This would predict a 90° bond 
angle in H20. Similarly, the three unpaired electrons in the nitrogen atom are in three 
different p orbitals-each at 90° to the other two-so for NH3 we would predict 90° bond 
angles. The bond angles in water (104S) and in NH3 ( 107 .3°) are much larger than the 
predicted 90° values. Clearly, some refinement of this idea is needed. 
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(a) (b) 

F i g u re 23.7 ( a )  Oxygen atom .  (b )  Water molecu le .  
(c )  Predicted bond ang le i n  water. 

(c) 

Recall that the principle of superposition allows us to construct linear combinations 
of the wave functions and thus find new descriptions of the system that are equally correct. 
Pauling formed linear combinations of the s, and Px , PY ' and pz orbitals, which we label 
t1 , t2 , t3 , and t4 . Thus 

tl = al ll/J2s + a1 2 l/J2Px + a1 3 l/Jzpy + a1 4l/J2p, ; 

t2 = az ll/Jzs + a22 l/J2Px + a23 l/J2py + a24 l/J2p, ; 
t3 = a3 1l/J2s + . . . . . . . . . . . . . . . . . . . . . . .  + : 
t4 = a4 1l/J2s + . . . . . . . . . . . . . . .. . . . . . . .  + a44 l/J2p, . 

The constants al l ' a1 2 ' . . .  are determined by the conditions : ( 1 )  The four new de
scriptions are to be equivalent in their extension in space ; (2) the extension of the orbitals 
shall be as large as possible so that the overlap will be a maximum. It is possible to deter
mine the coefficients al l ' a1 2 " . .  so that four equivalent orbitals with maximum extension 
are formed. These four new orbitals are directed to the apices of a tetrahedron ! The shape 
of one of these orbitals is shown in Fig. 23.8( a), and the set of four is shown in Fig. 23 .8(b). 
The orbitals t l , t2 , t3 , and t4 are called hybrid (or mixed) orbitals. The process of making 
linear combinations is called hybridization (or mixing). These particular ones are called 
tetrahedral hybrids or Sp3 hybrids. The extension of the hybrid orbitals is much greater 
than that of either an s or p orbital by itself. The overlap and consequently the bond 
strength are correspondingly greater. 

We may regard the oxygen atom as having the electronic configuration, 

0 :  ls2 tid t3 t4 ' 

Two of the tetrahedral hybrids, t l and t2 , are occupied by electron pairs ; the remaining 
two, t3 and t4 , are occupied by one electron and can form bonds with atoms such as 
hydrogen (Fig. 23 .8c and d). The angle between these bonds should be the tetrahedral 
angle 109.47°. This value is much closer to the observed value in water, 104S, than is the 
90° value predicted on basis of the angle between the simple p orbitals. 

Similarly, the electron configuration in the nitrogen atom may be written 

N:  1S2 tftz t3 t4 ' 

Thus in NH3 the 1 s  wave functions on the three hydrogen atoms overlap with three of the 
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F i g u re 23 . 8  Tetrahedral  orb ita l geometry. (a )  Tetra hedra l  hybr id . (b )  Set o f  fou r  
tetrahedra l  hybrids. (c ) Water molecu le .  (d )  Ang u l a r  molecu lar  geometry. 

tetrahedral hybrid wave functions on the nitrogen atom. The fourth tetrahedral hybrid is 
occupied by the un shared pair. The observed bond angle, 107.3°, is quite close to the 
predicted tetrahedral value, 109.5° .  The ammonia molecule is therefore a trigonal pyra
mid, with the nitrogen atom at the apex and the three hydrogen atoms defining the base. 
The orbital geometry and the molecular geometry are shown in Fig. 23.9 . 

The carbon atom has the electronic structure, 

C :  1 82 28 2 2p3 . 

If we unpair the two 28 electrons (some energy is required for this), we can write for the 
excited carbon atom, C*, 

C* : 1 82 t l t2 t3 t4 . 

That is, there is one unpaired electron in each of the tetrahedral hybrids. Carbon can form 
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a bond with each of four hydrogen atoms. The methane molecule, CH4 , is a regular tetra
hedron with the carbon atom at the center and the four hydrogen atoms at the apices. The 
observed value for the H-C-H angle is 109.5° within the experimental error. 

Thus, for the atoms whose valence shell consists of the s, Px ,  Py ,  and pz orbitals, the 
geometry of compounds that involve only single bonds is based on a tetrahedral orbital 
geometry. The arrangement of the nuclei in the molecule, the molecular geometry, 
depends on how many of the tetrahedral orbitals are occupied by unshared pairs. The 
following group of isoelectronic species illustrates the point. 

Tetrahedral 
orbital occupancy Molecule Molecular geometry 

4 single bonds BHi CH4 NHt tetrahedral 

3 single bonds + :NH3 : OHj pyramidal 
1 un shared pair 

2 single bonds + ::NH2 :PH2 angular 
2 unshared pairs 

1 single bond + :NH2 - :gH- linear 
3 unshared pairs 

The following group of isoelectronic sulfur and chlorine oxyanions provides another 
illustration of molecular geometries that are based on tetrahedral orbital geometry. 

Tetrahedral Pyramidal Angular Linear 
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The shapes of molecules can be interpreted in terms of valence shell electron pair 
repulsion (VSEPR). This theory is based on the fact that electron pairs repel one another 
and states that the molecular geometry will be such that the repulsion between all pairs 
of electrons is minimized. Thus if a molecule has four equivalent electron pairs, they must 
be in orbitals that are directed to the apexes of a tetrahedron for the repulsion to be a 
minimum. Similarly, the deviations of the bond angle from the tetrahedral value can be 
interpreted in terms of the repulsion of the electron pairs. For example, in water the 
unshared electron pairs repel each other more than do those in the bonds ; thus the bond 
angle closes a bit. In ammonia, the repulsion of the bonding pairs is less than that between 
the unshared pair and the bonding pairs, so again the bond angle closes slightly. 

23 . 7  STR U CT U R ES WITH M U LTI P L E  B O N D S  

If the classical structure of a molecule involves one double bond t o  the central atom, the 
others being single bonds, then the hybrids involve only the s, Px , and Py orbitals ; the pz 
orbital is left as is . Thus we can form the trigonal hybrids, tr :  

tr1 = al l l/J2s + a1 2 l/J2Px + a1 3 l/J2py ; 
tr2 = a2 1l/J2s + 

tr3 = a3 1l/J2s + + a3 3 l/J2py ' 

The requirements that the three hybrid orbitals have maximum extension and be equiva
lent to each other yield three orbitals that are directed to the apices of an equilateral 
triangle in the xy-plane. The set of Sp2 hybrids is illustrated in Fig. 23 . 10. The unhybridized 
pz orbital has its charge density above and below the plane of the hybrid orbitals. 

The electron configurations of the various atoms in the first period are 

B :  1S2 tr1 tr2 tr3 ;  
c :  1S2 trl tr2 tr3 2p z ; 
N:  1S2 tri tr2 tr3 2Pz ; 

0 :  1S2 tritr� tr3 2p z ' 

F i g u re 23 . 1 0 ( a )  Sp 2 hybrids. (b )  Sp 2 hybrids with Pz orbita l .  
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F i g u re 23.1 1 Charge c louds i n  formaldehyde.  

The simplest example is formaldehyde, HzCO, which has the classical structure 

H 
"-

C=O. 
/ 

H 

If both the carbon atom and the oxygen are hybridized Sp2, the bond structure would 
appear as in Fig. 23 . 1 1 .  The carbon atom forms three sigma (0) bonds with the two hydro
gen atoms and with the oxygen atom. (A sigma bond has its charge density concentrated 
along the internuclear axis between the two bonded atoms.) The remaining bond in this 
molecule is formed by the overlapping of the remaining 2pz electrons on carbon and on 
oxygen. These charge clouds do not have any density in the xy-plane ; the overlap occurs 
above and below the plane. A bond formed in this way is called a n bond. 

In ethylene, both carbon atoms are hybridized in this way ; a strong (J bond is formed 
by the overlap of a hybrid orbital from each carbon atom. The remaining two hybrids on 
each carbon form (J bonds with the s orbitals of the four hydrogen atoms. All of the atoms 
lie in one plane. The overlap of the pz orbitals on each carbon atom forms the second bond 
between the two carbon atoms, the n bond. The charge cloud of the electrons in the n 
bond lies above and below the plane of the atoms. Figure 23 . 12(a) and (b) shows the rela
tive locations of the bonds. 

F i g u re 23 . 1 2 ( a )  (J bonds i n  
ethylene . ( b )  n bond i n  ethy lene .  

(b) 
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F i g u re 23. 1 3 ( a )  Carbon skeleton i n  benzene.  (b )  n bond i n  benzene.  

The stability gained by the molecule through the overlapping of the pz orbitals in the 
n bond locks the molecule in a planar configuration. If the plane of one CH2 group were at 
90° to the plane of the other, the pz orbitals would not overlap ; the molecule would be 
much less stable in such a configuration. This accounts for the absence of rotation about 
the double bond and makes possible the existence of geometric isomers, the cis and trans 
forms of disubstituted ethylene. 

Any carbon atom bound to three atoms in a stable compound is hybridized in this 
fashion. The unsaturated aliphatic hydrocarbons are only one class of compound that 
includes thi'3 kind of bonding. Benzene is an important example of a compound in which 
each carbon atom is attached to only three other atoms. Each carbon atom in benzene is 
hybridized Sp2 so that the bonds are at 120° in a plane. The carbon skeleton is shown in 
Fig. 23 .  13(a). The pz orbitals of the six carbon atoms project above and below the plane of 
the ring. The overlap of the pz orbitals produces a doughnut-shaped cloud above and be
low the plane of the ring (Fig. 23 . 1 3b). There are six electrons spread out in these " dough
nuts," enough for only three bonds in the classical sense. These three bonds are spread over 
six positions so that each carbon-carbon bond in benzene has one-half double-bond 
character. 

Note that in the Sp2 hybrid the bond angles need not be equal (120°), except in cases 
in which all three atoms bonded to the central atom are the same. In formaldehyde, for 
example, the H -C-H angle is 1260 and the other two are 1 17° . 

In the carbonate ion, the classical resonance structures are 

- 0 O� - 0 
'""" '""" C=O C-O - 1'C-O - .  
/ / 

- 0  - 0 0 
(a) (b) (c) 

The carbon atom and the oxygen atom are hybridized Sp2 . The electronic distribution 
corresponding to structure (a) is shown in Fig. 23 . 14(a) ; the overall distribution is shown 
in Fig. 23 . 14(b). This n bond distributes itself equally over the three oxygen atoms so that 
we have a partial double bond character of ! for each CO bond. Similarly, each oxygen 
atom has i of a formal negative charge. The bond angles are 120°. 

The isoelectronic species, BO� -, CO� - , and N03 all have the same electronic 
titructure. In these molecules the oxygen atoms are at the corners of an equilateral triangle ; 
the remaining atom, E, C, or N, is at the center. 
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o 

F i g u re 23 . 1 4  Charge c louds i n  carbonate ion .  

The BF 3 molecule is also planar with F -B-F angle of 120°. If we assume that only 
six electrons are involved, the structure is understandable because the repulsion between 
the bonded pairs is minimized in this configuration. However, it is isoelectronic with 
CO� - ion so we might regard it as a compound with CO� - structures of the type 

23 . 8  ST R U CT U R ES I N VO LVI N G  TWO D O U B LE 
B O N D S O R  A T R I P L E  B O N D 

If we hybridize only the s and 2pz orbitals (sp hybridization) we obtain two sp hybrids, 
11 and 12 , which are oppositely directed along a straight line (Fig. 23 . 1 5a). The electron 
configurations for the species of interest are 

c :  l s2 1 1 12 2Px2py ; 
N+ : l s2 1 1 l2 2Px2py ; 

N :  l s2 li l2 2Px2py . 

The simplest example of the triple bond is in the nitrogen molecule illustrated in 
Fig. 23. 1 5. Two n bonds are formed in addition to the (J bond. The unshared pairs are 
1 800 from the sigma bond on each end of the molecule. The formation of two n bonds 
results in the charge cloud having the shape of a cylindrical sheath around the axis of the 
molecule. (Compare to Fig. 22.5 for m = ± 1 . ) Species that are isoelectronic with nitrogen 
and therefore have the same electronic structure are C 0, - C=N, and - C-C- . 

In the acetylene molecule, both carbon atoms are hybridized in this way. The (f bond 
and n bonds are shown in Fig. 23 . 16 .  The formation of two n bonds yields a cylindrical 
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(a) 

(b) 

F i g u re 23 . 1 5 ( a )  L inear  sp hybrids. 
(b) The two 11: bonds in n itrogen . 

F i g u re 23.1 6 Charge c louds i n  acety lene .  

sheath like that in the nitrogen molecule in Fig. 23 . 1 5 . Note that nitrogen and acetylene 
are isoelectronic. 

In carbon dioxide, the carbon is hybridized sp and the oxygens are hybridized Sp2 ; 
thus the molecule is linear. The charge clouds are shown in Fig. 23 . 17(a). Since the 11: bonds 
might have formed with the left-hand bond above and below and the right-hand one in 
front and in back of the paper (Fig. 23 . 1 7b), the result is a cylindrical sheath around the 
axis of the CO2 molecule, as in N2 ; the charge density in the sheath is only half as great, 
however (Fig. 23 . 1 7c). Species isoelectronic with CO2 include -N=C=O, -N=C=N- , 
-N=N+ =O, O=N+ =O, -N=N+ =N- . 
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(a) 

(b) 

F i g u re 23 . 1 7 ( a )  and  (b )  Poss ib le  modes of over l ap  for J[ bonds 
i n  CO 2 , (c)  Actua l  charge cloud i n  CO 2 , 
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Bond order 
C-C bond length/pm 

Diamond 

1 .0 
1 54 

Tab le  23 . 1  

Substance 

Graphite Benzene 

1 . 33  1 . 50 
142 139 

23 . 9  B O N D  O R D E R  A N D  B O N D L E N G T H  

Ethylene Acetylene 

2.0 3.0 
1 35  120 

It is a general rule that a double bond between two atoms is stronger than a single bond, 
and a triple bond is stronger than a double bond : the higher the bond order, the stronger 
the bond. It is also a general rule that increasing the strength of the bond shortens the bond 
length, the distance between the two atoms. This is illustrated by the carbon-carbon bond 
lengths and bond orders in some simple carbon compounds (see Table 23. 1 ). A correlation 
such as that shown in the table is useful if we do not know what contributions the various 
resonance structures make to the overall structure of the molecule. If we determine the 
bond length, the bond order can be estimated from a plot of bond order versus bond length. 
The estimate of the bond order may provide a clue to the contributions of the various 
resonance structures. The correlation must, of course, be worked out for the particular 
kind of bond in question. 

23 . 1 0 T H E COVA L E N T  B O N D  I N  E LE M E NTS O F  T H E 
S E CO N D  A N D H I G H E R  P E R I O DS 

The elements in the second and higher periods have d orbitals in the valence shell in addi
tion to the s and p orbitals . There are a total of nine orbitals (one s, three p, and five d 
orbitals) that could be used for bond formation. It is conceivable that an atom could be 
bonded to as many as nine other atoms. This coordination number is unknown. Ordinarily 
the number of atoms attached to a central atom does not exceed six, although there are a 
few compounds in which seven and eight atoms or groups are attached. 

The most common higher coordination number in these elements is six ; some of the 
fluorides of the first and second periods provide examples. 

First period 
Second period 

NF3 
PF3 
PFs 
PF6 

The fluorides are chosen, since fluorine tends to bring out high coordination numbers. 
In phosphorus, the electronic configuration is 

P :  3s2 3px 3py 3pz . 
Since there are three unpaired electrons, the valence is three. In this state phosphorus 
forms the same type of trivalent compounds as nitrogen : NH3 , PR3 , NF 3 , PF 3 ' Due to 
the presence of vacant d orbitals in the valence shell a relatively small expenditure of energy 
is required to form pentavalent P* with five unpaired electrons : 

P* : 3s 3px 3py 3pz 3d. 
In this state phosphorus can form bonds to five neighboring atoms as in PF 5 ,  pels ' 
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F i g u re 23 . 1 8 (a) P F 5 . (b) Trigona l  bi pyram id .  F i g u re 23 . 1 9 ( a )  P Fs . (b )  Reg u l a r  octahedron .  

The orbitals used are hybridized, sp3d hybrids, and are directed to the apices of a trigonal 
bipyramid (Fig. 23 . 1 8). The phosphorus and three of the fluorine atoms lie in a plane ; 
the remaining two fluorine atoms are placed symmetrically above and below this plane. To 
promote an electron in nitrogen, the electron would have to be moved out of the valence 
shell to a shell of higher principal quantum number. The energy required would be too 
large to be compensated by the formation of two additional bonds. 

If we add an electron to pentavalent phosphorus, the hexavalent species P - is ob
tained : 

P - : 3s 3px 3py 3pz 3d 3d. 

The ion PF6" may be regarded as a compound ofP- with six neutral fluorine atoms. The 
hybridization, sp3d2, yields six equivalent bonds directed to the apices of a regular 
octahedron (Fig. 23. 1 9a). (An octahedron has eightfaces, but only six apices.) Similarly, the 
sulfur atom forms bonds to six atoms in SF 6 ; the hybridization is Sp3 d2 and the geometric 
configuration is octahedral (Fig. 23 . 1 9b). 

The species PFs , PF6" , SF6 are exceptions to the octet rule. In PFs there are ten 
electrons in the valency group around the phosphorus atom ; in PF6" and SF 6 there are 
twelve electrons in the valency groups. The elements in the first row, on the other hand, 
are bound rigidly to the " rule of eight." 

Because of the availability of vacant d orbitals in the valence shell, the transition 
elements can form a variety of complex compounds. The electron pair for the bond is 
provided by a donor molecule or group such as NH3 or CN- .  The most common hybrid
izations and their geometry are summarized in Table 23 .2. 

Tab le  23 . 2  

Hybridization Geometry Hybridization Geometry 

sp Linear sp2d Square planar 
Sp2 Trigonal planar sp3d Trigonal bipyramidal 
Sp3 Tetrahedral sp3d2 Octahedral 
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23 . 1 1 M O LE C U LA R  E N E R G Y  lEVELS 

In the molecular orbital method we consider the motion of  one electron in the potential 
field due to all the nuclei of the molecule. We first arrange the nuclei in specified fixed 
positions ; for example, in Fig. 23 .20, we have four nuclei, a, b, c, d, with positive charges 
Za , Zb ' Ze > Zd ' The Hamiltonian for one electron is written, in units of ao and Eh, 

1 2 Za Zb Ze Zd H = -"2Vl - - - - - - - - +  c. 
ra l rb 1 rel rdl 

(23 .21) 

The constant C is the sum ofthe internuclear repulsion and is independent of the electronic 
coordinates ; hence, if t/I(1) is the appropriate wave function, the energy contribution from 
internuclear repulsion is J t/lCt/l dT = C f t/It/I dT = c. As a result, at the beginning we can 
ignore the internuclear repulsion term in the Hamiltonian and simply add it in at the end 
of the calculation. In principle, we could solve the Schrodinger equation and obtain a set 
of wave functions and energy levels appropriate to the motion of one electron in the 
molecular framework. These wave functions are called molecular orbitals (MOs). Having 
such a set of wave functions for a given molecular geometry, the electronic structure of the 
molecule could be built up in much the same way that we build the structure of an atom 
on the basis of the hydro genic wave functions. For example, we represent the structure of 
the carbon atom by putting two electrons in each atomic level until we have placed all six 
in the lowest energy orbitals. 

In the same way, we represent the electronic structure of a molecule such as N 2 by 
putting two electrons in each molecular energy level until all fourteen electrons are placed 
in the lowest levels . We can proceed in a qualitative way to construct one-electron wave 
functions for diatomic molecules from the wave functions of the hydrogen atom. We begin 
by establishing such a scheme for the hydrogen molecule. 

If we choose the hydrogen molecular framework of two protons, then, in Fig. 23 .20, 
nuclei c and d are absent and Za = Zb = 1 ;  the Hamiltonian is (momentarily ignoring 
1/R, the internuclear repulsion) 

(23 .22) 

Suppose that protons a and b are infinitely far apart. If we put one electron in this 
system, in the lowest energy state it must either be on nucleus a, with a description 
t/laCl) = Isa , or on nucleus b, with a description t/lb(l) = Isb . Now either t/laCl) or t/lb(1) is 
acceptable so long as the nuclei are infinitely far apart. As the nuclei come closer, we must 
have a wave function that is appropriate for the entire molecule. In particular, since pro
tons a and b are identical, the wave function must be either symmetric or antisymmetric 

c 

1 

F i g u re 23 . 20 Coord i n ates for one  
e lectron i n  the f ie ld of  fou r  nuc le i .  

d 
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under the interchange of the nuclei. If IN is the operator which interchanges the nuclear 
coordinates, then 

and 

Combining these two equations, we obtain the linear combinations 

(23.23) 

and 

t/luCl) = 
J2(1

1 
_ S) [t/laCl) - t/lb(l)] (23 .24) 

as the symmetric, t/lil) and antisymmetric, t/luCl), functions. Let the energies of these two 
levels be Eg and Eu , respectively. When R, the internuclear distance, is infinite, Eg = Eu ' 
As the nuclei approach one another, Eu rises and Eg falls. We have for the molecule two 
distinct energy levels corresponding to two different wave functions. 

The wave function for a pair of electrons in the lowest energy level, Eg , is 

(23 .25) 

if we assume that the electrons move independently. 
If we expand the wave function in Eq. (23 .25), we obtain 

1 ' 
'P = 2(1 + S) [t/laCl)t/laC2) + t/lb(1)t/lb(2) + t/la(1)t/lb(2) + t/lb(1)t/laC2)] . (23 .26) 

The last two terms are the function we used in our earlier discussion of the electron-pair 
bond. The MO description contains two additional terms : the first, t/laCl)t/laC2), cor
responds to both electrons on proton a. The second, t/lb(1)t/lb(2), has both electrons on 
proton b. The chemical stuctures would be written 

III 

IV 

H' l -a · 2 H,;, 
� :Hb ' 

Structures III and IV are ionic structures. These structures do contribute slightly ( '" 3 %) 
to the overall structure of the hydrogen molecule. In this simple molecular orbital ap
proach the ionic structures III and IV are weighted equally with the covalent structures I 
and II. In more refined versions their contribution is reduced to a more realistic level. 

We can make linear combinations comparable to those in Eqs. (23 .23) and (23 .24) 
with any two equivalent orbitals on nucleus a and nucleus b. If we use the ls orbitals on 
the two atoms, the notation would be 

(23 .27) 
and 

(23.28) 
The symbol (J is used to denote an MO that has its charge density concentrated along the 
internuclear axis. The symbol n is used for MOs that have zero charge density on the 
internuclear axis. 

In Fig. 23.21 we show the symmetry of the various combinations of s and p orbitals. 
On the far right we have the wave function ; slightly to the left, the boundary surfaces for 
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United Molecular Separated Wave 
atom orbital atoms function 

+ + sa + Sb 

a; sag sa sb 

+ 

(px)a + (Px)b 

(py)a + (Py)b 

(Px)a (Px)b 
p TCu (Py)a (Py)b 

(p x)a - (Px)b 

(py)a - (Py)b 

(Px)a (Px)b 
PTCg (Py)a (Py)b 

F i g u re 23.21 

the orbitals as they appear on the two separated nuclei ; in the middle, the boundary 
surface as it appears in the MO ; at the far left, the boundary surface as it appears in the 
" united atom" -that is, if we push the two nuclei to the point where they coalesce. The 
point of Fig. 23 .21 is that the states of the separated atoms on the far right must correlate 
with states of the united atom having the same symmetry on the far left. 

We have already described the g and u aspect of the symmetry of the wave function. 
The correlation between the states of the separated atoms and the united atom depends on 
a different symmetry property : the position of the nodes in the wave function. 
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A node in the wave function occurs at any point or on any surface where the wave 
function is zero . Whenever two equivalent wave functions are combined by subtraction, 
a node is introduced exactly at the plane midway between the two nuclei. Furthermore, 
that node remains exactly midway between the nuclei regardless of whether R = 00 or 
R = O. For this reason, the function, Sa - Sb , looks like a p function on the united 
atom and consequently must correlate with a p function. If nodes are introduced by 
the addition of two p functions with their positive heads toward each other, as in 
(pz)a + (Pz)b , the addition of the two functions moves the nodes (which were originally 
situated on the nuclei) slightly outward and away from the nuclear positions. As the 
nuclei move closer together the nodal positions move farther and farther away from the 
nuclei. When the two nuclei coalesce into the united atom, the nodes have moved to + 00 
and - 00 ; the wave function looks like an S function. Thus (Pz)a + (pz)b must correlate 
with an S function on the united atom. Since the united atom will have a nuclear charge, 
Za + Zb , the energy levels on the united atom are generally much lower than the energy 
of the corresponding orbitals on the separated atoms. In Fig. 23.22 we show the energy 
levels and the correlations between them. 

An orbital that correlates with a united atom orbital having a lower energy than the 
separated atoms is a bonding orbital. An orbital that correlates with a united atom orbital 
having a higher energy is an antibonding orbital. The number of bonds is measured by the 
excess of the number of bonding pairs over the number of antibonding pairs. If we use the 
order of the energy levels at the position of the appropriate vertical line in Fig. 23.22, we 
can describe the bonds in a diatomic molecule by placing a pair of electrons in each level, 
beginning with the lowest level. The results are shown in Table 23.3 . It is notable that the 
molecular orbital model predicts the paramagnetism of O2 . The outermost orbital, 
(2png), contains only two electrons. Since there are two (2png) orbitals of equal energy, 
differing only in their orientation, they can accommodate a total of four electrons. Con
sequently, the spins of the two electrons in the (2png) orbital of the oxygen molecule are 
not paired and the molecule has a magnetic moment. 

We can extend the method to heteronuclear diatomics with relative ease. Since the 
heteronuclear molecule does not have the nuclear exchange symmetry the g and u char
acter is lost, but the rest of the notation remains the same. The correlation diagram becomes 
more complicated because of the difference in energies of the electron on the two different 
separated atoms. It is worth noting that isoelectronic species such as N=N, C 0, 

Tab le  23.3 
E lectron i c  conf i g u rations i n  homonuc lear d iatomic  molecu les 

Number of Bonding Antibonding 
Molecule electrons Electronic configuration pairs pairs Bonds 

Hz 2 (IsO" g)2 1 0 1 
Hez 4 (IsO" gf(lsO" Y 1 1 0 
Li2 6 (He )z (2sO" g)2 2 1 1 
Be2 8 (He )z(2sO" g)2(2sO" y 2 2 0 
B2 10 (Be )z(2pO" g)2 3 2 1 
C2 12 (Be )z(2pO" g)2(2pnu)Z 4 2 2 
Nz 14 (Be )z(2pO" g)2 (2pnu)4 5 2 3 
Oz 1 6  (Be)z (2pO" g)Z (2pnu)4(2png)Z 5 3 2 
F2 1 8  (Be)2 (2pO" g)Z(2pnJ4(2png)4 5 4 1 
Ne2 20 (Be h (2pO" g)2(2pnu)4(2png)4(2pO" y 5 5 0 
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F i g u re 23.22 Correlat ion d i agrams for d iatomic  molecu les .  To the extreme left and the extreme r ight 
a re g iven the orbita ls i n  the u n ited and  separated atoms, respectively; beside them a re those i n  the mole
cu le  for  very sma l l  and very la rge i ntern uc lear  d istances, respectively. The reg ion between corresponds to 
i ntermed iate i ntern uc lear  d istances. The vert ica l  broken l i nes g ive the approxi mate posit ions i n  the d iag ram 
that  correspond to  the molecu l es i nd icated . I t  shou ld be noticed that  the sca le  of  r i n  th is  f ig u re is by  no 
means l i near  but becomes rap id ly sma l le r  o n  the r ig ht- hand s ide .  ( From Molecular Spectra and Molecular 
Structure, Vo l .  1 ,  by G .  Herzberg. © 1 950 by Litton Ed ucationa l  Pub l i sh ing ,  I nc .  Repr i nted by permission  
of  Wadsworth P u bl i sh ing  Company, Be lmont, Ca l iforn ia  94002. )  

-C N, - C-C- , N=O+ ,  all have essentially the same electronic configuration as 
N N shown in Table 23.3 , but without the g and u character in the case of the hetero
nuclear species. The extension to nonlinear molecules requires the introduction of a 
sophisticated way to describe the symmetry of the orbitals ; the group theoretical notation 
for the symmetry types is used. 

The system of energy levels for the molecular orbitals of diatomic molecules is often 
represented schematically as in Fig. 23.23, in which the energy levels of the two separated 
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atoms are shown at the two sides of the figure and the energy levels of the molecule are 
shown in the middle. This figure emphasizes the splitting of the atomic levels as the atoms 
approach each other. This splitting as a function of internuclear distance is shown for the 
lsO"g and l s O"u levels in Fig. 23 . 1 .  

23 . 1 2 WAVE F U N CTI O N S  A N D SYM M ET R Y  

I t  should be  clear that a scalar physical property, such a s  the energy o f  a molecule, is 
independent of the coordinate system we use to describe the molecule. For example, 
consider the water molecule shown in Fig. 23.24, in which we have chosen two different 
coordinate systems to describe the molecule. Assuming that it is possible to carry out the 
calculation of the energy in either coordinate system, the result finally obtained must be 
the same. The calculation using the coordinate system in Fig. 23 .24(b) would be much more 
complicated to do but would, nonetheless, yield the same result. 

Consider first a symmetrical molecule such as H20, which has only nondegenerate 
wave functions. Suppose we have positioned this molecule advantageously in a coordinate 
system as illustrated in Fig. 23.23(a). Ifwe subject the molecule to a symmetry operation-an 
operation that brings every part of the molecule into the same position or interchanges 
identical parts of the molecule-the Hamiltonian operator is invariant under the sym
metry operation, and the wave function that describes the molecule must either be un
changed or changed only in algebraic sign by the symmetry operation. Since the energy 
depends on the integral of the product function, l/J*(Hl/J), a change in sign will leave this 
integrand unchanged ; the sign change will occur twice, once in l/J* and once in Hl/J, so that 
the two negative signs will yield a positive product. Thus the function l/J*(Hl/J) is invariant 
even if the sign of l/J is changed. Consequently, the symmetry of the situation requires that 
either 

Rl/J = l/J or Rl/J = - l/J, (23 .29) 

where R is the operator corresponding to any symmetry operation for the molecule. If l/J 

z 

I---- y 
(O , -y,O) (O ,y,O) 

x x 

(a) Good (b) Terrible 

F ig u re 23 . 24 Coord i n ate systems for the H 20 molecu le .  
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is invariant under this operation, then ljJ is symmetric under the operation R. If ljJ changes 
sign, then ljJ is antisymmetric under R. 

In molecules of higher symmetry the wave function may be a member of a degenerate 
set ; if so, some symmetry operations transform the wave function into a linear combination 
of the wave functions in the degenerate set. The energy is still invariant under the symmetry 
operation. We will deal with this complication in the discussion of the NH3 molecule. 

Before considering the consequences of this behavior of the wave function under the 
symmetry operations, we pause to introduce some of the vocabulary of group theory. 

23 . 1 3 M AT H E M ATICAL I NT E R LU D E  

We say that a figure or a molecule has certain elements of symmetry. One or more sym
metry operations are associated with each element of symmetry. A symmetry operation 
may leave some or all parts of the figure in the same position or it may interchange some 
or all identical parts of the figure. 

There are four types of symmetry elements ; these elements, with the corresponding 
symmetry operations and the symbols for the operations, are : 

Symmetry element 

Plane of symmetry 

Center of symmetry 

n-fold axis of 
symmetry 

Improper axis of 
symmetry 

Symmetry operation 

Reflection in the plane 

Inversion through the center of 
symmetry. This changes the sign of 
all the coordinates of all the 
particles. 

Rotation about the axis through the 
angles (2n/n), 2(2n/n), 3(2n/n), . . .  
(n - 1)(2n/n) 
Rotation through the angle 2n/n 
followed by reflection in the plane 
perpendicular to the rotation axis 

Symbol for the 
symmetry operation 

An important consequence of symmetry is that the symmetry operations for any 
figure form a mathematical group. We can then use the properties of the group as a 
powerful aid in the calculation of properties of molecular systems and the understanding 
of why systems behave the way they do. 

23 . 1 3 . 1  G ro u p  Propert i es 

We do not need to develop all aspects of group theory to gain some understanding of its 
implications for the structure of molecules. However, it is useful to know some group
theoretical terminology and some of the properties of groups. 
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A group is defined as a set of elements having the following four properties. 

1. There is a law of combination, defined by the group multiplication rule, which requires 
that the product of any element with itself or with any other element of the group is in turn 
an element of the group. The group multiplication rule defines what is meant by the 
" product " of one element with another. Thus, if A, B, C, D, . . .  are elements of the group, 
we require that the product of two elements, written AB, be an element of the group. 

AB = C, (23 .30) 

in which C is some element of the group. Note that the order of multiplication is im
portant ; in general, AB =I- BA. We describe AB as "B pre multiplied by A "  and BA as "B 
postmultiplied by A." 

2. The group contains a unit element or identity element. The unit element is always 
symbolized by E. By definition, when E multiplies any other element, A, of the group, we 
have 

EA = AE = A. (23 . 3 1) 

3. Every element, A, has an inverse element, A - 1 , such that either pre- or postmultiplica
tion of A by A - 1 produces the unit element 

A- 1A = AA- 1 = E. (23 . 32) 

4. The associative law holds for group multiplication ; if A, B, C are elements of the 
group, then 

A(BC) = (AB)C. (23 .33) 

The elements in a group can be divided into classes. If we construct the product, 
X- 1 AX, and replace X by each element of the group in turn, we obtain all the elements 
in the class of element A. Repeating the procedure using X- 1 BX, we obtain all the elements 
in the class of element B, and so on. No element in the group can belong to more than one 
class. 

23 . 1 4 T H E WAT E R  M O LE C U LE ( G R O U P  C2v ) : EXA M P L E  

The symmetry operations appropriate to a figure or molecule are the elements of a group. 
As a first example, we consider the water molecule. The elements of symmetry are : one 
two-fold axis of symmetry (this is the z-axis in Fig. 23 .24a) ; and two planes of symmetry 
(these are the xz-plane and the yz-plane). The four symmetry operations are : 

E :  The identity operation. This operation transforms every point into itself : X i  -4 Xi ;  
Yi -+ Yi ;  Zi -+ Zi ' This may seem trivial, but the inclusion of the identity operation is 
crucial ; without it the other symmetry operations would not form a mathematical 
group. 

C2 : Counterclockwise rotation through 1 800 around the z-axis. This transformation 
leaves the coordinates of the oxygen atom unchanged. The �oordinates of the 
two hydrogen atoms are interchanged. 

(jv(xz) : Reflection in the xz plane. This interchanges the coordinates of the two 
hydrogen atoms ; it leaves the oxygen atom in place. 

(j�(yz) : Reflection in the yz plane. This leaves all the atoms in place. 

These symmetry operations make up the symmetry group C2v ' 
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The effect of each of these symmetry operations on a point is shown in Fig. 23.25. 
In each case, the point P is transformed into the point pi, as indicated. These transforma
tions can be summarized by 

E(x, y, z) = (x, y, z) ; 
Cix, y, z) = ( - x, - y, z) ; 

(Jv(xz)(x, y, z) = (x, - y, z) ; 
(J�(yz)(x, y, z) = ( - x, y, z). 

(23 .34) 

Using these relations we can work out the multiplication table for the group. For example, 
the product Cz (Jv signifies the two operations (first (Jv ,  then Cz) performed on the figure. 
lf the point P is subjected to (Jv then P is moved to the point pi in Fig. 23.25(b). If this 
point is subjected to Cz it is carried to the position of the point P" in Fig. 23.25( c). Thus we 
conclude that Cz (Jv = (J� is the expression of the group multiplication rule for the opera
tion (Jv and Cz . Algebraically we can use Eq. (23 .34) to obtain the same result. Namely, to 

Pl( - x, -y,z) , 
I 
I z  
I 
I L _  I -y -X I / 

x 

z 

y 

(a) C2(x,y,z) = ( - x, -y,z) 

z 

CT�(yZ) , P " ( - x ,y, z) 
I 
I 
I 

p(x, y, Z) ! 
...,----'  I 

I z I-X 
y 

(c) O"�(yz) (x,y,z) = ( - x,y,z) 

y 

(b) CTv(XZ) (x,y,z) = (x, -y,z) 

F i g u re 23.25 The prod uct of 
two operat ions C 2(Jv = (J� . 
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E 
Cz 
GvCxz) 
O'�(yz) 

Tab le  23.4 
M u lt ip l icat ion  tab le  for C2v 

E Cz O"vCxz) 

E CZ O"V 
Cz E 0"' v 
O"V 0"' v E -' Uv Cz "v 

find the product, C2 6v , we use Eq. (23 .34) and find that 

O"�(yz) 

G' v 
O"V 
Cz 
E 

C2 0'v(x, y, z) = Cix, - y, z) = ( - x, y, z) . 

Comparing with Eqs. (23 .34) we see that 6�(X, y, z) = ( - x, y, z), and conclude that 

In this way we can work out all of the products between the group elements, thus obtaining 
the group multiplication table, Table 23 .4. We agree, quite arbitrarily, that the product 
C2 "v will be found at the intersection of the row labeled 6v and the column labeled C2 . 

23 . 1 5 R E P R ES E NTATI O N S  O F  A G R O U P  

Any set of numbers or any set of square matrices that has the same multiplication table as 
the group is called a representation of the group. It is possible to construct any arbitrary 
number of representations of a group. The representation may consist of matrices of any 
order, but within any one representation all must be of the same order. 

The set of matrices in any given representation can be transformed to an equivalent 
set, usually of lower order. If it is not possible to reduce all the matrices in a representation 
to lower order matrices by a specified transformation, this set of matrices is called an 
irreducible representation of the group. The number of distinct irreducible representations 
of any group is equal to the number of classes in the group. 

Once we know the matrices in an irreducible representation, we obtain the sum of the 
main diagonal elements in each matrix. This sum is the character of the matrix. The set of 
characters of the matrices in an irreducible representation are the characters of that repre
sentation. It is these numbers, collected in the character table of the group, that have 
prime importance in the application of group theory to molecules. 

23 . 1 5 . 1  C h a racters of the  R e p resentat ions  of the  G ro u p  C2v : Exa m p l e  

Table 23 .5 i s  the character table for the group C2v • 

E Cz 

a1 1 1 
az 1 1 
b 1 1 - 1  
bi 1 - 1  

Tab le  23 . 5  
Character tab le  f o r  C2v 

avCxz) aJxy) 

1 1 Z 
- 1  - 1  Rz 

1 - 1  x, Ry 
- 1  1 y, Rx 

x2, yZ, ZZ 
xy 
xz 
yz 
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For this group, C2 v , there are four distinct irreducible representations. Each repre
sentation is a set of one-dimensional matrices. The first irreducible representation, al > 
consists of the set of 1 x 1 matrices, each of which has a + 1 in the lone position in the 
array. 

E 

[1J [1J [1J 

(I' 
v 

[1J 

The sum of the diagonal elements is simply the element itself, + 1 . So the characters are 

E 

The other three irreducible representations are three other sets of one-dimensional 
matrices. Again the characters (Table 23 .5) are simply equal to the single element in the 
matrices. The one-dimensional irreducible representations are given the conventional 
labels ai ' a2 , b i , b2 · (Capital letters are used as often as not.) 

The behavior of any coordinate under the symmetry operations of the group is de
scribed by the characters of OIl€- of the irreducible representations. For example, the co
ordinate x transforms as 

Ex = +x c2 x = - x  O"v(xz)x = +x O"�(Yz)x = -x. 
The coefficients on the right-hand side are : 

E 

- 1  - 1  

Comparing this set of numbers with the sets in the character table we see that x 
belongs to the irreducible representation bi . Similarly, y belongs to b2 . Since Rz = z, 
where R is any operation of the group, z is totally symmetric and belongs to the totally 
symmetric representation ai . (All the characters of a1 are + 1 .) 

If we know the irreducible representation to which the coordinates belong (for ex
ample, x belongs to bi and y belongs to b2), we can find the representation to which product 
functions belong by forming the direct product of the representations b1 x b2 . For any 
symmetry element we obtain the character of the direct product by multiplying the 
characters of the two representations. For example, the characters of the direct product 
bi x bz are 

E 

( + 1)(+ 1 )  ( - 1)( - 1) ( + 1 )( - 1) 

(I' 
v 

( - 1 )( + 1) 
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or 

E 
- 1  - 1 

This is the representation a2 ; therefore we write 

bi x b2 = a2 , 
and we conclude that the product xy belongs to the representation a2 . Since the totally 
symmetric representation al has characters all equal to + 1, it follows that the direct 
product of a l with any other irreducible representation belongs to the latter representa
tion : 

Note that the direct product of any irreducible representation with itself, such as bi x bl , 
belongs to the totally symmetric representation, al ' Hence the functions x2, y2, Z2 all belong 
to al ' The character table includes these simple functions as shown in Table 23 .5 .  The 
symbols Rx , Ry , and Rz identify the representations to which rotations around the x-, y-, 
and z-axes belong. Character tables for several symmetry groups are giv('n in Appendix VI. . 

23 . 1 5 . 2  R e p resentat ions  of the  G ro u p  C3V : Exa m p l e  

Before applying these symmetry principles, we will discuss a slightly more general example 
to illustrate what occurs when one ( or more) of the irreducible representations is two
dimensional (or three-dimensional). The simplest symmetry group that has a two
dimensional irreducible representation is C 3 v ' This group contains the symmetry elements 
appropriate to the ammonia molecule (Fig. 23 .26). The projection of the atoms on the 
xy plane is shown in Fig. 23.26(b). The symmetry operations are : 

E :  The identity. 

C3 : Rotation counterclockwise through 1200 around the z-axis. 

<=3 : Rotation clockwise through 1200 around the z-axis. 
(I'�I ) : Reflection in the vertical plane containing the z-axis and hydrogen atom 1 .  
(I'�2) : Reflection in the vertical plane containing the z-axis and hydrogen atom 2. 
(I'�3) : Reflection in the vertical plane containing the z-axis and hydrogen atom 3 .  

In the symmetry group C2v , each coordinate was either invariant or changed only in 
sign by the symmetry operations ; in the group C3v the situation is more involved. For the 
z coordinate we still have Rz = z, where R is any operation in the group, so that in C3v , z 
belongs to the totally symmetric representation just as it did in C2v ' But x and y do not 
transform so simply. For example, under C3 we find that 

C3 X = X cos �n - y sin �n ; 
C3 y = x sin �n + y cos �n. 
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z 

1 

N 3 2 

----------��----------�y ----------��--+-------7 y 

x 

2 

(a) (b) 

F i g u re 23.26 (a )  Coord i n ates for the N H 3 molecu le .  
(b )  Project ion of atoms on  xy-p lane .  

. 

This can be written in matrix notation (see Appendix I, Section 8) as 

[x] [cos �n 
C3 y 

= sin �n 
- sin � ] [x] . 

cos � y 

Similarly, we find that 

sin �n ] [x]
. 

cos �n y 

3 

Thus, the operators C3 or C3 can be written as matrices. Since cos �n = -t  and sin � = 
t)3, these matrices become : 

and 

Note that the sum of the main diagonal elements, -t + ( -t) = - 1, is the same for both 
C3 and C3 . These operations have equal characters . 

The reflection operator (J"�1 ) has the effect 

and 

which can be written as a matrix transformation : 

The matrix corresponding to (J"�1 ) has the character 1 + ( - 1) = o. The reflections in the 
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other two planes again give more involved expressions. It can be shown that 

and 

Thus, under the reflections in planes 2 and 3, both x and y are transformed into linear 
combinations of x and y. In matrix notation 

(2) [X] = [ -! -!J3J [x] Go y -!J3 ! y 
and 

For the matrices corresponding to the reflections we have 

( 1 ) = [1 0J Go 0 - 1 ' 
(2) 

_ 
- z  [ 1 

Go - -!J3 
-!J3J 1 ' 

Z 
(3 ) _ - z  [ 1 

0"0 
- !J3 

Note that the sum of the main diagonal elements for each of these matrices is zero. All the 
reflections have the same character, namely, zero. 

The identity operator always has the unit matrix as a representation : 

E = [� �J 
This matrix has a character equal to 2. 

This set of matrices, one for each member of the group, is a two-dimensional irreduc
ible representation of the group. The characters of the representation are summarized by 

E 

2 - 1  - 1  o o o 

Note that the two rotations have the same character and that the three reflections 
have the same character. The two rotations are in one class of elements ; the three reflec
tions are in another class ; the unit element is in a class by itself. Representations of elements 
in the same class always have the same character. For this reason it is customary to write 
the character table in the condensed form shown in Table 23.6 . (Note that this group also 
has two one-dimensional representations, a1 and a2 , that have the characters shown in 
Table 23.6 .) 

E 2C3 

a1 1 1 
az 1 1 
e 2 - 1  

Tab le  23 . 6  
Character t a b l e  for  C3v 

30"v 

1 z 
- 1  Rz 

0 (x, y) (Rx , Ry) 

XZ + yZ , ZZ 

(XZ - yZ, xy) (xz, yz) 
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In this table the notation (x, y) indicates that the pair (x, y) transforms into linear 
combinations of x and y under the operations of the group. As usual, a l is the totally 
symmetric representation. 

23 . 1 6 R E D U CI B LE R E P R ES E NTATI O N S ; 
T H E O RT H O G O NA LITY T H EO R E M  

In forming the direct products we find 

a2 x e = e. 
a l x e = e ; 

All of these direct products of the irreducible representations are themselves irreduc
ible representations. On the other hand when we form the direct product e x e, we obtain 
for the characters : 

E 

e x e 4 o 

These numbers do not correspond to the characters of any of the irreducible repre
sentations. It follows that the direct product e x e belongs to a reducible representation. 
The character of any reducible representation is the sum of the characters of the irreducible 
representations that compose it. In this particularly simple case we can see by inspection 
of the character table that 

e x e = al + a2 + e. 
We say that the direct product e x e contains the irreducible representations a 1 ,  a2 and e. 

In more complicated cases, inspection is not a practical way to proceed. For these we 
use the orthogonality theorem, which we must simply state without proof. This theorem 
can be written in the special form 

L Xi(R)xiR) = Mij , (23 .35) 
R 

where Xi(R) and xiR) are the characters of the two irreducible representations i and j, h 
is the number of elements in the group, R is any operation of the group, and (jij is the 
Kronecker delta. Equation (23 . 35) states that the sum of the products of the characters of 
two different (i =1= j) irreducible representations over the group operations is zero, while 
the sum of the squares of the characters of any irreducible representation over the opera
tions of the group is equal to h. For example, let i = al and j = a2 , then 

E 2C3 30"v 
L Xa,(R)Xa2(R) = (1)( 1) + 2(1)(1) + 3(1)( - 1) = o. 
R 

Note that on the right side, the second term (1)(1) occurs twice, once for C3 and once for 
(\ (hence the 2 multiplier) ; similarly the third term (1)( - 1) occurs three times, once for 
each reflection (hence the 3 multiplier). If we choose i = j = e, then 

L XiR)xiR) = (2)(2) + 2( - 1)( - 1) + 3(0)(0) = 6. 
R 
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Suppose that we have a reducible representqtion with characters X(R). These char
acters are the sum of the characters of the irreducible representations contained in the 
reducible one. Thus for any operation 

X(R) = L riiXi(R), (23 .36) 
i 

which says that the ith irreducible representation is contained rii times in the reducible 
representation. The sum is over all the irreducible representations. If we multiply both 
sides of this equation by X/R), the character of the jth irreducible representation, and then 
sum both sides over all the operations of the group, we obtain 

L X(R)X/R) = L L riiXi(R)X/R) 
R R i 

= L rii L X;(R)x/R). i R 

Using the orthogonality theorem, Eq. (23 .35), for the second sum on the right side, we 
obtain 

L X(R)X/R) = L ri;hc5ij ' 
R i 

Summing over i, the right side reduces to one term, hrij ; then 

1 
rij = h � X(R)X/R) (23 .37) 

Using this equation we can determine how many times the jth irreducible representation 
is contained in any reducible representation. 

23 . 1 6 . 1  R eso lv ing  a R e p resentat i o n  i nto its 
I rred u c i b l e  Components : An Exa m p l e  

If we  choose t o  construct molecular orbitals for NH3 using linear combinations of the is 
orbitals on the three hydrogen atoms, and the 2s, 2px , 2py , and 2pz orbitals on the nitrogen 
atom, we can show that the resulting molecular orbitals belong to a reducible representa
tion of the group C3v with the characters :  

E 

X(R) 7 3 

To which irreducible representations do these molecular orbitals belong ? To answer 
this question we first construct the right side of Eq. (23 .37) for j = a 1 ; thus 

ria, = i[(7)(1) + 2(1)( 1 )  + 3(3)(1)J = 168 = 3. 
We conclude that a 1 is contained three times in the reducible representation. Next we 
repeat the procedure for a2 : 

ria2 = i[(7)(1) + 2(1)(1) + 3(3)( - l)J = O. 
Thus a2 does not appear in this reducible representation. Then repeat the procedure for e. 

rie = i[(7)(2) + 2(1)( - 1) + 3(3)(0)J = 1l = 2. 
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The representation e is contained twice in the reducible representation. Thus the reducible 
representation is made up of 3a1 + 2e . We can easily verify that the sums of the char
acters for this combination of irreducible representations are equal to those of the re
ducible representation. 

An important point is that the molecular orbitals belonging to one-dimensional 
representations such as a1 or a2 are nondegenerate. The molecular orbitals belonging to 
two-dimensional representations are doubly degenerate ; both wave functions have the 
same energy. In symmetry groups in which a three-dimensional representation, t, occurs, 
the corresponding wave functions are triply degenerate. 

Note that one-dimensional irreducible representations are always labeled a or b 
(A or B) with as many subscripts as are necessary ; two-dimensional ones are labeled e 

(or E) and three-dimensional ones are labeled t (or T). A one-dimensional representation 
is designated a if it is symmetric under a rotation about the principal axis of symmetry, 
and b if it is antisymmetric under this operation. 

23 . 1 6 . 2  Construct i o n  of M o lecu l a r  
O rb i ta ls : Exa m p l e  

Any proper wave function i s  required t o  transform under the symmetry operations i n  the 
manner determined by the matrices in the irreducible representations of the group. This 
requirement severely restricts the form of the wave functions for any molecule. In the case 
of the water molecule, only four types offunctions fulfill the condition : the types belonging 
to the four irreducible representations of the group C 2v . The phrase " symmetry species " 
is used as a synonym for " irreducible representation." Thus the wave functions of the 
water molecule may belong to one of the four symmetry species, a1 ' a2 , b 1 , or b2 . 

For molecules with other symmetries there are other character tables and a similar 
notation for the symmetry species. The wave functions of asymmetric molecules cannot be 
classified into symmetry species. 

Note that the above discussion does not depend on knowing anything about the de
tailed functional form of wave functions. We do not have to solve the Schrodinger equa
tion. The statements are based solely on the symmetry properties and the consequent 
mathematical properties of the symmetry group. 

However, if we wish to construct approximate wave functions for the system, the 
symmetry gives us a powerful method for doing so. For example, if we wish to construct 
molecular orbitals (MOs) for the water molecule by using linear combinations of atomic 
orbitals (LCAOs) we can do so with great ease. Let the atomic orbitals* (AOs) be denoted 
by Xi : 

Xl = (1S) 1 
X2 = (1S)2 
X3 = (2s)0 
X4 = (2pz)o 
XS = (2pJo 
X6 = (2py)0 

(the 1s orbital on H atom 1) ; 
(the Is orbital on H atom 2) ;  
(the 2s orbital o n  the 0 atom) ; 
(the 2pz orbital on the 0 atom) ; 
(the 2px orbital on the 0 atom) ; 
(the 2py orbital on the 0 atom). 

(23 .38) 

* It is unfortunate that the usual notation both for atomic orbitals and for the characters uses the same Greek 
letter : chi, x. Ordinarily this causes no difficulty, but the beginner should be on guard against confusing 
them. 
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We will assume that the Is electrons on the oxygen are sunk: deep in the core and are not 
involved in the bonding. The most general set of LCAO MOs would have the form : 

¢1 = C1 1Xl + C1 2 X2 + Cl 3 X3 + Cl4 X4 + Cl S XS + Cl 6 X6 ; 
¢2 = C2 lXl + C22 X2 + . . .  
¢3 = 
¢4 = 
¢s = 

(23 .39) 

in which the cij are constants. However, if the ¢l > ¢2 ' . . .  ¢6 are to have the symmetry 
properties required, not all of the atomic orbitals can contribute to every ¢. Thus many 
of the Cij are zero . 

We begin by examining the symmetry behavior of each Xi ' Suppose we look at X3 , 
the 2s function on the oxygen atom. Under each symmetry operation in the group, X3 is 
unchanged. Therefore, from the character table, we conclude that X3 is an al type function. 
The behavior of X4 , Xs , and X6 under the various symmetry operations can be established 
by examining what happens to the figures in Fig. 23 .27 under these operations. Consider 
X4 ' the (2pz)0 function. Then 

So X4 is also totally symmetric and is an al function. The functions Xs = (2pJo and 
X6 = (2py)o transform as : 

C2 XS = -Xs , 
C2 X6 = -X6 , 

a'vXS = -- Xs ; 

Comparing these results with the character table we find that Xs belongs to bl , whereas 
X6 belongs to b2 . Looking at Xl and X2 we find that 

C2 Xl = X2 ' 
C2 X2 = Xl > 

cr�Xl = Xl ; 
cr�X2 = X2 ' 

Two of the symmetry operations interchange Xl and X2 ' When this happens we can 
construct linear combinations of the two functions that have the required symmetry 
properties. We form two new functions : 

Then 
C2 X� = C2 Xl + C2 X2 = X2 + Xl = X� ; 
crvX� = crvXl + crvX2 = X2 + Xl = X� ; 
cr�x� = cr�Xl + cr�X2 = Xl + X2 = X� · 

From this we conclude that X� is an al function. 
Next we examine Xl 

C2 X2 = C2 Xl - C2 X2 = X2 - Xl = - (Xl - X2) = -X2 ; 
crv X2 = crvXl - crvX2 = X2 - Xl = - (Xl - X2) = -Xl ; 
a'vX2 = a'vXl - cr�X2 = Xl - X2 = Xl - X2 = Xl 
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(a) s functions Xl '  X2 ' X3 (b) (2pz}o function X4 

z z 

y 

x x 

F i g u re 23 . 27 Boundary su rfaces for the atomic orbita ls  i n  the H 20 molecu le .  

These transformations show that X� is a b2 function. Summarizing, we have : 

Symmetry species Functions 

(Xl + X2), X3 ' X4 
none 

Xs 
(Xl - X2), X6 
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Thus, from this limited group of atomic wave functions, we can form molecular wave 
functions belonging to only three symmetry species : a I ' b l , and bl . The most general a l 
functions will be linear combinations of (Xl + Xl), X3 , and X4 ' No other function can 
enter these combinations without destroying the symmetry type. Since we begin with three 
independent functions, we end up with three independent al functions : 

cPI = Cl l (XI + Xl) + C1 3 X3 + C14 X4 ; 
cPl = Cl I (XI + Xl) + Cl 3 X3 + Cl4 X4 ; 
cP3 = C3 1 (XI + Xl) + C3 3 X3 + C34 X4 ' 

Only one function has the bl symmetry ; thus 

hI cP4 = XS ' 
There are two bl functions, Xl - Xl and X6 ' 

cPs = CS I (XI - Xl) + CS 6 X6 ; 
cP6 = C6 1 (XI - Xl) + C66 X6 ' 

(23.40) 

(23.42) 

A most important property of wave functions that belong to different symmetry 
species is that they are, ipso facto, orthogonal. Thus, by constructing these symmetry 
orbitals, cPi > as they are called we automatically fulfill the condition of orthogonality, 
which is required of the wave functions of nondegenerate states. Thus cPI , cPl , and cP3 are 
orthogonal to cP4 , cPs , and cP6 , while cP4 is orthogonal also to cPs and cP6 ' By suitable 
adjustment of the constants Cij ' we can assure that cPb cPl , and cP3 are orthogonal to each 
other, and that cPs and cP6 are orthogonal to each other. 

The order of energies of the MOs in the water molecule is 

1al < 2al < 1bl < 3al < I b l < 4al < 2bl < Sal 

The states of a given symmetry are labeled in serial order, lab 2ab 3al , . . .  , beginning with 
the state of lowest energy. The lal state is the al orbital containing the Is electrons on the 
oxygen atom. We omitted this state in our discussion above. Our three al states, cPI , cPl ' 
cP3 , are associated with the states 2ab 3ab 4al ; our cP4 with lb l ; and our cPs and cP6 with 
Ibl and 2bl . The energy level diagram for the water molecule is shown in Chapter 2S, 
Fig. 2S. 12. The electronic configuration of the water molecule is 

or 

in which the filled (lal)l (the 1s shell in oxygen) is replaced by K to indicate a filled atomic 
K shell. Since all the occupied orbitals are filled, the overall symmetry of the state is totally 
symmetric. The term symbol for the ground state of the water molecule is then lA I ; the 
left-hand superscript indicates a singlet state. (Capital letters are used to describe the 
symmetry of the entire electron configuration.) 

The actual determination of the order of energy levels, shown in Fig. 2S. 12, was done 
by a theoretical calculation. * Considering the complexity of the calculation and the 

* F. D. Ellison and H. Shull, J. Chern. Phys. 23 : 2348 ( 1955) .  
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approximations that are necessary, the results are quite good. Comparison with experi
ment involves comparing the experimental and theoretical values of (a) the total binding 
energy of the system, (b) the ionization energies of electrons from various levels in the 
molecule, and (c) the frequencies of absorption and emission bands. Arriving at a complete 
energy level scheme for a molecule is an intricate task of fitting together many pieces of 
the puzzle. We will return to the subject of symmetry in the discussion of selection rules 
in spectroscopy. 

Q U ESTI O N S  

23. 1  How does the Born-Oppenheimer approximation allow the discussion of a diatomic mole
cule's energy as a function of only the internuclear separation (and not the coordinates of 
electrons) ? 

23.2 What is the variation theorem? What is its importance ? 
23.3 Chemical bonding forces saturate ; that is, there are only two electrons to a bond. Discuss this 

for the H2 example by examining the possibility of placing another electron in the orbital in 
Eq. (23 .8) . Pay attention to spin ! 

23.4 Sketch and explain the behavior of the overlap integral (Eq. 23 .20) versus internuclear separation 
for identical nuclei when (a) t/I. = t/lb = t/lls and (b) t/I. = t/l1 8 and t/lb = t/l2pz (for e = nI2). 

23.5 Discuss hybridization, formation of (1 and n bonds, and the geometry of ethylene and acetylene. 
23.6 Sketch and explain a plot of the energy of ethylene versus the angle between the planes of the 

CH2 groups. 
23.7 Predict the geometry of SV4 and SF 6 .  

23.8 What i s  a molecular orbital wave function ? How does i t  differ from a valence bond wave 
function ? 

23.9 Sketch the behavior of the bond order and the bond length for the homonuclear diatomic 
series Li2-Ne2 , based on a molecular orbital description. 

23.10 Describe the bonding in NO and CO in terms of molecular orbitals. 
23.1 1  List the symmetry operations and the group for the molecules H20, NH3 , C2H4 , and PCls . 

P R O B LE M S  

23. 1  Show that if t/l" and t/lk are orthogonal, then t/l8 and t/I A ,  in Eqs. (23 .5) and (23 .6), are orthogonal. 
23.2 Let ex and f3 be the two spin wave functions corresponding to the two possible values of the 

electron spin quantum number ; then ex(1 )  indicates that electron I has spin ex. The possible 
spin functions for two electrons are : (11 = ex(l)ex(2) ; (12 = ex(I)f3(2) ; (13 = f3(I)ex(2) ; (14 = f3(1)f3(2). 
By making linear combinations where necessary, show that three functions are symmetric 
(triplet state) and one is antisymmetric (singlet state) under the interchange of the two electrons. 

23.3 Which of the following overlap integrals are zero ? 
a) an s function approaches a pz function along the z-axis. 
b) an 8 function approaches a Py function along the x-axis. 
c) a Py function approaches a pz function along the y-axis. 
d) two Px functions approach each other along the y-axis . 

23.4 a) Sketch the double-bond system in 1 ,3-butadiene. 
b) Compare the double bonds in 1 ,3-butadiene with those in 1 ,4-pentadiene. 
c) Show that any hydrocarbon containing a conjugated system of double bonds is planar 

over the region of conjugation. 
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23.5 Nitrogen forms two distinct types of compounds in which it is attached to three neighbors. 
In ammonia and the amines, the configuration is pyramidal, while the N03" ion is planar. 
Sketch the hybridization possibilities for the two situations. (Hint : N+ is isoelectronic with 
carbon.) 

23.6 The " one-electron " bond is stabilized in the species Hi by resonance between the structures 
H +  · H  and H ·  H + .  

Suggest a reason why the " one-electron " bond i s  not observed between two unlike atoms A 
and B to yield (A · B) + .  

23.7 Nickel ion, Ni2 + ,  forms two types of four-coordinate complex compounds. One type is tetra
hedral ; the other is square. Which of these types will have a magnetic moment due to unpaired 
electron spins ? 

23.8 Construct the multiplication table for the group C3v .  
23.9 Consider a hypothetical molecule, H3 , consisting of three hydrogens at the apices of an isosceles 

triangle ; the symmetry group is Czv ,  with H(Z) and H(3) equivalent. Construct molecular orbitals 
of proper symmetry using Is functions on the three hydrogen atoms. 

23. 10 Construct molecular orbitals of proper symmetry for the formaldehyde molecule, HzC=O, 
symmetry group Czv .  Use Is  orbitals on the hydrogen atoms, and 2s, 2px , 2pv ,  2pz orbitals on 
the carbon and oxygen atoms. The orbitals, Xl to XI O ' are labeled in the order � ( ls)H( I ) ; ( l s)H(z) ; 
(2sk ;  (2Pxk ;  (2py)c ; (2pz)c ; (2sh (2Pxh (2py)0 ; (2pz)o . 

23.11  The ozone molecule is angular and therefore has the symmetry Czv . Using the valence shell 
orbitals on each of the three oxygen atoms, construct molecular orbitals of the proper symmetry ; 
let 0(2) and 0(3)  be equivalent. The orbitals, X l to Xu ,  are labeled in the order : (2s) 1 ; (2px) 1 ; 
(2py) l ; (2pz) l ; (2sh ; (2S)3 ; (2Pxh ; (2Px)3 ; (2py)z ; (2pY)3 ; (2pz)z ; (2pz)3 · 

23.12  Construct molecular orbitals of proper symmetry for the ethylene molecule, HzC=CHz , 
symmetry group DZh .  Use I s  orbitals on the hydrogen atoms ;  2s, 2px , 2py , 2pz orbitals on the 
two carbon atoms. Label H atoms 1 and 2 with carbon atom 1 ; H atoms 3 and 4 with carbon 
atom 2. The character table is in Appendix VI. The operation i is inversion through the center. 
The orbitals, Xl to Xu are labeled in the order : (ls)H( l ) ; ( lS)H(Z) ; ( ls)H(3 ) ; ( ls)H(4) ; (2s)C( l ) ; (2s)C(2) ; 
(2Px)C(I ) ;  (2px)C(z ) ; (2py)C( I ) ;  (2py)c(2 ) ;  (2Pz)c( 1 ) ; (2Pz)c(2 ) · 

23.13 Construct molecular orbitals of proper symmetry for the diborane molecule, HzBHzBHz , 
which belongs to the symmetry group DZh .  Diborane has the same structure as ethylene except 
that the two additional hydrogens (bridge hydrogens) lie on an axis that is perpendicular to the 
plane of the rest of the molecule and bisects the B-B axis. The orbitals are labeled in the order : 
Xl to X4 are Is orbitals on the four equivalent hydrogen atoms ; XS and X6 are Is orbitals on the 
bridge hydrogens ; X7 to Xl4 are (2S)B( 1 ) ; (2S)B(Z) ; (2Px)B( I ) ; (2pJB(Z) ;  (2py)B( 1 ) ; (2py)B(Z) ;  (2Pz)B( I ) ; 
(2Pz)B(Z) . 

23.14 Hydrogen peroxide, HzOz , in the trans-form with all the atoms in a plane has the symmetry 
CZh .  (Note : (Ih is reflection in the horizontal plane, the plane of the molecule.) Construct molec
ular orbitals of the proper symmetry. The orbitals, Xl to XIO , are labeled in the order : ( lS)H( I ) ; 
( lS)H(Z) ;  (2S)0( 1 ) ;  (2S)0(2) ;  and so on as in Problem 23. 1 3 . 

23.15 Trans-difluoroethylene has the symmetry C Zh .  Construct molecular orbitals of proper symmetry. 
The orbitals, Xl to XI S ' are labeled in the order : (ls)H( I ) ; ( ls)H(z) ; (2S)C( 1 ) ; (2s)C(z) ; (2Px)C( l ) ; · · ·  ; 
(2pJC(z) ; (2S)F( 1 ) ;  (2S)F(Z) ;  (2px)F( 1 ) ; · · · ; (2Pz)F(Z)· 

23.16 If we use the 2s, 2px , 2py , and 2pz orpitals on the nitrogen and the three fluorine atoms of the 
NF 3 molecule as a basis for a representation of the group C3v ,  the character of the representation 
IS 

E 
16 

How is  this representation composed of the irreducible representations ? 
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23.17 If we use the valence shell orbitals on the three oxygen atoms in ozone as a basis for a representa
tion of the group C2v ,  the character of the representation is 

E 
12 

(J' v 
6 

How is this representation composed of the irreducible representations ?  
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24. 1  S P E CT R A L  R EG I O N S  

A light beam i s  an electromagnetic wave that has oscillating electrical and magnetic 
fields associated with it. Figure 24. 1 shows the variation of the field vectors for a plane wave 
propagating in the z direction. 

The properties used to characterize the light beam are : frequency, wavelength, wave 
number, and energy. 

The frequency is the fundamental property of the light beam ; it is the number of 
oscillations of the field vectors per second. The frequency is independent of the medium 
through which the beam is passing. The usual symbol for frequency is the Greek letter 

y 

x 

F i g u re 24. 1  F i e l d  vectors f o r  p l ane  wave propagat ing  i n  t h e  z d i rectio n .  

z 
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F i g u re 24. 2  Spectra l reg ions .  
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nu, v. The unit is the hertz ; 1 Hz = 1 S - 1 . The reciprocal of the frequency is the period of 
oscillation, T = 1/v. 

The wavelength is the distance traveled by the light wave in the time required for 
the electric or magnetic field vectors to complete one oscillation. The wavelength depends 
on the medium through which the beam is passing, and is related to the frequency by the 
equation 

AV = e (24 . 1 ) 
where A (Greek : lambda) i s  the wavelength and e i s  the velocity of the light in the medium. 
In vacuum, e = 2.99792458 x 108 m/s � 3 x 108 m/s. 

The wave number is the reciprocal of the wavelength ; the symbol used is V, (nu tilde). 
Thus 

_ 1 
v = -- A 

(24.2) 

The wave number is the number of oscillations of either field vector in unit distance. The 
SI base unit is m - 1 , but the literature values are almost all in cm - 1 . In view of Eq. (24. 1), 
we have also 

_ v 
v = - .  

e 

The energy in a single quantum of light is given by the Planck relation 

E = hv or E = hev . 

(24.3) 

(24.4) 
Thus the energy is proportional to either the frequency or the wave number. The energy 
of one mole of quanta is 

(24.5) 
This quantity was formerly called an einstein. For visible light where v ranges from 
4.3 � 1014 to 7.5 X 101 4 s - 1 , the energy ranges from 170 to 300 kJ Imol, which is in the 
range of the energies of ordinary chemical reactions. This is the reason that these fre
quencies are visible. 

The frequencies of interest in atomic and molecular problems range from the short 
x-ray region where v � 3 x 101 9  Hz and E = 1 .2 x 107 kJ/moi to the long radio frequency 
(NMR) region where v � 3 X 107 Hz = 30 MHz and E � 0.012 J/mol. These regions are 
shown on a logarithmic scale in Fig. 24.2. 

24. 2  BAS I C  S P E CT R O S C O P I C  EXP E R I M E NTS 

In general, the light emitted from an excited substance consists of radiation of many 
frequencies. A spectroscope is designed to resolve this light into its component frequencies. 
The simplest kind of optical spectroscopic experiment is illustrated in Fig. 24.3 .  

Light from a slit is collimated by a lens and passed into a prism. Since the prism 
refracts the light of different frequencies by different amounts, a beam of white light, for 
example, is spread out into its component frequencies (colors). These different frequencies 
appear at different positions on the receptor. Typically a detector such as a photoelectric 
tube can be moved across the receptor area to measure the intensity of light of each 
frequency. The receptor is marked with a scale of wavelengths or frequency. 
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_ Receptor 
screen 8..---------7 Red 

Light 
source 

White \ 
source \ 

F igure 24.3 D i spers ion of  l i g ht i nto its component freq uencies.  

F ig u re 24.4 

containing 
sample 

Schematic d iagram for measurement of l ight  a bsorptio n .  

The basic elements of any emission spectroscope are (1) a source that contains the 
substance to be studied and is capable of energizing that substance so that it can emit its 
characteristic radiation, (2) a dispersing device to resolve the emitted radiation into its 
component frequencies, and (3) a detector that can measure the intensity of the radiation 
at the various frequencies. The choice of devices for each of these elements depends on the 
region of the spectrum under investigation. 

For absorption spectroscopy, we could choose a source of "white " radiation, insert 
a sample of the substance to be studied in the light beam, pass the transmitted beam through 
a dispersing device, and measure the intensity of radiation as a function of frequency. 
Alternatively, we might disperse the white radiation into its component frequencies and, 
by means of a slit, select light having a narrow range of frequencies ("monochromatic " 
light), then pass this beam through a sample of the substance under study. The detector 
measures the intensity of light transmitted at the selected frequency. By suitably changing 
the geometry, we can focus light of a different frequency on the slit, and measure the 
transmitted intensity as a function of frequency. The device is illustrated in Fig. 24.4. 

24. 3  O R I G I N S  O F  S P ECTRA 

The frequency emitted or  absorbed when an atomic or  molecular system undergoes a 
change in state is related to the absolute value of the difference in energy between the two 
states by 

hv = I ,1E I .  (24.6) 



Radiation 

X-rays 

Ultraviolet and 
visible 

Infrared 

Far infrared and 
microwave 

Radio frequency 

Tab le  24. 1  

Process 

Transition of inner electrons of an 
atom 

Transitions of the outer (or 
valence) electrons in the atom 
or molecule 

Changes in vibrational
rotational state of the molecule 

Changes in rotational state only 

Change of spin orientation of 
nucleus in a magnetic field 

Or ig i ns of S pectra 583 

Information gained 

Details of electronic structure 

Details of electronic structure and 
bond energies in molecules 

Internuclear distances, force 
constants 

Internuclear distances 

Magnetic environment of the 
spinning nucleus from which 
structure is inferred 

The energy of the light quantum reveals the energy of the molecular transition, thus 
providing evidence for the type of transformation occurring. The various regions of the 
spectrum correspond to different kinds of transitions in the atom or molecule. The 
processes producing the radiation in the various regions of the spectrum are summarized 
in Table 24. 1 .  

. 

To interpret a spectrum we have to keep three fundamental ideas lin mind. 

1. Any atomic or molecular system possesses energy only in certain special amounts, 
which are called the energy levels of the system. When a system makes a transition between 
these energy levels, light is either emitted or absorbed. The frequency is given by Eq. (24.6), 
which is the fundamental equation of spectroscopy. If the energy of the system decreases 
in the transition, a light quantum of that energy is emitted. If a light quantum is absorbed, 
the energy of the atomic system increases by an equal amount. 

2. There are restrictions, called selection r141es, on the transitions that can occur between 
the energy levels. The selection rules are a consequence of the symmetry of the wave 
functions in the two states. As an example, consider the set of energy levels for the hydrogen 
atom shown in Fig. 24.5 .  The energies of these levels, using Eq. (22 . 14), are given by Em = 

- Eb/2n2 , in which n is the principal quantum number and the hartree energy, Eb = 
e2/4nfo ao . In the cases presented farther on, we assume that we have a system composed 
of a very large number of hydrogen atoms only. In Fig. 24. 5, the energy levels are separated 
into groups corresponding to the value of 1, the azimuthal quantum number. These groups 
are labeled S, P, D, F, . . .  , corresponding to I = 0, 1 , 2, 3, . . .  , and are arranged along the 
horizontal axis. The left-hand superscript records that the electron spin quantum number 
may have two values, either +! or - !, The advantage of separating these levels into groups 
is that the selection rule requires that in a transition the value of 1 must change by unity ; 
111 = ± 1 .  Thus transitions are allowed either way between S and P, between P and D, 
and between D and F states (and so on). Transitions are not allowed between S and D, 
or between P and F states, or between two different S states or two different P states. 

3. If a spectral line is to be observed, there must be a substantial population of the systems 
in the initial energy level. 
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Case 1. The absorption spectrum. Assume that all the hydrogen atoms are in the ground 
state, the IS state. Clearly, the system cannot emit light since that would require some 
atoms to drop into a lower energy state, which is not possible. However, the system can 
absorb light corresponding to any transition between the lS state and any of the P states. 
These transitions are indicated by the lines between the IS and the various P levels in 
Fig. 24. 5. Since the energy differences are rather large, these lines lie in the ultraviolet. No 
other frequencies will be absorbed since none of the higher states has a significant 
population. 
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Case 2. The emission spectrum. To obtain an emission spectrum, the hydrogen atoms are 
energized by placing them in an electric arc, thus raising them to a very high temperature. 
Now there will be a significant number of hydrogen atoms in all of the higher energy 
levels. These atoms in the higher levels can emit light and drop to lower energy states. 
Those in the P states can drop into the lS state and emit the Lyman series of lines in the 
ultraviolet. These frequencies are the same as those that were absorbed in the circumstances 
of Case 1 .  However, other series can now appear. The Balmer series of lines can arise in 
three ways : (1) by transitions from the higher 8 levels (38, 48, . . .  ) to the 2p level ; (2) by 
transitions from the higher p levels to the 28 level ; and (3) by transition from the d levels to 
the 2p level. These transitions are shown in the inset in Fig. 24.5 . Since the energy differences 
here are much smaller than for the Lyman series, the Balmer series lies in the visible and 
near-ultraviolet. The next series, the Paschen series, lies in the near-infrared. The Paschen 
series has any of the levels of principal quantum number n = 3 as the final level ; hence 
there are five ways to obtain the Paschen series : higher 8 to 3p, higher p to 3s, higher d to 
3p, higher p to 3d, and higher fto 3d. 

24.4  L I G HT A B SO R PTI O N ; B E E R 'S LAW 

Consider a beam of monochromatic light passing through a slice of an absorber of thick
ness, dx. Let I be the intensity of the incident beam and I + dI be the intensity of the emer
gent beam (Fig. 24.6). The intensity of the beam is the number of quanta of light passing 
through unit area of a plane perpendicular to the direction of the beam in unit time. Let 
this number be I. Then - dI is the number of quanta absorbed in the distance, dx. The 
probability of absorption in the distance, dx, is - dIll ; if the slice is thin, the probability 
of absorption is proportional to the thickness of the slice and the number of absorbing 
molecules in the slice, that is, to the concentration of the absorbing species. We have 

dI 
- - = kc dx 

I ' (24.7) 

where k is the proportionality constant, c is the concentration, (mol/m3), and dx is the 
thickness of the slice. 

Equation (24.7) states that the relative decrease in intensity of the beam is proportional 
to the number of absorbing molecules in the slab of material. If there are several kinds of 
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beam passi ng through a n  absorber. 
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molecules present, each with a different ability to absorb light of the frequency in question, 
then 

(24.8) 

The constants, kv k2 ' . . .  , are characteristic of the substances in question. For any sub
stance the value of k depends on the wavelength. If a substance is transparent at a par
ticular wavelength, all the light goes through and k = O. If at a particular wavelength all 
the substances are transparent except one, then Eq. (24.8) reduces to Eq. (24.7). Integration 
of Eq. (24.7) yields ( d1 

= - kc f
l
dx, JIo 1 ° 

where 1o is the intensity of the incident beam and 1 is the intensity of the emergent beam 
after passing through the total cell length, I. Integrating we obtain, 

In (:J = - kCl or (24.9) 

It is customary in spectrophotometry to use common logarithms rather than natural 
logarithms ; thus in Eq. (24.9) we replace the natural base, e, by 10° .43429 ' "  and obtain 
1 = 10 1O- 0.4343kCl. We define f. = 0.4343k ;  then 

(24. 10) 
The constant, E, is the molar absorption coefficient of the substance ; E is also called the 
extinction coefficient.The transmittance, T, is defined by 

and the absorbance, A, is defined by 

1 T = � 
10 

A = - logl o  T or 

(24. 1 1) 

T = lO-A (24. 12) 
If the absorbance increases by unity, the transmittance drops by a factor of ten. Equation 
(24. 10) is an expression of the Beer-Lambert law, often called simply Beer's law. Beer's 
law is the basic equation for the various colorimetric and spectrophotometric methods of 
analysis. If Beer's law holds, then the absorbance is given by 

A = W. (24. 1 3) 
Since c is in moljm3 , I is in metres, and A must be a pure number, we have m2/mol as the 
SI unit for E. The molar absorption coefficient, f, has traditionally been defined by 
A = fcb, where c is in moljL and b is the cell length in cm. This gives f the pathological 
(but handy) unit, L mol- 1 cm - 1 . Consequently, f = 10£, where f and £ are the molar 
absorption coefficients expressed in classical and SI units, respectively. 

If the composition of the system is not variable, we have 111o = e- ax, where rx is the 
absorption coefficient and x is the path length. The absorbance of a solution is given by 

(24. 14) 
in which EV E2 , . . .  , are the molar absorption coefficients and Cv C2 , . . .  , are the con
centrations of the species 1 ,  2, . . . .  A typical e'xample of the use of this equation is in the 
determination of the concentration of several species in a solution. The moiar absorption 
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coefficients of each of the substances must be known as a function of wavelength. If the 
concentrations of two species are to be determined, the absorbance of the solution is 
measured at two different wavelengths. 

If a chemical equilibrium is established between two different chemical species, then 
Beer's law ordinarily will not be obeyed, since the concentration of the absorbing species 
will not usually be directly proportional to the apparent total concentration. For example, 
consider an acid-base indicator, HX, and assume that HX is the absorbing species. We 
have the equilibrium, 

HX � H+ + X- and 

The total concentration of HX and X - is C = CHX + Cx - . In the simplest case CH + = Cx - = 
C - CHX ; then K = (c - CmJ2/CHX , which shows that CHX is not simply proportional to c. 
Therefore Beer's law will not be obeyed. The equilibrium constant can be determined by 
measuring the absorbance as a function of the concentration. This assumes that only one 
species absorbs significantly at the wavelength in question. 

24. 5  T H E O R Y  O F  ATO M I C  S P E CT R A  

The simplest spectra are those obtained from excited atoms. Since all atoms except the 
hydrogen atom have more than one electron, we need a quantum-mechanical description 
for multielectron atoms. 

The Schrodinger equation for the hydrogen atom can be solved exactly as we did in 
Chapter 22. If we attempt to solve the SchrOdinger equation for the helium atom, we must 
deal with the mechanics of three bodies (the nucleus and two electrons), which is not 
solvable in closed form either in Classical mechanics or in quantum mechanics. Therefore 
we are forced to use approximate methods. 

Suppose that the nucleus has a charge + Ze and is separated from electron 1 by a 
distance r 1 and from electron 2 by r 2 ; the distance between electrons 1 and 2 is r 1 2 
(Fig. 24.7). Since the nucleus is very massive compared to the electrons, we will regard the 
nucleus as being fixed at the center of mass of the system. The Hamiltonian for the system 
. can then be written as though the system consisted of only the two electrons that are 
moving in the field of the nucleus and each other. If we write the energy as multiples of 
Eh , the hartree, and distances as multiples of ao , the Hamiltonian becomes 

1 2 1 2 Z Z 1 
H = -1:"\'1 - 1:"\'2 - - - - + - ,  

1 

r1 r2 r1 2 

+ �  2 
F ig u re 24.7 N ucleus with two electrons.  

(24. 1 5) 
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in which -!Vi is the kinetic energy operator for electron 1 ;  it involves only the co
ordinates of electron 1, (r 1 > 8 1 , <P l) ; similarly, - !V� involves only the coordinates of 
electron 2, (rz , 8z , <Pz). If we define 

and 

then the Hamiltonian operator becomes 

1 Z Z 
Hz = -2VZ - - , 

rz 
(24. 16) 

(24. 1 7) 

The term, 1/rl Z , is the potential energy of repulsion between the two electrons. Since the 
electrons repel one another, this effect will tend to keep them apart ; thus r 1 2 will be as 
large as possible under the constraints that r 1 and rz must be small, since the electrons are 
both attracted to the nucleus. 

We can simplify our problem by dropping out the repulsion term entirely. Similarly, 
in atoms with many electrons, we will ignore the electron repulsion terms in our first 
treatment. Then for any multielectron atom we have 

(24. 1 8) 
Since the Hl is a set of terms that depends only on the coordinates of electron 1 ,  Hz 
depends only on the coordinates of electron 2, and so on, then by the theorem in Section 
21 . 8  we can write the wave function as a product of " one-electron " wave functions. 

(24. 1 9) 
where the (1) is an abbreviation for the coordinates of electron 1 ;  that is, 

and 

and so on. The <Pa , <Pb , . . .  , are the one-electron wave functions. 
To fulfill the requirement that the wave function be antisymmetric under the inter

change of any two electrons, a suitable linear combination of product functions must be 
used. The linear combination that assures antisymmetry under the exchange of any two 
electrons is the determinant : 

1 '¥ = -IN! (24.20) 

Interchanging any two electrons interchanges the corresponding two columns of the 
determinant, which changes the sign of the determinant. The Pauli principle is therefore 
satisfied. The determinant is usually abbreviated by simply enclosing the product of the 
functions on the main diagonal between vertical lines ; thus 

(24.21) 
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The total energy corresponding to this wave function is the sum of the individual one
electron energies. 

(24.22) 
Each of the one-electron functions is a solution of a hydrogen-like Schrodinger equation : 

(24.23) 
This equation differs from that of the hydrogen atom only in that the factor Z, instead of 
unity, appears for the nuclear charge. Consequently, we have a set of quantum numbers 
n, I, m, ms for each electron in the atom. The presence of Z modifies the wave function but 
not the quantum numbers. For example, the is wave function becomes 

cP 1 s  = -3 e -Zrlao 
(Z3 ) 1/2 
nao (23 .24) 

We will not have use for the detailed functions, so no other example will be given. If 
desired, we can obtain the functions from those in Table 22.2 by replacing ao by ao/Z. 

In this approximation, each electron has its own set of four quantum numbers, 
En; , I i ,  mi , (m.);] . This description is the basis for the model of the electronic structures of 
the atoms that we used to interpret the periodic table in Chapter 22. 

In the hydrogen atom the wave functions are eigenfunctions of the angular momentum 
operators, M

2
, M z '  and (M s)z .  In the approximation we are using here the wave functions 

of the multi electron atom are also eigenfunctions of the angular momentum operators. We 
now examine the eigenvalues of the angular momentum operators in these multielectron 
systems. 

24. 6  Q U A N T U M N U M B E R S  I N  
M U lT I E l E CT R O N  ATO M S  

Corresponding to the quantum numbers, I, m, s, and m. , for the single electron in the 
hydrogen atom, in multielectron atoms we have a set of quantum numbers, L, ML, 
S, Ms ' 

The quantum number, L, describes the square of the total orbital angular momentum 
of all the electrons in the usual way, 

(24.25) 
The energy states of the atom, the terms, are described using the letter code for the different 
values of L. 

L o 2 3 4 

Letter code s p D F G 

To obtain the allowed values of L we consider only the values of Ii for electrons 
outside any closed subshells. From this set of Ii we select the largest single value and from it 
we subtract the sum of all the remaining Ii ' This difference is the least allowed value of L. 
If this difference is negative, the lowest value of L is zero. The largest value of L is the sum 
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of all the l i in this set. The integral values between the largest and least values are all 
allowed. Thus 

L = Lmax , Lmax - 1, Lmax - 2, . . .  , Lleast 

III EXAMPLE 24.1  Suppose that we have an electron configuration, pZf. Then 11 = 1 ,  
lz = 1 ,  13 = 3 . The least value of L is Lleast = 3 - (1 + 1) = 1 .  The largest value of L is 
Lmax = 3 + 1 + 1 = 5. Thus the allowed values of L are L = 5, 4, 3, 2, 1 .  

The possible values of the z component of the orbital angular momentum are given 
by ML , 

ML = 0, ± 1, ± 2, . . .  , ± L. (24.26) 
The value of M L is obtained by summing the values of m, the magnetic quantum number, 
for all the electrons in the atom : 

(24.27) 

The quantum number, S, describes the square of the total spin angular momentum 
through the relation 

(24.28) 
The possible values of the z component of the spin angular momentum are described by the 
quantum number Ms in the equation 

(24.29) 
The value of M s is obtained by summing the values of m. , the spin quantum number, for 
all the electrons in the atom : 

(24.30) 

The multiplicity of the state is 2S + 1, the number of possible values of the z component of 
the spin angular momentum. 

The orbital angular momentum and the spin angular momentum couple to yield a 
total angular momentum characterized by a quantum number J. 

(24.3 1 )  
The allowed values of  J are : 

J = L + S, L + S - 1, L + S - 2, . . .  , L  - S. (24.32) 
This particular mode of combining the quantum numbers L and S is called Russell
Saunders coupling, the most common type of coupling. The orbital angular momenta of 
the electrons couple strongly as do the spin angular momenta of the several electrons. 
The total orbital angular momentum then couples more weakly with the total spin angular 
momentum to yield a resultant vector characterized by J. The values of J are either 
integral or half-integral depending on whether the number of electrons is even or odd. 

The quantum number MJ characterizes the z component of the total angular mo
mentum (orbital plus spin) through the relation 

(24.33) 
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There are 2J + 1 allowed values of MJ : 

MJ = 0, ± 1 , ±2, . . .  , ± J, 
MJ = ±!, ±t ±t · · · , ± J, 

(for an even number of electrons) ; 

(for an odd number of electrons). 

24. 7  ATO M I C  S P ECTR O S C O PY ; T E R M  SYM B O LS 

In the hydrogen atom, the energy depends only on n, the principal quantum number, and 
not on the values of I, or s. Any electron with orbital or spin angular momentum possesses 
a magnetic moment. In atoms having more than one electron, the magnetic moments of the 
electrons interact (or " couple ") with the result that the energy levels in the atom depend 
on the total orbital angular momentum and the total spin angular momentum (that 
is, the energy levels depend on L and S). Hund's rule is that among the states given by 
equivalent electrons (electrons with the same values of n and l) the state of maximum 
multiplicity has the lowest energy. Among states having the same multiplicity, the state 
with the greatest L has the lowest energy. 

In atomic spectroscopy, the energy levels in the atom are called terms or spectral 
terms. A term is described by a term symbol such as : 

read " singlet ess zero " ; 
read " doublet pee three-halves "  ; 
read " triplet dee two ". 

The letter in the term symbol is the letter code describing the value of L. The left superscript 
is the multiplicity of the state, 2S + 1, and is called singlet, doublet, triplet, quartet, and 
so on. The right subscript is the value of J. Sometimes the principal quantum number of the 
state is written before the term symbol. 

III EXAMPLE 24.2 Consider the hydrogen atom. Since there is only one electron, L = I, 
always. Thus all s configurations yield an S term, all p configurations yield P terms, 
and so on. For the spin angular momentum, s = !; hence S = ! and the multiplicity, 
2S + 1 = 2(!) + 1 = 2. The terms are all doublets. Then J = L + S = I + 1. When 
I = 0, the only allowed value of J is J = !; there is only one state, which is therefore 
not a true doublet. In all the other cases we have two states with different values of J :  

I 0 1 2 3 

J 1 � 1 5 3 7 5 
2 2, 2 2, 2 2, 2 

Term symbol 2S1/2 2P3/2 , 2P1/2 2D5/2 ' 2D3/2 2P7/2 ' 2P5/2 

These term symbols were used to label the energy levels in Figure 24. 5. 

24. S  ATO M S  WiTH C LO S E D  S H E llS 

The simplest method for determining the possible terms corresponding to  a given electron 
configuration is to calculate M L and Ms . From these values we can infer L and S. 
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The values of ML and Ms are determined by the relations in Eqs. (24.27) and (24.30). 
The first consequence of these rules is that a closed shell of electrons (a filled subshell) 
contributes neither orbital angular momentum nor spin angular momentum to an atom. 
In a closed shell the electrons all have paired spins .  Thus, in the configurations S2 , p6, 
d1 0, j 14, . . .  , the values, ms = +! and ms = -!  occur equally often. For any closed shell, 
the resultant M s = I i  (mst = O. Since zero is the only possible value of M s , it follows that 
the quantum number, S, must also be zero. (If S were not zero, the z component of the total 
spin angular momentum would have to have some nonzero value.) Since S = 0, the 
multiplicity, 2S + 1 = 1 ;  so the closed shell configurations are all singlets. 

Similarly, in a filled subshell such as p6 the electrons have the quantum numbers : 

Electron 1 2 3 4 5 6 

m - 1  - 1  0 0 + 1 + 1 

ms +± - 1 +± 1 +± 1 
z - z - z 

Clearly, the values m = + 1 and m = - 1 occur equally often, so that M L = 0 for any 
filled subshell. 

M L = I m; = ( - 1) + ( - 1 )  + 0 + 0 + 1 + 1 = O. 

Again, it follows that L = 0 in the filled subshell since only if L = 0 will zero be the only 
possible value of the z component of the orbital angular momentum. It follows that atoms 
having electrons only in filled subshells are all in IS states, (L = 0, S = 0). 

We conclude that to describe the angular momentum in an atom, we need to consider 
only those electrons outside of the filled subshells. For the same reasons, complementary 
configurations of equivalent electrons have the same terms. (Equivalent electrons are 
electrons having the same values of n and 1.) Examples of complementary electron 
configurations are pX and p6 -\ dX and d1 0 -\ jX and j I4 -\ . . .  Consider the comple
mentary configurations p2 and p4. Since p6 is ajilled subshell, we have 

6 
ML =  I mi = O  or 

i = 1 
Then 

4 
I m; = 
i = 1 

4 6 
I m; + I mi = O. 
i = l 

6 
I m; . i = 5 

; = 5 

Thus the values for M L for the p4 configuration are the same as for p2 , except that they seem 
to differ in sign. This means only that the set of values is arranged in different order. Thus 
ML for p4 is equal to ML for p2 . It follows that L is the same for both, as are Ms and S. 

24. 9  O BTAI N I N G  TE R M  SYM B O LS F R O M  T H E  
E L E CT R O N  C O N FI G U RATI O N  

Consider the configuration, 2p2 , for the two outer electrons in the ground state of the 
carbon atom. Since both electrons have n = 2 and I = 1 they are equivalent electrons. The 
possible one-electron eigenfunctions, described by the notation, [m ; (ms);] , are : 



594 Atomic  S pectroscopy 

But in this case for each value of L both the singlet and the triplet can occur. The possible 
combinations of L, S, and 1 are : 

L S 1 21 + 1 Terms 

2 1 3, 2, 1 7, 5, 3 3 D3 ,3 Dz , 3 DI 
2 0 2 5 IDz 
1 1 2, 1 , 0 5, 3, 1 3PZ ,3P1 ,

3PO 
1 0 1 3 IPI 
0 1 1 3 3S I 
0 0 0 ISO 

The sum of the values of 21 + 1 is equal to 36, th� total number of product functions. 
Consider the configuration, 2p3, which is the ground state configuration ofthe nitrogen 

atom. Since m l = 1, 0, - 1 ,  mz = 1, 0, - 1 ,  and m 3 = 1, 0, - 1 ,  we see that the possible 
values of L are 3, 2, 1 , 0, corresponding to F, D, P, and S terms. However, to have ML = 3 
or - 3 requires m l = mz = m3 = 1 or m l = m2 = m3 = - 1 . Since ms can only equal 
+! or -! we find that there is no way to satisfy the Pauli principle with ML = 3, that is, 
with L = 3 .  Thus the F term cannot occur. 

The D term, L = 2, requires the set of values of ML = 2, 1 , 0, - 1 ,  - 2. The value 
M L = 2 can occur only if two of the spins are paired, that is, in a combination such as 
(1!)(1!)(0!). Thus, in the D terms, Ms = I:i (ms)i = ! - !  + ! = ! and, of course, - !  
can appear as well. Therefore S = ! and 2S + 1 = 2 ;  the term is a doublet, zD. Since 
L + S = 2 + ! = t, and L - S = 2 - ! = �, the only allowed values of 1 are 1 = t, l 
The corresponding values of 21 + 1 are 6 and 4. Thus there is a total of ten functions 
associated with the zD term : ZD5/Z (six functions) and zD3j2(four functions). 

The P term, with L = 1, requires M L = 1 , 0, - 1 . The value, M L = 1, can occur only 
in combinations such as (l!)(O!)(o!) or ( 1!)(l!)(I!). Therefore Ms = ! or -! and S = l 
Again we have a doublet, Z P. Since L + S = 1 + ! = t and L - S = 1 - ! = t the 
two allowed values for 1 are 1 = �, l Then 21 + 1 = 4, 2 .  The complete terms symbols are : 
Z P 3j2(four functions) and Z P l/2(two functions). 

The remaining values, M L = 0 and L = 0, cannot come from m l = mz = m3 = 0, 
because this combination violates the Pauli principle. Therefore L = 0 comes from 
combinations such as m l = 1 ,  mz = - 1, m3 = O. Since the three values of m are different, 
they can have the same value of the spin quantum number. Hence the possible values of 
Ms are Ms = �, !, - !, -l The value of S = l The only value of 1 is t so that the com
plete term symbol is 4S3/Z ' This exhausts the functions available. 

The states of the nitrogen atom belonging to the configuration 2p3 are Z D, Z P and 
4S. According to Hund's rule, Section 24.7, the energies of these states are in the order 
4S < zD < zP. 

24 . 1 0 EXA M P L E S  O F  ATO M I C  S P ECTRA 

24. 1 0 . 1  O n e - E l ectron Systems 

We have discussed the energy of the hydrogen atom earlier. The energy level system for 
the lithium atom is shown in Fig. 24. 8 .  The lowest filled level, 1sz , is not shown. In the 
ground state, the term is 2zS. Since the selection rule requires L11 = L1L = ± 1 ,  the only 
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Function f1 f2 f3 f4 fs f6 

Electron 1 (1t) (1t) cot) cot) cit) (1t) 
Electron 2 ot) ot) cot) cot) cIt) (1t) 

(The over bars indicate negative values.) 
The possible product functions are fJj, so long as i ¥ I If i = j, the two electrons 

would have the same set of quantum numbers, in violation of the Pauli principle. Each 
of the six functions can be combined with any of the other five, making a total of 6 x 5 = 30 
possible functions. Only 15 of these product functions are independent ; the other 1 5  are 
derived from the first set by interchanging the coordinates of the two electrons. 

If m 1 = + 1 , 0, - 1 and mz = + 1 , 0, - 1 ,  then the possible values of ML = m l + mz 
are 2, 1 , 0, 1 , 0, - 1 , 0, - 1, - 2. These can be arranged into the sets : 

ML = 2, 1 , 0, - 1, - 2  L = 2  D '  , 
ML = 1 , 0, - 1 L = 1  p . , 
ML =  0 L = O  S. 

From the values of ML we infer the values of L shown in the middle column. The cor
responding letter designation of the term symbol is in the third column. 

Since, when M L = 2 or -2, m 1 = mz = 1 or m l = mz = - 1 .  Then to avoid violating 
the Pauli principle, the spins must be different. Thus, for this term, Ms = t + ( -t) = O. 
Since Ms = 0, it must be that S = O. The D term is consequently a singlet, ID.  Then 
L + S = 2 and L - S = 2, so the only possible value of J = 2. The complete term symbol 
is 1 Dz . Since 2J + 1 = 5, there are five product functions associated with this term. From 
these five product functions we could construct five determinantal wave functions. The 
details concerning which of the product functions belong to the term and the construction 
of the determinantal functions are not needed for our purposes here. 

The next set of M L values, M L = 1, 0, - 1 ,  belongs to L = 1 and therefore to a P 
term. The combinations, (It)(ot) and (ot)(lt), have M L = 1 or - 1 and Ms = 1 .  But this 
value of Ms occurs only in the set, Ms = 1 , 0, - 1 .  These values of Ms require that S = 1 ; 
then 2S + 1 = 3, and the term is a triplet, 3 P. Next we find that L + S = 1 + 1 = 2 
and L - S = 1 - 1 = O. The possible values of J are therefore J = 2, 1 ,  O. The cor
responding values of 2J + 1 are 5, 3 , 1. Thus the terms are 3 Pz(five functions) ; 3 P 1 (three 
functions) ; 3Po(one function). These terms together with IDz account for 14 of the 1 5  
product functions. The remaining function has M L = 0 ;  hence L = 0 and the term i s  S. 
Since there is only one function, Ms = 0 and S = O. Then, also, J = L + S = O. The 
term symbol is ISO ' Since 2J + 1 = 1, there is one function corresponding to this term. 

In a configuration of two nonequivalent p electrons, such as 2p3p, there are six 
possible functions for each electron. Since there is no restriction imposed by the Pauli 
principle (the principal quantum numbers are different), all 36 product functions are 
allowed and all are independent. Again the sets of values of ML are : 

ML = 2, 1 , 0, - 1 ,  - 2 L = 2  D 
ML =  1 , 0, - 1, L = 1  P 
ML =  0 L = O  S 
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F i g u re 24. 8  Energy- level d iagram for the l ith i u m  atom.  Dashed l i nes a re the correspon d i n g  
l evels f o r  the hyd rogen  atom.  N u m bers on  the tra nsit ion l i nes a r e  t h e  wavelengths i n  nanometres. 
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possibilities for absorbing energy are in the transitions 

22S -------> 22p A = 670.7844 nm ; 

22S -------> 32P A = 323.261 nm ; 

22S -------> 42p A = 274. 1 3  nm ; 

Alim = 230 nm. 

This is the so-called principal series of lines. If the lithium atoms are excited in an arc 
or flame, the upper states become populated and light is emitted as the atoms undergo 
transitions to the lower states. Four series appear in the ultraviolet, visible, and near 
infrared : 

1 .  the principal series, consisting of transitions from higher 2 P states to the 22 S state ; 

2. the sharp series, consisting of transitions from the higher 2 S states to the 22 P state ; 

3. the diffuse series, consisting of transitions from the higher 2 D states to the 22 P state ; 

4. the fundamental series, consisting of transitions from the higher 2 F states to the 32 D 
state. 

Figure 24.8 includes the energy levels of the hydrogen atom for comparison. It is 
apparent that in high quantum states, the energy levels for the lithium atom are almost 
coincident with those of the hydrogen atom, at least in those states that have angular 
momentum. This means that, as the valence electron moves farther from the ls2 core of 
lithium, the electronic interaction effects die away and the electron sees effectively a single 
excess positive charge, effectively a proton. This effect also occurs with the higher alkali 
metals but is less marked as a result of the larger volume occupied by the core electrons. 

The spectra of all the alkali metals are similar to that of lithium ; they are based on the 
same kinds of energy levels (terms). Close inspection of the spectral lines shows that each 

-,--- f.u = 6 .5 1  cm - 1  

45----

---or--- Sv = 1 7 . 1 9  cm - 1  

F i g u re 24.9  Port ion of the 
energy- l evel d i ag ram of sod ium,  
showi ng  the doub let sp l itti ng .  
The  2p level spl itt i ng  is  
exaggerated ( not to sca le ) . 
Wavelengths a re i n  n m .  
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of them is double ; the separation between the two lines of the doublet increases markedly 
in the series Li, Na, K, Rb, Cs. This separation is a consequence of the fact that, in the 
multielectron system, the energy depends not only on the values of n and L but also on the 
value of J. Thus the 2S1 /2 terms are not split, since there is only one possible value of J, 
namely, J = t. On the other hand, the 2 P terms have J = ! and J = ! so that the energy of 
2 P 3 /2 is slightly higher than that of 2 P 1 /2 ' The upper terms, 2 D, 2 F, . . .  , are also split, but 
the magnitude of the separation is too small to be noticeable. Effectively only the 2 P level 
is split and any transition to or from this level results in two closely spaced lines. The 
classical example is the yellow sodium doublet lines (sodium D lines) at 589.592 nm and 
588.995 nm, which are emitted in the transition from 32 P -> 32 S (Fig. 24.9). 

24. 1 0. 2  Two-E l ectron Systems ; t h e  A l ka l i ne E a rths  

The energy levels for the calcium atom are shown in Fig. 24. 10. These levels comprise 
two groups, singlets and triplets. Since the selection rule, I1S = 0, permits no change in 
multiplicity, transitions between a singlet term and a triplet term are forbidden. Con
sequently, the emission spectrum exhibits two independent series of lines. One series 
results from transitions between singlet terms and the other from transitions between 
triplet terms. 

The absorption spectrum of calcium consists only of the series resulting from the 
transitions from the 41S state to the n 1 P state. Because of the large energy differences, these 
lines appear in the short wavelength end of the visible spectrum and in the ultraviolet. 
Thus A = 422.673 nm, 272. 1 65 nm, 239.858 nm, . . . .  The series limit, Alim = 1 52.995 nm, 
corresponds to the energy that must be supplied to ionize the calcium atom, 78 1 .898 kJ Imol. 

The emission spectrum exhibits not only the principal series but also other singlet 
series such as : 

higher 1p to 5 1S ;  
higher lS to 41p, 
higher 1p to 3 1D , 

Each line in these series is a single line. 

higher 1D to 41p ; 

higher 1F to 3 1D. 

In the triplet spectrum, the series lie in the longer wavelength region, ranging from 
the visible to the infrared. Each line in the triplet spectrum consists of a number of closely 
spaced lines ; the separation between these lines increases rapidly as the atomic number 
increases in the two-electron species : He, Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg. Consider the 
first line in the sharp series in calcium, corresponding to the transition from 5 3S to 43P. 
Since the 53 S level is a single level while the 43 P level is split into three levels, the line 
consists of three closely spaced lines ; A = 610.272 nm, 612.222 nm, and 6 16.218 nm. The 
transition from 43 D to 43 P yields a group of six closely spaced lines. In contrast to the 
alkali metal case in which the 2 D levels were not split, in calcium the 3D levels are split 
into three levels. If each level of 3 D could combine with each level of 3 P, nine lines would 
be expected. In fact, the selection rule, I1J = 0, ± 1, rules out three of these possibilities 
so that only six lines appear. This situation is illustrated in Fig. 24. 1 1 .  The transitions 
J = 2 -> 0, 3 -> 1, and 3 -> 0 are forbidden. 

In systems having three, four, or more electrons there are several systems of terms. 
For example, in the three-electron system there are doublets and quartets ; no transitions 
between the doublet and quartet levels are allowed. In the four-electron system there are 
three systems : singlets, triplets, and quintets ; transitions between them are forbidden. 



n 

7 

6 

5 

Singlets Triplets v 

ISo 
IPl 

IDI 
IFI 

351 
3PO 3PI 3P2 

3DI 
3D2 

3D3 
3F em- I 

4 ,3 , 2 

7 -
7 - 6_ 
6 - 5- 5 -

7 -

5 - 5 - 5 - 4 _ 

6 -

4 ----- 4 - - --

5 - f 12 ,500 
;::: "" 

'0' 
;;;: 

5 

25 ,000 

37, 5000 

50,000 

F i g u re 24. 1 0 E nergy level d i ag ram for ca lc i um .  D ashed l evels i nd icate that sp l i tt ing is 
shown out of sca le .  Wave lengths a re i n  n m .  N ot a l l  the a l l owed trans it ions a re i nd icated . 

3p 

J 

------,-- 3 
----r---->,...----I- 2 
--,-,.....,-+-1----11-- 1 

_+-�-+-L-�� 2 
-+-"----'---- 1 F i g u re 24.1 1 Al lowed 

_.:L.. _______ 0 trans it ions 3 D +-> 3 P .  



The M ag net ic  Propert ies of Atoms 599 

24. 1 1 T H E M AG N ET I C  P R O P E RTI ES 
OF ATO M S  

If the electron spins on its axis, the fact that it is electrically charged implies that there is a 
current flow around the axis . This flow of current gives the electron a magnetic moment, 
just as the flow of current in a coil of wire gives the coil a magnetic moment. The magnetic 
moment is perpendicular to the plane of the current flow and therefore parallel to the 
angular momentum vector, but is directed oppositely because of the negative charge on 
the electron. 

Similarly, if the angular momentum of an electron in an atom has a nonzero value, 
there is a flow of current about an axis and the system possesses a magnetic moment. The 
magnetic moment of the atom is the resultant of the moments due to the spin angular 
momentum and the orbital angular momentum of all the electrons in the atom. 

If a current I flows in a loop of wire, the loop has a magnetic moment given by 

f..l = IA 
in which A is the area of the loop. If r is the radius of a circular loop, we have 

f..l = Inr2 . 

(24.34) 

(24.35) 
Now if we imagine an electron moving with a velocity v in an orbit of radius r, the number 
of times the electron passes any point in the orbit in one second is the velocity divided by 
the circumference of the orbit, v/2nr. If we multiply this by the charge on the electron, - e, 
we obtain the charge passing that point in one second, which is the current, I. 

(24.36) 

The angular momentum, Mz = mvr, if the orbit lies in the xy-plane. Since v = Mz/mr, 

1 = - eMz 
2nmr2 . 

Using this value of I in Eq. (24.35), we obtain 

( eMz ) 2 eMz 
f..lz = - 2nmr2 nr = - 2m . 

This yields for the magnetogyric ratio, y :  

y = J!:=... = - � = - 8.794024 X 101 0 C kg- l . Mz 2m 

(24.37) 

(24.38) 

(24.39) 

This formula from classical physics is correct for the electron only for the orbital angular 
momentum. The negative sign simply means that the magnetic moment is opposite in 
direction to the angular momentum vector. For spin, it turns out that the value of y is 
about twice as large (2.00232 times to be exact) as that in Eq. 24.39. Consequently, the 
magnetic moment of the electron is usually expressed as 

f..lz = - g(2�)Mz , (24.40) 

in which g is a pure number, the Lande g factor, which has a rational value that depends , 
on the values of J, L, and S. 
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Introducing the value of Mz = MJ h, the value of f.1z becomes 

f.1z = -g(;:)MJ, (24.41)  

in which MJ = 0,  ± 1 ,  . . .  , ± J, where J i s  the total angular momentum quantum number. 
A natural unit of magnetic moment, the Bohr magneton, f.1B , is defined by 

Then 

f.1B = � = 9.274078 X 10 - 24 m2 A. 2m (24.42) 

(24.43) 

If Mtotal is the total angular momentum, the magnetic moment, f.1, of an atom is given 
by 

f.1 = - g(2:)Mtotal ' (24.44) 

Since Mtotal = J J(J + 1 ) h, we obtain 

f.1 = - g(;�)J J(J + 1) = - gJ J(J + l )f.1B · (24.45) 

If we consider a single electron that has no orbital angular momentum, then g = 2 and 
J = S = !. It follows from Eq. (24.45) that f.1spin = -)3 f.1B ' Since J = !, then MJ = ± l  
Using Eq. (24.43) we obtain for the z component of the magnetic moment, (f.1spin)z = =+= f.1B ' 
Thus the allowed values of the component of the spin magnetic moment along any 
specified axis are ± 1 Bohr magneton. 

* 24. 1 1 . 1 The Zee m a n  Effect 

If we examine the spectrum of an atomic system, we find that the imposition of a strong 
magnetic field splits the line into a number of components ; this is the Zeeman effect. 
Suppose we apply a uniform magnetic field with magnitude B to an atomic system. The 
field direction is chosen along the z-axis. The energy of the atom in the field will depend 
on the component of the magnetic moment in the field direction. The application of the 
field lowers the energy by an amount f.1zB. If the original energy of the atom is Eo , and 
the energy in the presence of the field is E, we have 

(24.46) 

The negative sign indicates that when the magnetic moment and the magnetic field are 
in the same direction, the energy is lowered. Note that the tesla (T) is the SI unit for B, 
the magnetic field (the magnetic flux density) ; 1T = 1 kg/s2 A (1 tesla = 104 gauss). 
Then f.1 has the unit : m2 A = J S2 A/kg = J/T. 

Inserting the value of f.1z from Eq. (24.43) into Eq. (24.46), we obtain 

(24.47) 

Since there are 2J + 1 allowed values of M J , the original energy level is split into 2J + 1 
new levels having different energies. Since every energy level except a ISO level is split 
by the field, it follows that the spectral lines are split into several components. The magni
tude of the separation of the lines is proportional to the magnetic field. 
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Ultimately, we will be interested in the differences in energy between two states and the 
frequencies of the lines emitted. Therefore it is convenient to introduce the Larmor 
frequency, VL ' defined by 

(24.48) 

By replacing J1.B B by hVL , Eq. (24.47) becomes 

E = Eo + gMJhvL ' (24.49) 
We find that the displacements of the lines in the Zeeman effect are small, rational multiples 
of the Larmor frequency. 

To use Eq. (24.49) we need the value of g. It can be shown that 

_ 1 J(J + 1) + S(S + 1) - L(L + 1 ) g - + 2J(J + 1) . (24. 50) 

The simplest application of Eq. (24.50) is to a singlet system. Since S = 0, then J = L 
and g = 1 for all possible transitions within the singlet system. Equation (24.49) becomes 

E = Eo + MJhvL ' (24. 51 ) 
Then for the lSo term, the only possible value of MJ i s  MJ = 0 ;  the term is  not split. 
Equation (24.5 1 )  yields 

EeSo) = EoctSo). 
But for the 1Pi term, the possible MJ values are MJ = 0, ± 1 , so that Eq. (24. 5 1) yields 
three energy values : 

Ei1P1) = EOep1) + hVL ; 
E2ep1) = EOep1) ;  
E1ep1) = EOep1) - hVL ' 

For the 1D2 term, the possible MJ values are MJ = 0, ± 1 , ± 2, so that 1D2 is split into 
five levels : 

Ese D2) = Eoct D2) + 2hvL ; 
E4eD2) = EoeD2) + 1hvL ; 
E3eD2) = EoeD2) ;  
Ez(lD2) = EoeD2) - 1hvL ; 
E1eD2) = EoeD2) - 2hvL ' 

The energy level scheme is shown in Fig. 24. 12. 
Since the separation between the levels is the same in the 1 P 1 term as in the 1 D2 

term, and since the selection rule requires I1MJ = 0, ± 1, it follows that each line in the 
spectrum is split into three lines. The middle line is at the original frequency, while the 
other two lines are spaced equally on either side of the original frequency. This is the 
normal Zeeman effect. 

If Vo is the frequency emitted in the transition from one state to another in the ahsence 
of the magnetic field, then the three lines in the presence of the field have the frequencies 

V2 = Vo , 
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For systems other than singlets, g is not equal to 1 .  In this case, a more complicated 
splitting occurs : the anomalous Zeeman effect. For example, consider the doublet system 
in hydrogen and the alkali metals. The lowest term is 2 S 1 /2 ' For this term, L = 0, J = 
S = ! ;  therefore M] = !, -! and g = 2. The product gM] = 2(±!) = ± 1 .  Using this 
value in Eq. (24.49) we obtain 

ECZS1/Z) = EoCZSl /z) ± hvL • 
This term is split into two levels. 

The 2 P term has L = 1, S = !, J = !, 1. For the term Z P l/Z , using Eq. (24. 50), we 
obtain g = 1; since M] = ±!, the product gM] = 1(±!) = ±l Then 

ECZP1/Z) = EOCZP1/Z) ± thvL •  

Since the splitting is different in the two terms, this member of the doublet CZ P 112 -+ Z S l iZ) is split into four lines. If v 1 is the frequency of the line in the absence of the field, we obtain 

and 

for the frequencies of the four lines. Note that the original frequency does not appear. 
For the term Z P 3/Z , we have L = 1 ,  S = 1, J = t from this, we find that g = 4 -

The possible values of M] are M] = !, !, -!, -l Thus, the term 2P3/2 is split into four 
levels. The corresponding values of gM] are 2, 1 ,  -1 ,  - 2. Because of  the selection rule, 
11M] = 0, ± 1, transitions may occur only between the lower zS1 /2 level and the lowest 
three Z P 3/Z levels, yielding three lines ; and between the upper Z S l /Z level and the highest 
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2 P 3/2 levels, yielding another three lines. This member of the doublet e p 3/2 -> 2 Sl/2) is 
split into six lines. If V2 is the frequency in the absence of the field, then in the presence 
of the magnetic field the frequencies are 

This situation is illustrated in Fig. 24. 1 3 .  

24. 1 1 . 2 M ag n et i c  R esona nce S pectroscopy 

To conclude the discussion of magnetic properties of atoms, we consider the magnetic 
resonance spectroscopies, electron spin resonance (ESR, EPR), and nuclear magnetic 
resonance (NMR), which depend on the detection of the energy differences between the 
quantum levels of a magnetic dipole in a magnetic field. As we pointed out in the discussion 
of the Zeeman effect in Section 24. 1 1 . 1 ,  the energy of a magnetic dipole in a magnetic field 
along the z-axis is given by Eq. (24.46), while f.1z for an electron is given by Eq. (24.43). 

If we deal with nuclear magnetic moments, then, corresponding to Eq. (24.43), we 
have 

and (24. 52) 

where gN is the nuclear g factor, f.1N is the nuclear magneton, 1 is the quantum number for 
the nuclear spin angular momentum, and M[ = 1, 1 - 1 ,  1 - 2, . . .  , - 1  is the set of 
possible quantum numbers for the z component of the nuclear spin angular momentum. 
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For the proton with mass mp ' corresponding to Eq. (24.42), we have 

eh 
IlN = -2 = 5.050824 x 10- 2 7 J/T, mp 

while the empirical factor gN = 5 .5856912. 
For a proton in a magnetic field, the energy is 

E = Eo + gNIlNM[B 

(24.53) 

(24.54) 
Since M[ = +t or -t, we find for the difference in energy between these two spin states, 

L1E = gNIlNB(t) - gNIlNB( -t) = gNIlNB (24. 55) 
The frequency emitted or absorbed in this transition is the Larmor frequency, VL ' 

M gNIlNB gNeB VL = h = -h- = 4nmp . (24.56) 

The energy difference between the states, and consequently VL , increases linearly with the 
magnetic field. Suppose that the field, B = 1 .00 tesla, then for the proton 

5 .586(1 .602 x 10- 1 9 C)(1 .00 T) 7 VL = 4(3. 14 16)(1 .673 x 10 2 7 kg) 
= 4.257 x 10 Hz = 42.6 MHz. 

Thus protons in a field of one tesla should absorb energy at 42.6 MHz. A popular design 
frequency for a nuclear magnetic resonance spectrometer is 60 MHz ; for a proton to 
absorb at this frequency requires that B = 1 .41 tesla. 

The corresponding value of VL for an electron, since g = 2, is 

The ratio, 

2(1 .602 X 10- 1 9 C)(1 .00 T) 
VL = 4(3 . 1416)(9 . 1095 x 10 3 1  kg) 

= 28.0 GHz. 

(VL)electron 
� 658, (VL)proton 

shows that the energy change for the electron is 658 times larger than for the proton. 

24. 1 1 .3 N uc lear  M a g n et i c  R esona n ce 

We begin by describing a somewhat idealized nuclear magnetic resonance experiment. 
The device is shown in Fig. 24. 14. The sample is placed between the poles of a very strong 
electromagnet. A coil is wrapped around the sample tube and connected to a radio
frequency oscillator that is capable of varying the frequency over a short range. This 
oscillator sends a signal to the sample ; when the frequency of the oscillator reaches the 
Larmor frequency, the system can absorb the radiation sent by the oscillator. This 
absorption changes the impedance of the radio-frequency circuit ; the change in impedance 
is measured by a bridge circuit, amplified and displayed on a chart recorder. The time axis 
of the recorder reflects the frequency range scanned. Mter passing through the resonant 
frequency, the impedance returns to its normal value ; the trace on the chart looks some
what like that in Fig. 24. 1 5. 

In practice it is difficult to design a variable frequency oscillator that has the required 
accuracy. Since the resonant frequency depends on the magnetic field, we vary the resonant 
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Fig u re 24. 1 4 N uc lear  magnet ic resonance apparatus. 

B -
F i g u re 24. 1 5 Typica l  p roton resona nce peak. 

frequency VL by changing B (instead of varying the frequency of the incident radiation). 
The radio-frequency oscillator is now locked to a design frequency ; 60 MHz is one of the 
most common, but for greater sensitivity and higher resolution, 100 MHz and higher 
frequencies are also used. The magnet is designed to provide the high field required. Then 
small coils that can vary the field over a small range are added. When the magnetic field 
is such that the Larmor frequency matches the design frequency, energy is absorbed and 
the change in circuit characteristics is displayed on a chart record. 

We will not discuss here the details of the instrument. Both the electronic circuitry 
and the magnet require a very high-level technology to produce. For example, the magnetic 
field must be uniform over the sample to within 1 part in 108 ; that was not easily achieved 
in the past, but is now routine. 

The frequency at which the proton absorbs energy is not a fixed property of the proton, 
but depends on the magnetic environment of the proton. If the magnetic environment is 
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altered, the value of the field at which the proton absorbs energy will also be altered. A 
typical example of this is the adsorption in ethyl alcohol, CH3CHzOH, which shows three 
groups of closely spaced lines (Fig. 24. 1 6). The magnetic environment of the CH3 protons 
is different from that of the CHz protons, which is different from that of the OH proton. 
Thus the resonances appear at slightly different values of the field. The total areas under 
the peaks are in the ratio, 3 :  2 :  1 .  

The chemical shift i s  a measure of  this difference in  magnetic environment. We 
define the chemical shift, b, as 

B - B 
b(ppm) = _r 

__ X 106 . 
Br 

(24.57) 

This definition is a relative one ; b is measured in parts per million (ppm) displacement 
from the resonant field, By , of some reference substance. A common reference substance is 
tetramethyl silane (TMS), Si(CH3)4 '  Because the protons are all equivalent and there are 
twelve of them, TMS produces a single, sharp, intense resonance. Further, because the 
protons in TMS resonate at a higher field than the protons in almost any other compound, 
most chemical shifts are positive (that is, the resonance is at lower fields than for TMS). 
Since the absolute value of the field is very difficult to measure accurately, whereas the 
difference is readily measurable, it is convenient to express b as a ratio of /).B/Br (multiplied 
by 106 to a void handling very small numbers). Whether one uses By or B in the denominator 
is of no consequence since /).B is so small ; for protons the range of B is about 25 pT, 
which is equivalent to a frequency range of about 1000 Hz. 

In the case of CH3CHzOH, the values of b shown in Fig. 24. 16 are : 

methyl protons 

methylene protons 

hydroxyl proton 

b = 1 .22 ; 
b = 3 .70 ; 
b = 4.80. 

In another example, the spectrum of CH3CHO is shown in Fig. 24. 17. In this case, 
for the methyl protons, b = 2.20, while for the -CHO proton, b = 9.80. The areas under 
the peaks are in the ratio 3 :  1 .  

I ·  t5 = 7.60 . 1 .  t5 = 2.20 . 1  

eRO 

B �  TMS 

F i g u re 24. 1 7  Low-reso l ut ion N M R  spectru m of aceta ldehyde .  
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In high resolution we find that the peaks are often split multiplets (Fig. 24. 1 8). For 
example, in the acetaldehyde case, the possible spin quantum numbers of the three 
methyl protons are �, !, -!, - � ; these spin states have statistical weights of 1, 3, 3, 1 .  
These four spin states exert four different effects on  the remaining proton in the -CHO 
group. Consequently, in high resolution, four lines appear at the low-field end of the 
spectrum. The possible spin orientation of the aldehydic proton is +! and -t. This 
proton exerts two different effects on the methyl protons, resulting in the split of the 
methyl proton resonance into two lines. Even after splitting into a number of lines, the 
total area ratio remains at 1 :  3 between the aldehydic proton peaks and the methyl 
proton peaks. 

The NMR technique is routinely used to aid in establishing the structure and properties 
of various compounds. Because of relative ease in interpretation, it yields a wealth of 
information for a brief time investment. 

24. 1 2 X- R AY S P E CT R O S C O PY 

In the ordinary x-ray tube, Fig. 24. 1 9, a beam of electrons strikes a metal anode, such as 
copper or tungsten. As the electron is stopped by collision with the target, some or all of the 
energy of the electron may be emitted as radiation. If the electron loses all its energy in a 
single collision, the frequency of light emitted is given by 

(24.58) 

where Ekin is the kinetic energy of the electron. The kinetic energy of the electron is deter
mined by the electric potential difference it passed through in traveling from the cathode to 
the anode : 

Ekin = eV, (24.59) 

in which e is the electronic charge and V is the potential difference applied across the tube. 

. X-rays 
BeryllIum window 

Vacuum 

Metal focusing cup 

Glass 

transformer 

F i g u re 24. 1 9 Cross sect ion of sealed - off f i l ament x- ray tube 
(schematic) . ( From B .  D.  C u l l i ty, Elements of X-ray Diffraction. 
Read ing ,  M ass. : Addison -Wesley, 1 956 . )  

/// 
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B .  D .  C u l l ity, Elements of X-ray Diffraction. Read ing ,  M ass . : 
Add ison-Wesley, 1 956 . )  

Thus we have, hVm = e V, or 

e 
Vm = h V, (24.60) 

for the maximum frequency that will be emitted. The entire spectrum of lower frequencies 
would also appear, being emitted by electrons that lose only part of their energy in collision. 
This continuous x-ray spectrum is shown in Fig. 24.20, as a function of wavelength. Note 
that the minimum wavelength, Amin , corresponds to the maximum frequency Vm • 

A . = � = � = 1239.8 X 103 pm V 
mIn Vm eV V 

(24.61 ) 

Superimposed on the continuous spectrum is  a line spectrum characteristic of the tar
get element, if the applied potential is high enough (Fig. 24.21) . Assume that we bombard 
a target with electrons that have sufficient energy to excite this line spectrum of the target. 
In collision with a target atom, the incident electron has sufficient energy to knock out an 
electron from a shell deep in the atom ; for example, the Is shell (K shell). We now have an 
ion in a very highly excited state, with the lowest level empty and many higher levels 
occupied. As the electrons rearrange within the atom, various x-ray lines are emitted. 
Suppose that an electron from the L-shell (n = 2) drops into the K shell ; the frequency 
emitted is called the Ka line. Similarly, if an electron from the M shell (n = 3) drops into the 
K shell the Kp line is emitted. Since there is more than one level in both the L and M shells, 
there will be more than one Ka line and more than one Kp . 
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F i g u re 24.21  Spectrum of Mo at 35 kV (schematic) .  L ine  
widths not to sca le .  ( From B .  D .  C u l l ity, Elements of X-ray 
Diffraction. Read ing ,  M ass".: Add ison -Wesley, 1 956 . )  

The L lines originate as electrons from the M, N, . . .  shells drop into the L-shell. M lines 
appear as electrons from the N, 0, . . .  levels drop into the M level. In the sense that our 
prime focus is on the highest energy state, the K-state, the system of levels is inverted 
compared to the system in optical spectra where our prime focus was on the ground state. 

Figure 24.22 shows the energy levels that are appropriate to x-ray emission. The 
highest energy level, the K -state, consists of the ion with one K electron missing. If an 
electron from the L level drops to the K level, an x-ray photon is emitted and the ion now 
has a lower energy and has a vacancy in the L level. This state is called an L state of the 
system. The Ka.l and Ka2 lines are emitted, depending on which L level the electron was in. 
The notation is the same as the term notation in optical spectra, and the selection rules are 
the same. Note that the K(J.l ' Ka.2 doublet is fundamentally the same as the doublet sodium 
D line in the optical spectrum. 
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N- states 

The other notable fact is that the x-ray spectrum of one element is very much like that 
of another. The Ka lines, for example, originate in the same transition for all elements ; the 
frequencies are simply shifted ; this is Moseley's law. Moseley made accurate wavelength 
measurements of the K" lines of an entire series of elements. He found that the square root 
of the frequency of a given type of line, Ka. for example, is a linear function of the atomic 
number of the element. Moseley's law can be written as 

(24.62) 

Moseley's law demonstrated that the atomic number rather than the atomic mass is the 

significant factor in determining this fundamental property, the x-ray line frequencies of 

the elements. 
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Only the outer electrons are involved in the optical spectrum of an atom. It is char
acteristic of the optical spectrum that a system that can emit a particular frequency in the 
transition from state m to state n can also absorb that exact frequency by the reverse 
transition from state n to state m. Such is not the case with x-rays. If the Ka line is emitted 
from an atom, a neighboring atom cannot absorb the Ka line by the reverse transition of 
lifting a K electron to a position in the L shell simply because L level is filled (if Z > 10) . 
There is no vacant L level to which the K electron can move. On the other hand, because 
the energy of the Ka radiation is so large, it can be absorbed by other processes such as by 
knocking out a less strongly bound electron (for example, one in the L or M shell). Thus 
the mass absorption coefficient as a function of wavelength varies as shown in Fig. 24.23. 

At the shortest wavelengths the photon is sufficiently energetic to eject the K electron. 
As the wavelength approaches the K absorption edge, the absorption coefficient increases 
since the probability of ejection of an electron is greater the more closely the incident 
photon's energy matches the energy required to eject the electron. At wavelengths longer 
than 14.088 pm, the photon's energy is insufficient to eject the K electron and the absorp
tion coefficient drops sharply. In the sense of the photoelectric effect, the incident photon 
has dropped below the threshold frequency. Between 14.088 pm and 78. 196 pm the 
absorption is due principally to ejection of electrons from the L levels, leaving the ions in 
either the L" Ln , or LIII state. As the wavelength approaches the LI absorption edge, the 
absorption coefficient increases because of the closer match between the photon energy and 
the energy required for ejection of the L electrons. As soon as the wavelength exceeds 
78. 196 pm, the absorption coefficient drops sharply ; the photon no longer has sufficient 
energy to eject the electron to form an L, state. Even though it has dropped, the absorption 
stays fairly large since the photon still has energy sufficient to form both LII and Lm states. 
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F i g u re 24.23 Absorptio n  coeff ic ients of lead, showing K and L 
absorpt ion edges. ( From B .  D .  C u l lity, Elements of X-ray Diffraction. 
Read i ng, M ass. :. Addison -Wesley, 1 956. )  
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After passing 8 1 .538 pm, a larger drop occurs because now only the Lm state and the 
five M states contribute to the absorption. At 95.073 pm another large drop occurs ; 
beyond this wavelength only the M states can be formed. The absorption edges for the five 
M states lie between 321 .7 and 495.5 pm, off the scale of Fig. 24.23. 

The relative simplicity of x-ray spectra (compared to the complexity of optical spectra) 
makes x-ray spectroscopy an extremely important analytical and investigative tool. Three 
methods will be described : x-ray fluorescence spectroscopy, electron probe microanalysis, 
and x-ray photoelectron spectroscopy. 

24. 1 3  X- RAY F LU O R ES C E N C E  
S P E CT R O S C O PY 

In x-ray fluorescence spectroscopy, we bathe the sample in an intense, continuous and 
characteristic spectrum from an x-ray tube with a heavy metal target, such as tungsten. The 
tube is operated at the highest practicable potential, as high as 100 kV, to produce as wide 
a range of wavelengths as possible. If this radiation falls on an atom, the x-ray wavelengths 
equal to and below the K absorption edge can remove a K electron from the atom. After 
the K electron is removed, a cascade occurs within the atom. Suppose at first a K line is 
emitted as fluorescent radiation. This leaves a vacancy in an L level ; an electron from a 
third level drops to fill this second vacancy, emitting another characteristic line ; another 
electron drops to fill the third vacancy, and so Qn. Similarly, the L- and M-shell electrons 
can be removed, and the L lines and M lines can be emitted. The emitted radiation is passed 
into an analyzer capable of separating the fluorescent radiation into its component wave
lengths. The analyzer is usually a crystal such as LiF, which serves as a diffraction grating. 
The detector then scans the various wavelengths and measures the intensity of each. The 
x-ray spectrometer is shown schematically in Fig. 24.24. 

The radiation detected at the angle 2e depends on the wavelength through the Bragg 
condition, nil = 2d sin e, where n is an integer. (See Section 27. 1 1 .) The distance d is an 
interplanar distance in the crystal ; it can be changed if we use a different crystal or a 
different set of planes in the same crystal. As the crystal is moved through the angle e, the 

F i g u re 24.25 Spectrometer for  x- ray f luorescence. 
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detector is synchronized to move through 2e. Thus, as the crystal moves through 90°, the 
wavelength region from 0 to 2d is scanned. 

The elements present can be identified from the wavelengths, and the amounts of each 
element can be determined from the intensities . The method is limited, as are all fluore
scence methods; by the low intensity of the fluorescent radiation ; nonetheless, detection of 
a few parts per million of an element is easily achieved. (For quantitative analysis, com
parison with standard substances of known composition is necessary.) The method has the 
advantage of being very rapid and nondestructive. 

24. 1 4  X- RAY M I C R OA N A LYS I S  WITH 
T H E E LE CT R O N  P R O B E  

In this technique, a finely focused electron beam impinges on the sample (Fig. 24.25). The 
width of the beam is of the order of 1 Jim. The electron beam is energetic enough to excite 
the x-ray spectrum of the various elements in the sample. We analyze the spectrum of 
emitted x-rays and identify the elements, which can also be determined quantitatively. The 
technique is enormously useful, but it has the disadvantage that the sample must be inside 
the vacuum chamber of the electron gun. We mount the sample on an adjustable stage so 
that the position of the spot on the sample can be accurately fixed-and reproduced if 
necessary. By moving the sample and repeating the analysis, we can study any variation 
in composition with location. 

In the scanning type of microprobe, the electron beam can sweep an area perhaps 
100 Jim by 100 .um. The variation in intensity of the image on the screen will depend on the 
variation in concentration of a particular element if (a) the detector is locked to a char
acteristic x-ray line of the element during the sweep, and (b) the intensity of an oscilloscope 
trace synchronized to the sweep of the electron beam is modulated by the input to the 
detector. In effect, we can obtain a picture of the distribution of that element in the area 
being scanned. By repeating the experiment while the detector is locked to the Krx line of a 
second element, we can obtain the distribution of the second element, and so on. Figure 
24.26 on page 616 shows a series of pictures obtained from scanning a mineral sample for 
different elements. The inhomogeneity of the surface is brought strongly to our attention 
by this technique. 

Electron beam 

F i g u re 24.25 Schematic d i agram for the e lectron probe.  
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(a) Photograph of the surface 

(c) Scan for iron 

(b) Scan for sulfur 

(d) Scan for zinc 

(e) Scan for silicon 
F i g u re 24.26 Photograph and e lectron beam sca n n i n g  p ictu res of a su lf ide m i n era l ,  havi ng a spha lerite 
(ZnS)  crysta l in the u pper r ig ht corner, a pyrite ( FeS 2) c rysta l in the lower l eft corner, and a wedge of 
qua rtz ( S i 0 2 ) ru n n i ng d iagona l ly  downward from left to r ight. Scan for su lfur  (b)  shows a h ig her  con 
centrat ion ( h i g he r  d ot dens ity) i n  the lower left and lower concentrat ion i n  u pper r ight. Scans for i ron,  z i nc,  
and  s i l icon (c) ,  (d) ,  and  (e)  show ZnS in the u pper r ight, FeS 2 in the lower l eft, and S i0 2 m a i n ly in the lower 
r ight .  (Cou rtesy M. E .  Taylor and M. C .  Carney, E lectron M ic roscope Centra l Fac i l ity, I nstitute for Phys ica l  
Sc ience and Tech no logy, U n iversity of M a ry land,  Col lege Park . )  
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24. 1 5 X- R AY P H OT O E L E CT R O N  S P E CT R O S C O PY 

In the technique of x-ray photoelectron spectroscopy we use an incident beam of mono
chromatic x-rays to irradiate the sample. The incident photon ejects an electron from the 
atom and imparts a kinetic energy to that electron. The energy required to remove the 
electron, Eb , plus the kinetic energy of the electron, Ek , must be equal to hv, the energy 
supplied by the photon. Thus 

(24.63) 
This is the equation for the photoelectric effect (see Section 19 .9). The frequency of the 
incident photon is known very accurately. (The Mg Kala2 radiation, with E = 1253.6 eV, 
or Al Kala2 with E = 1486.6 eV, is commonly used.) We measure the kinetic energy and, 
from this information, obtain directly the value of Eb , the binding energy of the electron. 
Since the electron ejected may have originated from any energy level in the atom or mole
cule, the measurement yields the binding energies of all the occupied levels in the system 
(if the energy of the incident photon is high enough). This information is characteristic of 
the elements present and permits their identification ; when used in this way, the technique 
is called ESCA, an acronym for electron spectroscopy for chemical analysis. 

Figure 24.27 shows a schematic diagram of the device. Electrons emitted from the 
sample at right angles to the incident x-ray beam are collected and focused on the entrance 
to the kinetic energy analyzer. We can adjust the electrical field between the two concentric 
hemispherical electrodes so that the kinetic energy analyzer will select electrons of a 
particular energy, focus them on the exit slit, and send them into the detector. The output 
of the detector shows the number of electrons emitted as a function of their kinetic energy 
on a convenient recording device. The spectrum obtained displays the energy levels in the 
atom or molecule being studied. 

x - Y recorder ratemeter 

Energy analyzer 

... u .....--____ r<o<".", X-ray 
generator 

F igure 24.27 Schemat ic  d iagram i l l u strat ing  the basic des ign  of an x - ray photoelectron 
spectrometer us ing a retard i ng  lens system and a hemispher ica l  e lectrostat ic ana lyser. 
( From P .  M. A.  S herwood in Spectroscopy, vol .  3 .  B. P. Straughan  and S .  Walker, eds. 
London : Chapman and H a l l ,  Ltd . ,  1 976 . )  
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C(1s) C(1s) N(1s) 

290 300 285 95 400 , , , 
Binding energy/eV 

F i g u re 24. 28 Spectra of C ( 1  s)  core e lectrons in ethyl tr i 
f luoroacetate, acetone, and the N ( 1  s) e lectrons i n  sod i u m  az ide .  
( From W. C.  Pr ice i n  A dvances in Atomic and Molecular Physics, 
vo l .  1 0 . N ew York : Academic P ress, 1 974 . )  

, 

410 , 

The binding energies of the I s  electron in the elements of the first row are : 

Element Li Be B C N 0 F Ne Na 

Eb/eV 55 1 1 1  188  284 399 532 686 867 1072 

The difference in the values between two neighboring elements ranges from 56 to 
205 e V. It follows that we can easily distinguish one element from another by this technique. 
The binding energies depend slightly on the chemical environment. However, this variation 
is usually less than 10 eV and consequently does not hinder identification of the elements. 

Figure 24.28 shows the chemical shift for the carbon atom Is electrons in ethyl 
trifiuoracetate. The area under each peak is the same ; the shift indicates that each carbon 
atom has a different chemical environment, not surprising in view of the structure of the 
molecule. 

In Fig. 24.28 we also see a portion of the spectrum of NaN 3 ' The binding energy of 
about 400 e V identifies the peaks as belonging to the nitrogen atoms. The appearance of 
two peaks indicates that there are two kinds of nitrogen atoms in the azide ion, 
-N=N+ =N- ,  with slightly different binding energies. The areas under the peaks are in 
the ratio 2 :  1 indicating that there are two atoms with the Is electron having a lower 
binding energy and one atom with a more tightly bound Is electron. In looking at the 
Lewis structure we would agree that the electrons on the terminal nitrogen atoms should 
be less strongly bound because of the negative charge. Generally speaking, the more 
positive the formal charge on the atom, the more strongly bound is the electron. This is 
obvious also in the spectrum of CF 3COOCH2CH3 ' Because the peak areas are propor
tional to the number of atoms in a given environment, the technique is very useful in 
analysis and in elucidating structure. 

24. 1 6 U LT R AVI O LET P H OTO E L E CT R O N  
S P E CT R OS C O PY 

The technique of ultraviolet photoelectron spectroscopy involves the same principle and 
the same type of measurement as x-ray photoelectron spectroscopy, but the incident 
radiation is in the ultraviolet region rather than the x-ray region. The exciting lines are 
often the helium 1 PI -+ ISO line at 58 .433 nm ; or the helium ion, He+ , transition 2p -+ 2S1 /2 
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F i g u re 24.29 The 2p 3/ 2 and 2P' / 2 l i n es of the rare gases prod uced by N e  I, H e  I and  H e  I I  resonance 
rad iat ion .  ( F rom J. W. Rabe la is, T. P .  Deb ies, J. L. Berkosky, J. J .  H u a ng,  and F .  O .  E l l ison .  J. Chem. Phys. 
61 : 5 1 6, 1 974. ) 

at 30.378 nm. The spectrum we obtain is similar to the spectrum from x-ray photoelectron 
spectroscopy but shows great detail in the lower energy ranges, that is, in the energy states 
of the valence electrons. 

Figure 24.29 shows the spectrum of simple atoms such as argon, krypton, and xenon. 
We use these relatively sharp lines to calibrate the instrument. They correspond to the 
energy differences between the 1 So state of the atom and the 2 P 3/2 and 2 P 1/2 states of the 
ion. 
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F i g u re 24.30 The H e  I photoelectron spectrum of 
water. ( F rom J. W. Rabe la is. Principles of Ultraviolet 
Photoelectron Spectroscopy. New York : Wi ley. 1 977 ) . 

Figure 24.30 shows the photoelectron spectrum of water. Note that there are three 
prominent bands, the energies of which are the energies needed to excite water in its 
ground state to H20 + in its three lowest states ; these molecular states are labeled 2 B1 , 2 A t .  
and 2 B2 , t o  correspond to  the symmetry species of the molecular wave function. (See 
Section 23. l 6. 1 .) The fine structure is due to the large number of vibrational levels in 
each state ; consequently, there are a large number of states with only slightly different 
energies. 

Q U ESTi O N S  

24.1 Estimate the temperature required for noticeable (say 1 0  %) probability of light absorption by 
the 2s state in a collection of hydrogen atoms. 

24.2 How does the Pauli principle " couple " electron spin angular momenta ? 
24.3 Repelling electrons tend to occupy different orbitals (if possible) to increase their average separa

tion. Illustrate this for the carbon 2p electrons. Suggest how Coulomb repulsion between electrons 
" couples " their orbital angular momenta. 

24.4 How do Hund's rules apply to the 2p electrons in the carbon atom? 
24.5 What are the allowed transitions from the ground states of (a) a beryllium atom and (b) a boron 

atom? 
24.6 Sketch the allowed orientations of the electron orbital angular momentum vector and magnetic 

moment vector for hydrogen atom 2p states in a magnetic field (neglect spin). Identify the high 
and low energy orientations. 
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24.7 Draw an energy level diagram and indicate energy spacings for the Is and 2p levels in the hydrogen 
atom in a magnetic field, including spin. 

24.8 Why can different protons in a molecule have different magnetic environments ? (Think of 
interacting magnets.) 

24.9 Why should the x-ray line frequencies of the elements correlate with the atomic number rather 
than the atomic mass ? 

P R O B LE M S  

24.1  At 440 nm a glass filter, 2 mm thick, has a transmittance of 0 .810 . 
a) What percent of the incident light of this wavelength will be transmitted through an 8 rom 

thickness of the filter ? 
b) What is the absorption coefficient ? 
c) What is the absorbance of the 2 rom filter ? 

24.2 At 540 nm, the molar absorption coefficient of Mn04' ion is 202.5 m2/mol. If 20.000 g of an 
alloy are dissolved, the manganese in the solution is oxidized to MnO 4' , and the resulting 
solution is diluted in a volumetric flask to 500.0 mL, the transmittance measured at 540 nm 
is 0.325 in a 1 .00 cm cell. What is the percent manganese in the sample ? 

24.3 Suppose 0 . 100 g of a dye having a molar mass of 425 g/mol is dissolved in 100 mL of alcohol. 
If 1 .00 mL of the resulting solution is diluted to 250.0 mL, the transmittance measured in a 
1 .00 cm cell is 0.550, calculate the molar absorption coefficient of the dye at the wavelength used. 

24.4 A dye has a molar absorption coefficient of 2.44 x 104 L mol- 1 cm - 1 . The dye is a weak mono
protic acid, and it can be shown that the absorption is due entirely to the anion. The trans
mittance at various values of pH is : 

pH 3 .01 3 .64 4 . 12 5.23 5.79 6 . 17  

T 0.976 0.912  0 .812 0.61 3  0.586 0.580 

Calculate the pK of the dye. 
24.5 If the molar absorption coefficient of a solution is 475 m2/mol, how thick a layer must be used 

to reduce the intensity of the transmitted beam to 20 % of its initial value ? The concentration is 
0. 126 moljdm3. 

24.6 A bottle of KMn04 solution is 1 5  cm in diameter. What must the concentration of the salt be if 
75 % of the light at 540 nm is to pass through the bottle ? The !polar absorption coefficient 
of Mn04' is 202. 5 m2/mol at 540 nm. 

24.7 The transmittance of the palladium complex of thio-Michler's ketone, [(CH3)2NC6H4]2CS, 
at 520 nm is 0.380 at c = 2.0 X 10- 6 moljL and 0 .617 at 1 .0 x 10- 6 moljL in a 1 .00 cm cell. 
Calculate the molar absorption coefficient. 

24.8 For each of the electron configurations, S2, sp, sd, pd, d2 , find the possible values of L, S, and J, 
and write the appropriate term symbols a) if the electrons have different principal quantum 
numbers ; b) if the electrons have the same principal quantum number. 

24.9 Which of the transitions are allowed in an atom? 
a) 3p _ 1D e) 2p _ 2G h) 4p _ 2D 
b) 3P _ 3S f) 3S _ 1S i) 2p _ 2p 
c) 1 P _ 1 D g) 3 S _ 1 P j) 3 P _ 3D 
d) 2P _ 1S 
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24.10 Consider an atom with two electrons in the configuration 2pz . What are the possible values 
of the z component of the magnetic moment of the atom corresponding to each of the terms 
developed in Section 24.9 ? 

24.11  Repeat Problem 24. 10, but with two nonequivalent p electrons. 
24.12 How many lines appear in the Zeeman effect for the transitions below, and what are the fre

quencies in terms of Vo and the Larmor frequency? (The selection rules are : I1J = 0, ± 1 ;  
AMJ = 0, ± 1 ; except that when I1J = 0, the combination of MJ = 0 with M� = 0 is not 
permitted.) 
a) 3S 1 +-> 3pz ; 3S1 +-> 3PI ; 
b) 3PZ +-> 3D3 ; 3PZ +-> 3Dz ; 
c) zP3/z +-> zDs/z ; zP3/z +-> zD3/Z ' 

3S1 +-> 3PO '  
3pz +-> 3DI : 

24.13 a) In a magnetic field of 1 tesla, what are the resonant frequencies for the nuclei : 

Nucleus l i B 

2.6880 

The selection rule is I1MJ = ± I .  
3 2: 

0.70216 
I 
2: 

1 9F 

2.6273 
I 
2: 

3 1p 

1 . 1 305 
� Z 

b) At what value of the magnetic field will the nuclei in (a) resonate in a 60 MHz instrument ? 
In a 100 MHz instrument ? 

24.14 One instrument uses a permanent magnet with B = 0 . 1750 tesla. What is the proton resonance 
frequency in this instrument ? 

24.15 Construct the nuclear spin functions for the system of 3 protons (for example, a CH3 group) 
and show that the statistical weights of the four states, �, t, - t, - �  are 1 , 3, 3, 1, respectively. 
Note that if CI. and {J symbolize MJ = +t and - t, respectively, the spin functions for the three 
protons are products such as CI.( I)CI.(2)CI.(3), CI.(1 ){J(2)CI.(3), and so on. 

24.16 A 30 kV electron strikes a target. What is the shortest wavelength x-ray that can be emitted ? 
24.17 The wavelengths of the K., line for several elements are given below. Plot JV versus Z. Deter

mine the slope and the intercept on the horizontal axis of the straight line (Moseley's law). 

Element S CI K Ca Sc 

A/pm 537.21 472.77 374. 1 2  335 .85 303 . 1 1 

Element Ti V Cr Mn Fe 

A/pm 274.84 250.34 228 .96 210. 17 193 .60 

24.18 The absorption of x-rays is governed by the expression, 1/10 = e -�X  where 10 is the intensity 
incident on a slab of thickness x, I is the transmitted intensity, and fl is the absorption coefficient. 
The mass absorption coefficient is defined by fl/P where P is the density. Compare the trans
mittances of 1 .0 cm slabs of each of the following elements. The mass absorption coefficient 
is for radiation with A = 20 pm. 

Element 

(fl/ P )/( cmz /g) 

p/(g/cm3) 

C 

0 . 175 

2.25 

Mg 

0.250 

1 . 74 

Fe 

1 . 10 

7.86 

Cu 

1 .55  

8.92 

Pt 

4.25 

21 .45 

Pb 

4.90 

1 1 . 3 
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24.19  Using data from Problem 24. 18 ,  what thicknesses of Pb, Fe, and C would be required to reduce 
the intensity of 20 pm radiation to below 1 % of the incident intensity ? 

24.20 The K., line of tungsten is at 208.99 pm. What is the minimum voltage that must be applied to 
the x-ray tube if the tungsten target is to emit the K., line ? 

24.21 Oxygen gas was irradiated with Mg K.,•2 x-rays having an energy of 1253.6 eV. A peak appears 
for photoelectrons with kinetic energies of 710.5 eV. What is the binding energy of this electron 
in the O2 molecule ? 

24.22 If water is irradiated with He I radiation having an energy of 21 .22 eV, electrons with kinetic 
energies of about 3.0, 6.4, and 8.6 eV are emitted. (Note : these are approximate values of the 
center ofthe bands ; compare with Fig. 24.30.) Calculate the binding energies ofthese electrons. 
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25 . 1  N UC LEAR M OTI O N S ; R OTATI O N  
A N D VI B R ATI O N  

From the spectrum of a molecule we can obtain experimental information about the 
geometry of the molecule (bond lengths), and the energy states from which bond strengths 
are ultimately obtained. The molecular spectrum depends on the characteristics of the 
nuclear motions as well as on the electronic motions. In Section 23. 1 ,  by invoking 
the Born-Oppenheimer approximation, we discussed the electronic motion that pro
duces the bonding between the atoms as a problem separate from that of the nuclear 
motions. We begin the discussion of molecular spectroscopy with a brief recapitulation 
of the description of the nuclear motions. 

The motions of the nuclei are of three kinds : the translational motion of the molecule 
as a whole, which we discard as uninteresting ; the rotation of the molecule ; and the vibra
tions of the nuclei within the molecule. To a good approximation these motions are inde
pendent and can be discussed separately. 

A molecule containing N atoms has 3N nuclear coordinates and 3N nuclear momenta ; 
therefore there are 3N independent modes of motion or 3N degrees of freedom. Discarding 
three coordinates and three momenta that pertain to the translation of the whole molecule, 
there remain 3N - 3 degrees of freedom. If the molecule is linear and the axis of the mole
cule is the z-axis, then two independent modes of rotation, about the x- and y-axis, are 
possible. For linear molecules the number of coordinates and momenta remaining to 
describe the vibrations is 3N - 3 - 2 = 3N - 5. Nonlinear molecules have three 
independent modes of rotation about three mutually perpendicular axes, so the number of 
coordinates and momenta remaining to describe the vibrations is 3N - 3 - 3 = 3N - 6. 
The number of modes of each type of motion is shown in Table 25. 1 .  
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Molecule 

Tab le  25.1 

Total number of degrees of freedom 
Number of translational degrees of freedom 
Number of rotational degrees of freedom 
Number of vibrational degrees of freedom 

Linear 

3N 
3 
2 

3N - 5 

Nonlinear 

3N 
3 
3 

3N - 6 

In addition to the selection rules restricting the changes in the quantum numbers, the 
presence or absence of a dipole moment in the molecule imposes a restriction on the 
appearance of lines and bands in the spectrum. If the transition between one vibratio.nal or 
rotational state to another is to produce emission or absorption of radiation the vibration 
or rotation must be accompanied by an oscillation in the magnitude of the dipole moment 
of the molecule. 

An electrical dipole consists of a positive and a negative charge, + q and - q, separated 
by a distance r :  

The dipole moment Jl is defined by 

r 
� .  
+q -q. 

Jl = qr, 

and is a vector quantity ;  the direction is indicated by an arrow drawn from the negative to 
the positive charge. If the centers of positive and negative charge in a molecule do not 
coincide, the molecule has a permanent dipole moment. 

Symmetrical (homonuclear) diatomic molecules such as H2 , O2 , N2 do not have a 
permanent dipole moment, since an asymmetry in the electrical charge distribution is not 
possible. The symmetrical vibration does not alter the dipole moment, so these molecules 
do not emit or absorb in the infrared ; the vibration is said to be forbidden in the infrared. 

In a heteronuclear molecule such as Hel, the centers of positive and negative charge do 
not coincide, and the molecule has a permanent dipole moment. As this molecule vibrates, 
the displacement of the centers of charge varies and the magnitude of the dipole moment 
changes. The corresponding vibration-rotation band appears in the infrared. Rotation of 
the Hel molecule will produce an oscillation ofthe component of the dipole moment along 
a specified axis ; hence, Hel has a pure rotational spectrum in the far infrared. 

25 .2  R OTATI O N S  

For simplicity, at first we restri�t the discussion to diatomic molecules. The origin of co
ordinates is fixed at the center of mass of the molecule ; if the nuclei lie on the z-axis, then the 
two independent modes of motion are rotation about the x-axis and about the y-axis. For 
either mode the moment of inertia is 

(25. 1 ) 

where mi i s  the mass of the ith atom, and r i  i s  its perpendicular distance from the axis of 
rotation. Solution of the Schr6dinger equation for this motion shows that the angular 
momentum M is quantized through the relation 

J = 0, 1 , 2, . . .  , (25.2) 
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where J, the rotational quantum number, may have any positive integral value or may be 
zero. The rotational energy is 

(25 .3) 

25 .3  T H E R OTATI O NA L  S P ECTR U M  

If a molecule changes from one rational state to another, the energy difference between the 
two states is made up by'the emission or absorption of a quantum of radiation. For transi
tions between rotational states of linear molecules, the selection rule requires that f...J = 
± 1 .  The energy difference between these neighboring states is 

h2 h2 
EJ+ 1  - EJ = 21 [(J + l) (J + 2) - J(J + 1)] = I (J + 1). 

The frequency v J associated with this transition is determined by hv J = EJ +  1 - EJ ; since 
h = hl2n, we obtain 

h 
VJ = 

4n21 (J + 1). (25.4) 

It is customary to replace the frequency, v, by the equivalent wavenumber* of the light 
wave, v = 112 = vic. Using this relation in Eq. (25.4) we obtain for the wavenumber 

h 
vJ = 

4n2c1 
(J + 1) = 2B(J + 1), (25 .5) 

where B = hl8n2cJ is the rotational constant for the particular molecule. The fundamental 
rotational frequency emitted in the transition from J = 1 to J = 0 is 2B. For each value of 
J there is a line of frequency v J in the rotational spectrum. These lines are in the far infrared 
and microwave regions of the spectrum. 

The spacing between the lines is v J + 1 - V J = 2B. Therefore, from the measured 
spacing between the rotational lines, the moment of inertia of the molecule can be deter
mined. For a diatomic molecule the interatomic distance can be calculated immediately 
from the value of the moment of inertia. 

Since the actual molecule is not a rigid rotor, it is necessary to provide for the effect of 
the rotation and vibration on the moment of inertia. The rotational energy levels are 
approximated by the expression 

EJ = hcBJ(J + 1) - hcD[J(J + 1)] 2 . (25.6) 
The second term accounts for the increase in the moment of inertia at high rotational 
energies due to centrifugal stretching. The constant D is related to the vibrational frequency, 
vo , by D = 4B31v6 . If the vibrational frequency is high, the atoms are tightly bound, D is 
small, and rotation does not change the moment of inertia very much. 

* The wavenumber v is commonly referred to as a " frequency." For example, " Carbon dioxide has a 
characteristic frequency of 667 cm - 1 . "  When the word " frequency " is used, it may refer to v in S - l  or to 
v in cm - 1 .  Since the symbols are always different, this custom causes no difficulty. The SI unit for v is m - 1 ;  
calculations using the fundamental constants therefore yield a value in m - 1 ;  the literature values are almost 
ali in cm - 1 ; l cm - 1  = I OO m - 1 .  
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The frequency of the line is v J = (EJ+ 1 - EJ)/hc ; therefore 

vJ = 2B(J + 1) - 4D(J + 1 )3 . 
The spacing between the lines is no longer constant, but decreases slightly with J. 

VJ+ 1  - vJ = 2B - 4D[3(J + 1 ) (J + 2) + 1] . 

(25.7) 

(25.8) 
The moment of inertia also depends on the vibrational state of the molecule. To take 

this into account we can write 

and (25.9) 
where v is the vibrational quantum number. The higher the vibrational quantum state, the 
larger is the moment of inertia and the smaller is the value of Bv ' Ordinarily it is sufficiently 
accurate to neglect the dependence of the centrifugal term on the vibrational state, so we 
set f3e = O. The expression for the rotational energy becomes 

EJ = hcBe J(J + 1) - hCQ(eCv + t)J(J + 1) - hcD[J(J + 1)y (25. 10) 
The frequency now depends slightly on the vibrational quantum number, vJ = 
(EJ+ 1 - EJ)/hc. 

VJ = 2Be(J + 1) - 2Q(e(v + t) (J + 1) - 4D(J + 1) 3 . (25. 1 1) 
To determine Q(e and Be we have to observe changes in the rotational state in molecules 

in two different vibrational states. The populations in the higher vibrational states are often 
very small and, consequently, the absorption lines are very weak. A high temperature 
measurement is required if the vibrational frequency is high. 

We defer the discussion of the rotational spectra of polyatomic molecules until after 
our consideration of the vibrational-rotational spectra. 

25.4 VI B R ATI O N S  

For simplicity we assume that each of the molecular vibrations is a simple harmonic 
vibration characterized by an appropriate reduced mass J-l and Hooke's law constant k. The 
wave functions are determined by a single quantum number v, the vibrational quantum 
number. The energy of the oscillator is 

Ev = (v + t)hvo , v = 0, 1 , 2, . . .  , (25. 12) 
where Vo = (1/2n)� is the classical vibration frequency. Each vibrational degree of 
freedom has a characteristic value of the fundamental frequency Vo ' 

Diatomic molecules provide the simplest example of molecular vibration. There is 
only one mode of vibration, the oscillation of the two atoms along the line of centers. 

25 . 5  T H E VI B RAT I O N-R OTATI O N  S P ECTR U M  

Molecules do not have a pure vibrational spectrum because the selection rules require a 
change in the vibrational state of the molecule to be accompanied by a change in the 
rotational state as well. As a result, in the infrared region of the spectrum there are vibra
tion-rotation bands ; each band consists of several closely spaced lines. The appearance 
of a band can be simply interpreted by supposing that the vibrational and rotational 
energies of the molecule are additive. For simplicity we consider a diatomic molecule ; the 
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energy IS 
Evib - rot = hevo(v + !) + heBJ(J + 1). (25. 1 3) 

In the transition from the state with energy E' to that with energy E, 
I1E = (E' - E)vib-rot = hevo(v' - v) + heB[J'(J' + 1) - J(J + 1)] . 

The selection rule for vibration is I1v = ± 1 ; since the frequency emitted is v = I1E/he, we 
have 

v = Vo + B[J'(J' + 1) - J(J + 1)] . (25 . 14) 
The selection rule for the rotational quantum number requires that either J' = J + 1 or 
J' = J - 1 .  Thus we obtain two sets of values for the frequency, designated by vR and vp . 

If J' = J + 1 :  vR = Vo + 2B(J + 1), J = 0, 1 , 2, . . .  

If J' = J - 1 :  vp = Vo - 2BJ, J = 1 , 2, 3, . . .  

These formulas can be simplified by writing both in the form 

�R : �o + 2BJ}, Vp - Vo - 2BJ J = 1 , 2, 3, . . .  , (25. 1 5) 

and excluding the value J = 0. The vibration-rotation band is made up of two sets of lines, 
the P branch and R branch. Since J may not be zero, the fundamental vibration frequency 
Vo does not appear in the spectrum. The lines in the band appear on each side of vo . 

The vibration-rotation band for a molecule such as Hel is shown in Fig. 25. 1 .  There 
is no absorption at the fundamental frequency vo . The spacing between the lines I1v = 
vJ +  1 - vJ = 2B. Since B contains the moment of inertia, measurement of the spacing yields 
a value of I immediately. The spacing between the lines is the same, 2B, in both the vibra
tion-rotation band and in the pure rotational spectrum. The first line in the rotational 
spectrum is at the position 2B. The location of the vibration-rotation band is determined by 
the vibrational frequency. 

Just as we corrected the expressions for the rigid rotor to allow for the centrifugal effect 
and an interaction with the vibration, we also must adjust the expression for the harmonic 
oscillator to account for the anharmonicity in the oscillation. The potential energy surface 
for the molecule is not symmetrical (Fig. 25.2). The parabola (dotted figure) represents the 
potential energy of the harmonic oscillator. The correct potential energy is shown by the 
full lines ; the vibration is anharmonic. The vibrational energy levels for such a system can 
be approximated by a series : 

(25 . 16) 

in which Xe and Ye are anharmonicity constants .  Ordinarily the third term is negligible and 
will be omitted hereafter. 

The anharmonicity correction reduces the energy of every level, but the reduction is 
greater for the higher levels. Thus the spacing between levels, Ev + 1 - Ev , gets smaller as v 
gets larger : 

(25 . 17) 

Combining Eq. (25 . 1 6) for vibration with Eq. (25 . 10) for rotation, we obtain for the vibra
tional-rotational energy of the molecule, 

Evr = hvo(v + !) [l - xecv + !)] + he[Be - ()(e(V + !) - DJ(J + l )]J(J + 1) . (25 . 1 8) 
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F i g u re 25.2 Potenti a l  energy cu rve for a d iatomic  molecu le  (fu l l  l i ne)  compared to 
that for the harmonic osc i l lator (dashed cu rves) . N ote d ifferences i n  vi brat iona l  l evels. 

If the transition occurs between the state with v and J and the state with v' and J', then 
v = [E(v', J') - E(v, J)]/hc, or 

v = vo(v' - v) [1 - xe(v' + V + 1)] + Be(J' - J) (J' + J + 1) 
- lXe [J'(J' + 1 ) (v' + !) - J(J + l) (v + !)] 
-D(J' - J) (J' + J + l) [J'(J' + 1) + J(J + 1)] . (25. 19) 

The application of this equation is conveniently divided into several cases. 

Case 1 .  �v = 1 .  The strict selection rule requires that �v = 1 ,  so that ordinarily the 
absorption is from v = 0 to v' = 1 .  Then 

v = vo(1 - 2xe) + Be(J' - J) (J' + J + 1) - !lXe[3J'(J' + 1) - J(J + 1)] 
-D(J' - J) (J' + J + 1) [J'(J' + 1) + J(J + 1)] . (25.20) 

The selection rule requires that �J = ± 1 ,  so that if J' = J + 1 ,  we have 

J = 0, 1 , 2, . . . 
(25 .21) 

This corresponds to the R branch of the band, a group of lines all having frequencies above 
the vibrational frequency, vo(1 - 2xe)' 
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The other possibility is that ]f = ] - 1 ,  then Eq. (25.20) becomes : 

1Ip = 110(1 - 2xe) - 2Be]  - rx. ](] - 2) + 4DJ3 , ] = 1 , 2, 3, . . .  (25.22) 
This is the expression for the low frequency branch of the band, the P branch, in which the 
group of lines all have frequencies below the vibrational frequency. 

Case 2. /).v oF ± 1 .  For the anharmonic oscillator, the selection rule reqmnng that 
/).v = ± 1 is no longer a rigid requirement. There is a small probability of transitions with 
/).v = ± 2 and an even smaller probability of transitions with I1v = ± 3 .  If we insert these 
conditions in Eq. (25 . 1 9) , that is, v' = 2, v = 0, we can develop expressions analogous to 
Eqs. (25 . 2 1) and (25 .22) for the R and P branches of a band centered on the first overtone 
frequency, 2110(1 - 3xe) , or approximately twice the fundamental vibrational frequency. 
This overtone band is much weaker than the fundamental band. If v' = 3, v = 0, there is 
a second overtone band that is much weaker than the first overtone band. The requirement, 
/).] = ± 1, still applies .  

25 .6  R OTATI O NA L  A N D Vi B RATI O N-R OTATI O N  S P ECTRA O F  
P O lYATO M I C  M O LE C U LES 

From the rotational or  vibration-rotation spectra of  a diatomic molecule such as  HCI, we 
can calculate the internuclear distance directly from the measurement of the spacing of the 
lines. This simplicity is absent in polyatomic molecules except in certain special cases. We 
consider only a few simple examples to illustrate the difficulties .  

ill EXAMPLE 2 5 . 1  CO2 ; triatomic, linear, symmetrical. 

o=C=o 
I ( + )1 

r1 = r2 

Since the molecule is symmetrical, the two bond distances are equal ; thus only one 
distance appears in the moment of inertia. We can calculate this internuclear distance 
directly from the line spacings in the vibration-rotation band just as we did for Hei. 
No additional difficulty is involved. 

The four vibrational modes for carbon dioxide are shown in Fig. 25.3 . The first vibra
tion is the totally symmetric stretching vibration, 11 1 = 1 388 .3 em - 1 . This vibra-
tion does not produce a band in the infrared since it does not produce an oscillation 
in the dipole moment of the molecule. The second and third vibrations in Fig. 25.3 differ 
only in that the bending occurs in mutually perpendicular planes. Thus the vibration is 
doubly degenerate ; the frequency is the same for both modes : 112 = 667. 3 em - 1 . The 
fourth mode is the asymmetric stretching vibration and has a third distinct frequency : 
V3 = 2349.3 cm- 1 . 

F i g u re 25.3 Vibrat ions of CO 2 '  
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If we ignore anharmonicity, the vibrational energy of the CO2 molecule can be 
written as a sum of terms : 

Ev = hCVI (V I + !) + hCVz(V2 + !) + hCV2(V� + !) + hCV3(V3 + !) ; 
(25.23) 

The quantum numbers, VI ' V2 , v� , V3 , may have any integral value from zero upward. 
The expression in Eq. (25.23) is correct for any linear triatomic molecule. 

The CO2 molecule has two strong absorption bands centered on v2 and 113 ' since 
these modes produce an oscillating dipole moment. Since the bending\ vibration 
produces an oscillating dipole perpendicular to the molecular axis, !1J = 0 is permitted 
(in addition to the rotational selection rule, !1J = ± 1). If we put Jf = J in Eq. (25.20), 
we obtain for the Q branch, 

J = 0, 1 , 2, . . .  (25.24) 
Thus the Q branch is centered on the frequency, vo( 1  - 2xe), which is very close to the 
fundamental frequency, vo . Since Cte is very small, all the lines in the Q branch fall very 
close to the central one. The presence of the Q branch identifies the band as belonging 
to the bending vibration (Fig. 25.4). 
!iii EXAMPLE 25.2 N20 ;  triatomic, linear, asymmetrical. 

N=N=O 
I� >\< )1 

rNN rNO 

In N 20, there are two distances involved : rNN and rNO ' The moment of inertia is 
given by I = L mi rf, in which ri is the perpendicular distance of the mass mi from the 
center of mass. The coordinate of the center of mass, X, is determined by the condition 
Li m/xi - X) = o. 

x, x 

To calculate the center of mass of the molecule, we assign the origin on the x-axis to 
atom number 1, mass = mI ' Then 

and the moment of inertia is 

I [m2 X2 + m3 x3J 2 [ m2 x2 + m3 X3J 2 [ m2 x2 + m3 X3J 2 = ml M + m2 X2 - M + m3 X3 - M 
This can be arranged into the symmetrical form 

1 2 2 2 1 =  M [mlm2 x2 1 + m2 m3 x32 + m1m3 x3 1] , (25.25) 

in which M = ml + m2 + m3 , and X2 1 = X2 - Xl ; X3 2 = X3 - X2 ; X3 1  = X3 - Xl ' The 
two bond lengths are X2 1 and X3 2 '  while X3 1  = X3 2 + X2 I . In any event, the measure
ment of line spacings in the rotational spectrum yields a value of I, but this is not 
sufficient to determine the two bond distances. It is necessary to study an isotopic 
molecule to obtain another experimental value of the moment of inertia. For example, if 
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N=N= 160 and N=N= 18 0  are studied, it is possible to extract values for the two 
internuclear distances from the two measured values of 1. This has been done using the 
microwave spectrum of N20. 

If we look at the N20 vibration-rotation spectrum, instead of two bands in the 
infrared, we find three. This is immediate evidence that the molecule does not have a 
center of symmetry. The frequencies are i\ = 1285.0 cm - 1 (symmetrical stretch), v2 = 
588 .8  cm - 1 (degenerate bending vibration), and V3 = 22f3. 5  cm - 1 (asymmetrical stretch) . 
• EXAMPLE 25.3 Nonlinear molecules. Nonlinear molecules have three moments of 
inertia compared to the two equal moments possessed by linear molecules. This 
complicates matters considerably. We can sort these molecules into several types, 
depending on the relations between the three moments of inertia. For example, if fA is 
the moment of inertia about the principal molecular axis while I B and Ie are the 
moments about the axes perpendicular to the molecular axis, then in the linear 
molecule, IA = 0 and IB = Ie = I. For nonlinear molecules, if IA = IB = Ie , the 
molecule is called a spherical top. Examples are CH4 and SF 6 . Since these molecules 
have such high symmetry (for example, two or more threefold or higher axes), they 
do not have a pure rotational spectrum, since they have no dipole moment and 
therefore the rotation cannot produce an oscillating dipole moment. 

If two of the moments of inertia are equal and the third is nonzero, the molecule is 
called a symmetric top. The principal axis must be threefold or higher. Symmetric-top 
molecules are of two types. If the moment of inertia around the axis of highest 
symmetry is less than the other two equal moments, the molecule is a prolate 
symmetric top. Examples of prolate (cigar-shaped) symmetric-top molecules are NH3 , 
CH3CI, or CH3CN. If the moment of inertia about the axis of highest symmetry is 
greater than the other two equal moments, the molecule is an oblate symmetric top. 
Examples of oblate (pancake-shaped) symmetric top molecules are BCI3 , a trigonal 
planar molecule, and benzene, C6H6 . 

If no two of the moments of inertia are equal, the molecule is an asymmetric top. 
Most molecules, including such simple molecules as H20 and S02 ' belong in this 
category. 

The simplest nonlinear molecule is a symmetrical triatomic such as H20 or S02 . 
In thes"e molecules, two parameters, the 0-H or S-O bond length and the interbond 
angle, must be determined from the data. The relation between the three moments of 
inertia and the total rotational energy cannot be expressed simply. The microwave 
spectrum of water is complex but has been analyzed to yield the bond distance and 
interbond angle. 

A nonlinear triatomic molecule such as H20 has three vibrational modes. 
Two of these involve symmetrical motions of the three atoms ; the third is an asym
metrical stretching vibration. These motions are illustrated in Fig. 25.5 .  Since all of these 
vibrations produce oscillations in the dipole moment, three fundamental bands centered 
on v ! = 365 1 .7 cm - ! , v z  = 1 595 . 0 cm - 1 , and v3 = 3755 .8 cm - ! appear in the infrared 
region. 

Symmetrical 
stretch 

1\ = 3651 . 7  cm - 1 

Symmetrical 
bend 

Vz = 1595 .0 cm - 1 

Asymmetrical 
stretch 

v3 = 3755.8 em - 1 F i g u re 25 .5  
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Tab le  25.2 
I nfrared a bsorption bands for water * 

Final State 

Vi 

0 
0 
1 
0 
0 
1 
2 
0 
2 
0 
3 

* 

Frequency Remarks 
V2 V3 (cm- l) 

1 0 1 595 Fundamental, v2 
2 0 3 1 52 First overtone, 2vz 
0 0 3652 Fundamental, Vi 
0 1 3756 Fundamental, V3 
1 1 5331  Combination, v2 + V3 
1 1 8807 Combination, Vi + v2 + V3 
0 1 10613  Combination, 2vl + V3 
0 3 1 1 032 Second overtone, 3V3 
1 1 12 15 1  Combination, 2v1 + v2 + V3 
1 3 12565 Combination, Vz + 3V3 
1 1 1 5348 Combination, 3v1 + v2 + V3 

A ground state with V, = V2 = V3 = 0 is assumed. Listed in 
order of increasing frequency. (From I. N. Levine, Molecular 
Spectroscopy, Wiley-Interscience, N.Y. 1 975,  p. 263.)  

In addition to the bands centered on the fundamental frequencies, other bands appear 
in the spectra of polyatomic molecules. We have mentioned overtone bands in the spectrum 
of diatomic molecules due to violation of the selection rule, flv = ± 1, that is permitted 
because of anharmonicity. But in polyatomic molecules, combination bands also appear. 
For example, in the case of water if the absorbed quantum splits to raise V 1 from 0 to 1 and 
V2 from 0 - 1, there will be a vibration-rotation band centered on the combination fre
quency, v1 + v2 . This process is relatively less probable than the absorbtion of a single 
quantum at either fundamental frequency, so the intensity of the band is relatively weak. 
Nonetheless, combination bands appear with sufficient intensity to be an important 
feature of the infrared spectra of polyatomic molecules. Even in the case of a simple 
molecule like water, there are a large number of prominent bands, several of which are 
listed in Table 25.2. 

25 .7  A P P LI CATI O N S  O F  I N F R A R E D  S P E CT R O S C O PY 

Infrared spectroscopy is commonly used to identify and to determine quantitatively the 
amount of various substances present in mixtures. For the explanation of fundamental 
ideas we restricted our attention to the infrared spectra of very simple compounds. Even 
then, we observed that the spectrum can become very complicated. When a multitude of 
atoms is present, as in most organic compounds, the spectrum takes on a different ap
pearance ; much broader bands are in evidence. 

The identification of a compound is based on the existence of characteristic group 
frequencies that have roughly the same value regardless of the compound in which the 
group appears. Typical of such groups are those with multiple bonds such as -C=O, 
-C=N, -N=N-, -C=C-. The C=O group will ordinarily appear as a strong 
band in the region between 1 650 cm - 1 and 1 850 cm - 1 . The exact position depends on the 
type of compound ; for example, in aliphatic ketones, the frequency is in the range from 
17 10 cm - 1 to 1720 cm - 1 . Another useful band is the -0-H stretching frequency that 
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appears between 2500 cm - 1 and 3650 cm - 1 . Use of the method requires some experience, 
since the frequencies shift about in different molecules. The spectrum of acetone is shown in 
Fig. 25.6 . The band at 1 7 1 5  cm - 1 is the carbonyl frequency, while those at 3008, 2960, 
2925, 1440, 1425 and 1 361  cm - 1 are due to the methyl group. 

25 .8  R A M A N  E F F E CT 

If an intense beam of monochromatic light is passed through a substance, a small fraction 
of the light is scattered by the molecules in the system. The electron cloud in a molecule can 
be polarized (deformed) by an electric field. If we apply an oscillating electric field (the 
electric field vector of the light wave) to the molecule, the deformation of the electron cloud 
will oscillate with the frequency, vo , of the incident light beam. This oscillation of the cloud 
produces an oscillating dipole that radiates at the same frequency as the incident light. This 
process is called Rayleigh scattering. The Rayleigh-scattered radiation is emitted in all 
directions ;  we can observe it by placing a detector on a line perpendicular to the direction 
of the incident light (Fig. 25.7). Since only about 0 . 1 % of the light is scattered, we must use 
as intense a source as possible. A laser fulfills this requirement admirably. The mirrors 
shown in the figure serve to collect as much of the scattered radiation as possible. 

In addition to the Rayleigh scattering, another effect, Raman scattering, occurs. There 
is a small but finite probability that the incident radiation will transfer part of its energy to 
one of the vibrational or rotational modes of the molecule. As a result, the scattered radia
tion will have a frequency Vo - Vm , where Vm is the molecular frequency. Similarly, there is a 
slight chance that molecules in excited vibrational or rotational states will give up energy 
to the light beam ; in this case the scattered radiation will have a higher frequency, Vo + Vm ' 
Thus we observe three lines in the scattered radiation : one line at Vo corresponding to the 

Mirror reflects beam 
rz:z+:=Z?Z:! along the original path 

Mirror to reflect 
scattered light 
'"to the dd'ct"'t�=== 

_ > _  

Laser beam 
------... 

---�------��� -�-�------ -C] 

Lens 

F i g u re 25.7 Exper imental  arrangement for Raman effect. 
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Rayleigh scattering ; and two Raman lines, one at Vo + Vm , the anti-Stokes line, and the 
other at Vo - Vm , the Stokes line. The two Raman lines are extremely weak compared to 
the intensity of the Rayleigh scattered light. The total intensity of the scattered light is only 
about 1/1000 of the incident intensity. Only about 10- 4 of the scattered intensity is in the 
Raman lines ; thus the Raman intensity is less than 10- 7 ofthe intensity ofthe incident light. 
The first observation of the Raman effect required very long exposures of a photographic 
plate to detect it. 

The classical argument for the Raman effect can be expressed mathematically as 
follows. Let J1 be the dipole moment induced by an electric field E ; then the polarizability, IX, 
is defined by 

J1 = IXE ;  (25.26) 
that is, the polarizability is the dipole moment induced by unit electrical field. In a light 
beam, the electric field vector is given by 

E = EO sin 2nvo t, (25.27) 
where EO is the amplitude of the vibrating electric vector, Vo is the frequency of the light 
beam, and t is the time. Then 

(25.28) 
and the dipole moment oscillates with a frequency Vo to yield the Rayleigh scattered beam. 
However, if the polarizability varies slightly as the molecular vibration occurs, we can 
write 

IX = 1X0 + (::)q, 
in which q is the coordinate describing the molecular vibration ; then 

q = qo sin 2nvm t, 

(25.29) 

(25.30) 
in which Vm is the frequency of the molecular vibration and qo is its amplitude. Combining 
this with the last equation, we have 

IX = 1X0 + (::)qO sin 2nvm t. (25. 3 1 )  

Placing this value of  IX in  Eq. (25.28) yields 

J1 = 1X0 EO sin 2nvo t + (::)qO EO sin 2nvo t sin 2nvm t. (25.32) 

Using the identity, sin x sin y = t[cos (x - y) - cos (x + y)] , this becomes 

J1 = 1X0Eo sin 2nvo t + � (::)qO EO cos 2n(vo - vm)t 

1 (OIX) 0 
- :2 oq qo E  cos 2n(vo + vm)t. (25 .33) 

Thus the dipole moment oscillates with three distinct frequencies : Vo with amplitude 1X0E
o ; 

Vo - Vm and Vo + Vm with much smaller amplitudes, tcolX/oq)qo Eo. Therefore we observe a 
relatively intense beam at one frequency and two very weak beams at frequencies slightly 
above and below that of the intense one. 
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Quantum mechanically, as the incident photon is scattered, the molecule undergoes a 
transition from the lowest vibrational state to the state with v = 1 .  This requires the absorb
tion of energy, so the scattered photon has a reduced energy, h(vo - vm) ;  the scattered light 
is shifted toward the red end of the spectrum ; this is the Stokes line. On the other hand, it 
may happen that as the photon is scattered the molecule make a transition from an upper 
state, v = 1, to the ground state. Then the energy of the scattered photon is greater, 
h(vo + vm) ;  the light is shifted toward the blue end of the spectrum. Since there are fewer 
molecules in the upper state than in the lower state, the intensity of the blue-shifted line, the 
anti-Stokes line, is much less than that of the red-shifted line, the Stokes line. 

Since the occurrence of the Raman effect depends on the change in polarizability as 
vibration occurs, the selection rules are different for the Raman effect than they are for the 
infrared spectrum. In particular, in molecules with a center of symmetry the totally 
symmetric vibration is Raman-active, but is forbidden in the infrared since it produces no 
change in dipole moment. Thus the homo nuclear diatomic molecules, H2 , 02 , N2 , show 
the Raman effect but do not absorb in the infrared. There is also a purely rotational Raman 
effect in these molecules. However, in this case the selection rule is I'1J = ± 2. Thus we have 
for the rotational Stokes lines 

v} = Vo - 2B(2J + 3), 

and the spacing between them, 

I'1v = 4B, 

J = 0, 1 , 2, . . . 

459 314 
218 

_---- Raman shift in em � 1 

(25 .34) 

Hg 433.923nm 

Anti-Stokes 
lines 

F i g u re 25.8 Raman spectrum of CCI 4 showing re lative i ntensit ies of Stokes and ant i - Stokes l i nes. 
Excit ing l i n e  i s  the mercu ry 433.923 n m  l i ne .  (Courtesy American Petro leum I nstitute Research P roject; 
Raman Spectru m No. 351 . )  
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which is twice the spacing in the far infrared or microwave regions for the pure rotational 
spectrum. 

The Raman spectrum of CC14 is shown in Fig. 25.8 . 

25 . 9  E LECTR O N I C  S P E CT R A  

When we discussed the molecular orbital treatment for the hydrogen molecule, we  obtained 
two energy levels of the molecule corresponding to the two wave functions : 

Wave Function Energy 

This result was then generalized to the statement that we could make similar combina
tions of other wave functions on the atoms to yield symmetric and antisymmetric states of 
higher energy. We now undertake the systematic description of these electronic states. 

In the case of diatomic molecules, we find that the Schrodinger equation requires that 
the component of the angular momentum along the molecular axis be quantized. The 
quantum number, A, describing this component is the basis for the term symbols for 
diatomic molecules. The quantum number A may have the values, A = 0, 1 , 2, . . . . For 
diatomic molecules, we use a Greek letter code for A. 

A 
Letter code 

o 

L 
1 

n 
3 
<D 

The value of A is determined by the resultant value of L for all the electrons in the molecule ; 
the possible values of A range from L to o. 

A = L ,  L - 1, L - 2, . . .  , 2, 1, O. (25 .35) 
Similarly, if we calculate the resultant value of the spin quantum number for the electrons 
outside the closed shells we obtain the total spin quantum number, S. The components of 
the total spin quantum numbers, S, S - 1, . . .  , - (S - 1), - S, are the possible values 
of the quantum number L, which corresponds to M s in the atom. There are 2S + 1 
values of L ;  the multiplicity of the state is 2S + 1 .  There is a total angular momentum 
quantum number, n, which has the values 

n = A + 1:. (25. 36) 
Typical term symbols would be 1 L, 3L, 1 IT, 3.1., 1.1., . . .  , and so on. For example, for 3rr the 
value of A is 1 and the value of L is 1, 0, - 1 .  Then n = 2, 1, 0 and the states would 
have the term symbols 3il2 , 3ill > 3ilo . 

The L states, A = 0, are described as either 1: + or L - depending on the behavior of the 
wave function upon reflection in the plane containing the internuclear axis. The L + wave 
function is invariant under this operation, while the L - wave function changes sign on 
reflection in this plane. To the term symbols for homonuclear diatomic molecules, we 



642 M olecu la r  Spectroscopy 

attach a right-hand subscript, either g or u ;  the subscript is g if the wave function is 
invariant and u if it changes sign when all the electronic coordinates are subjected to 
inversion through the center of symmetry. 

Thus the permissible kinds of functions for diatomic molecules are : 

A = O 

A = l 

A = 2 

The selection rules are : 

H omonuclear 

L\.A = 0, ± 1 , 

H eteronuclear 

II 
L\. 

L\.S = 0. 
Therefore transitions must occur only within the singlet system, or within the triplet system, 
and so on. 

Between the I:+ and I:- states, the allowed transitions are 

and 

The transition I: + +-+ I: - is forbidden. For homonuclear molecules the transition g +-+ U is 
permitted ; g +-+ g and u +-+ U are forbidden. These requirements also restrict the changes in 
the rotational quantum number to L\.J = ± 1 .  There is no restriction on the change in the 
vibrational quantum number. 

If we ignore the interaction between the various modes, the energy of the molecule can 
be written as the sum of the electronic energy, the vibrational energy, and the rotational 
energy. 

E = Eelec + EVib + Ero! '  
For a change in state, we obtain for the wave number, 

(25 .37) 

(25 .38) 

The wave number associated with the transition can be written as a sumof wave numbers 
for each type of transition : 

(25.39) 

Consider two electronic states between which a transition is permitted ; the two curves 
in Fig. 25.9 show the variation in the electronic energy with internuclear separation in the 
two states. The vibrational energy levels are shown as the horizontal lines and are labeled 
with the vibrational quantum numbers. In addition, very closely spaced rotational levels 
are associated with every vibrational level ; these are only shown next to the lowest 
level in each state. 

If we examine the absorption of a quantum by a molecule in electronic state 1 and with 
vibrational quantum number zero, then the transition must occur along the vertical line 
abo This is required by the Franck-Condon principle, which states that electronic transi
tions occur in times that are very short compared to the time required for the nuclei to 
move appreciably. This requires that the transition be " vertical " (r is constant). 
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F i g u re: 25 .9 Energy su rfaces 
for e lectron ic  transit ions.  

Since there is no selection rule for Llv, the jump will most likely occur between the 
positions at which the vibrational wave function has its largest values. For the ground 
state, this position is at the midpoint of the vibration, point a. For the excited states, the 
wave function has its largest values near the extremes of the vibration. The square of the 
vibrational wave function is sketched for the lower states in the figure. Thus the likely 
transition from the ground state (lower curve, v = 0) is to the vibrational level, v' = 4, 
which is nearest to where the vertical line from a intersects the energy surface of the upper 
state at point b. Other likely transitions are from v = 1 to v' = 0 and from v = 3 to v' = 1 .  
Other transitions occur, but with somewhat lower probability. For example, the transi
tions from v = 0 to v' = 0, 1, 2, 3, 5, and higher all occur, in addition to the one from 0 
to 4 shown in the figure. 
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The frequency of the absorbed quantum corresponds to the energy difference repre
sented by the vertical line. A system originating in the ground vibrational state, v = 0, can 
originate in any of the multitude of rotational states associated with v = ° in the ground 
state and could end up in either of two matching rotational states determined by the selec
tion rule, I1J = ± 1, in the upper electronic and vibrational state. Thus a number of fre
quencies are absorbed. This group of closely spaced lines is called an electronic band. In any 
collection of molecules, there are some in various vibrational states ; hence, transitions may 
occur between any vibrational state in the lower electronic state to whatever level matches 
properly in the upper state. Each one of these possible transitions produces a band ; the 
collection of the bands is called a band system. Add to this the fact that there are several 
electronic states, not just two, between which transitions may occur. The result is that the 
electronic spectrum of a molecule consists of several band systems. By detailed analysis of 
the wavelengths of the lines in the spectrum, we can calculate the energy curves for the 
various electronic states as functions of r, the internuclear distances, the force constants of 
the vibrations, and bond energies. 

Figure 25 . 10 shows schematically the absorption lines originating from the level, v = 0, 
in the ground electronic state ; the rotational band around each of these lines is not shown. 
If this corresponds to Fig. 25.9, then by our argument the transition ° ---t 4 should be most 
intense, with the intensity of the others decreasing on either side of that frequency. Note 
that the frequency differences become less as v' gets larger and that there is a high frequency
convergence limit. 

The important point about the electronic spectrum is that we gain information about 
any vibration in the molecule, even though the fundamental frequency of that vibration 
might not appear in the infrared spectrum. For example, the vibrational frequency of 
homo nuclear diatomic molecules does not appear in the infrared, since the oscillating 
dipole moment is absent ; the bands resulting from that vibration do show up in the elec
tronic spectrum. 

The energies involved in electronic transitions are comparatively large, so the bands 
and band systems appear in the visible and ultraviolet regions ofthe spectrum ; for example, 
the violet color of iodine is due to an electronic transition (Fig. 25 . 1 1) . 
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25 . 1 0 E LE CT R O N I C  S P ECTRA O F  P O LYATO M ! C  M O LE C U LES 

The electronic spectrum of  a nonlinear polyatomic molecule i s  very complicated. In 
addition to three modes of rotation with distinct moments of inertia, there are 3N - 6 
modes of vibration. While some of these may be forbidden in the infrared or Raman 
spectrum on the basis of symmetry, there is no rule to forbid their appearance in the elec
tronic spectrum, which is extraordinarily complex as a consequence. For our purposes 
here, we mention only a few fundamental points and present one example. 

The wave functions and levels in polyatomic molecules are described in terms of their 
symmetry. (See Sections 23 . 14 and 23 . 1 6.2) . For example, if we consider the water molecule. 
its symmetry requires that any molecular wave function either be invariant or change only 
in algebraic sign under any symmetry operation. This requirement severely restricts the 
form of the wave functions. These wave functions can be of only four types-denoted by 
the letters a I ' a2 , b l , and b2-each of which belongs to a particular symmetry species. The 
symmetry properties of each type are summarized in the character table of the group C 2v ' 
Table 23 .5 .  

As we pointed out in Section 23. 1 6.2, the ground state electronic configuration for the 
water molecule is 
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where al ' b l , and b2 denote the symmetry species of the molecular orbitals. Since all the 
levels contain two electrons, the overall wave function for the molecule is totally symmetric 
and described by the symbol 1 A l (read " singlet ay one ") . This is the term symbol for the 
ground state ; the left-hand superscript is the multiplicity of the state. 

The lowest excited configuration for water is 

H20 K(2al)2(lb2)2(3al)2(lbl ) 1 (4al)1 , 
in which one electron has been moved from the (lb l) level to the (4al) level (Fig. 25. 12). 
The symmetry of this state is Bl . Since the electrons may now be either paired or unpaired, 
this state may be lBl or 3Bl . The 3Bl state has a lower energy than the lB l state but, of 
course, the singlet-triplet transition from lA l to 3Bl is spin-forbidden. 

The symmetry properties also enable us to establish the selection rules for transitions 
between states. For the group C2v , transitions between al and a2 states and between bl and 
b2 states are forbidden. All others are allowed. Thus the transition between lA l +-+ lBl is 
allowed by both spin and symmetry, and is a possible absorption mode for water. This 
transition involves a very large energy difference ; in this connection, it is notable that the 
longest wavelength electronic absorption in water is in the region between 1 50 and 180 nm 
of the vacuum ultraviolet region. 

* 25 . 1 1 QUANTU M M EC H A N I CA L  D ES C R I PT I O N  O F  
T I M E - D E P E N D E NT SYST E M S  

Until now in our quantum mechanical discussions we have described the stationary or 
time-independent states of a system. Furthermore, our language was such as to imply that 
we had sufficient information about the system to know that it was in a particular state 
described by a particular set of quantum numbers. For example, in the case of the harmonic 
oscillator we spoke as though we knew that the oscillator was in the vth state with wave 
function ljJv , and energy Ev = (v + !)hv ; or, in the case of the hydrogen atom, that it was in 
a state described by the set of numbers n, I, m. This approach is very useful in a first discus
sion of quantum mechanical properties of various kinds of systems. However, we do not 
have reason to presuppose that a system is in a particular quantum state. 

Having obtained the set of particular solutions of the Schrodinger equation, the set 
of ljJn , the general solution is a linear combination of the ljJn , namely, 

(25.40) 
n 

The normalization requirement is 

f ljJ*1/I dT = 1 .  (25.41) 

This is the total probability of finding the system in some state. If we use Eq. (25.40) in 
Eq. (25.41), we have 

1 = f ljJ*ljJ dT 

= f (� a! 1/1! ) ( � an ljJ n) dT 
= L L a! an fljJ!ljJn dT. 

m n 
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Since the particular solutions are orthonormal we have 

so that 

Summation over m yields 

1 = L L a! an (jmn ' m n 

(25.42) 

(25.43) 

Equation (25 .43) says that the sum of the squares of the absolute value of the coefficients 
an in the series in Eq. (25.40) is unity. The manner in which we obtained Eq. (25.43) requires 
that we interpret the right-hand side as a sum of probabilities. Therefore, we interpret 1 an 1 2 
as the probability of finding the system in the state described by t/J n ' According to Eq. (25 .43), 
the total probability of finding thy system in one or another of the eigenstates is unity. 

For example, suppose 1 a,, 1 2 = 1, and 1 an 1 2 = 0 for all n "# k. Then the system is in state 
k and is described as completely as possible by t/J k' This is the terminology, referred to above, 
that we have used so far. On the other hand, if we envision transitions occurring that take 
the system from one state to another, this implies that the an are functions of time, an(t). 
Suppose that at t = 0 the system is in state k, while at some later time, t, there is a prob
ability that the system is in state m, as a result of transitions occurring in the time interval t. 
This situation could be described by writing 

. 

l ak(OW = 1 

l am(0) 1 2 = 0 (m "# k) 
l ak(tW < 1 

1 am(t) 1 2 > O. 
Our problem is to discover how these coefficients, an(t), depend on the time. Since one 
way for transitions to occur is by absorption or emission of radiation, this problem is 
central to any discussion of spectroscopy. 

* 25 . 1 2 VA R I ATi O N  I N  T H E  STATE O F  A 
SYST E M  WITH TI M E  

If at time zero, the probability of the system being in the nth state is unity, and at time t the 
probability of the system being in the mth state is 1 am(t) 1 2, then the task is to discover how 
the coefficient am varies with time if the system is irradiated by a light beam. In this situa
tion it can be shown that 

dam = _ � J"O*H/,,<O de dt Ii m 'l"n 

in which ,,� and "� are the time-dependent wave functions, 

"�(x, y, z, t) = t/J�(x, y, z)e - iEnt/h. 

(25.44) 

(25.45) 

and H' is the operator corresponding to the energy of interaction of the charges in the 
molecule with the electrical field associated with the incident light wave. 

The oscillating electrical field associated with the incident wave displaces the charges 
in the molecule slightly. This displacement in the x direction corresponds to an energy 
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given by ExCI: ej x) = flxEx '  where Ex is the component of the electrical field in the x 

direction and flx = 1: e i x i , is the induced dipole moment in the x direction. The sum is 
over all the charges, ej ' multiplied by their displacements in the x direction, xj . Since the 
field is oscillating, we have Ex = E� cos wt, where w = 2nv is the angular frequency of 
the light wave and E� is the amplitude of the x component of the field. The total energy 
effect of the light wave includes the effects in the y and z directions as well and is given by 

H' = (flxE� + fly E� + flz E�) cos wt (25 .46) 

Equation (25 .44) tells us how the coefficient am depends on the time by giving an 
expression for the derivative (dam/dt). From this equation we can obtain an expression for 
am(t). 

According to Eq. (25 .46), the first term in H' is proportional to flx ' Since the integration 
in Eq. (25.44) is over coordinates only, the time-dependent factors in H' and in the wave 
functions can be removed from the integral. Thus we see that the integrals in Eq. (25.44) are 
proportional to integrals of the type 

These are called the transition-moment integrals. We define the quantity fl;;'n by 

fl;;'n = 1 (flx)mn 1 2 + 1 (fly)mn 1 2 + 1 (flz)mn 1 2 . (25.48) 

If we solve Eq. (25.44) under the condition that at t = 0 the system was in state n, we 
finally obtain the result that 

1 (t) 1 2 = P(Vmn)fl;;'n t am 6to h2 ' (25.49) 

in which p( vmn) is the radiation density at the frequency Vmn defined by hVmn = 1 Em - En 1 
and to is the permittivity of vacuum. 

The probability of transition from state n to m in unit time is given by 

(25 .50) 

where 
fl;;'n Emn = 6to h2 (25 . 5 1 )  

is the Einstein coefficient of  absorption for radiation offrequency, Vmn . Equation (25.49) is a 
fundamental result, crucial to the understanding of spectroscopy. 

For a system which at time t = 0 was in state n, in the presence of a light beam a short 
time t later, the probability of finding the system in state m is given by the value of 1 amCt) 1 2 in 
Eq. (25.49). This probability is proportional to t. It is also proportional to the energy density, 
p(vmn), of the light beam at the frequency that " fits " the transition from n to m ;  Vmn = 
1 Em - En I /h. If the light beam contains only a minor component at Vmn ' then p(vmn) will be 
small and the probability of transition from n to m will be small. Most importantly, the 
probability of finding the system in state m is proportional to the square of the absolute 
value of the transition moment, flmn ' This last dependence is the basis for selection rules that 
govern the appearance or nonappearance of lines in a spectrum. If flmn = 0, then the 
transition from state n to state m is a forbidden transition. 
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* 25 . 1 3 S E L E CTI O N  R U LES F O R  T H E  H A R M O N I C  O S C i l LATO R 

Consider a diatomic molecule that has a dipole moment due to effective charges - q and 
-q separated by a distance r ;  then J1 = qr ; we rewrite this as 

J1 = q(r e + r - r e) = qr e + q(r - r e) ; 
J1 = J1e + q(r - re), (25. 52) 

where J1e is the dipole moment the molecule would have if the charges were at rest at the 
equilibrium separation r e ' and the term q(r - r e) is the variation in the dipole moment due 
to the variation in r. We may regard this expression as the first two terms of a Taylor series 
expansion of J1 in terms of r - re ; that is, 

J1 = J1e + (d:t{r - re)· 

Then, taking r in the direction of the field, the dipole transition-moment integrals have the 
form, 

ftmn = f:oo ��* [J1e + (d:t(r - re)J�� dr, 

J1mn = J1e foooo ��*�� dr + (d:) re f:oo ��*(r - r e)�� dr (25 .53) 

Since m #- n, the first integral vanishes because �� and �� are orthogonal. The normalized 
harmonic oscillator functions are given by Eq. (21 .42), 

, /, 0 = H (j;) - �2/2 = _n H (j;) - �2/2 
( 1 ) 1 /2 A 

'I'n 
f3y0i2nn !  n <., e 131/2 n <., e , (25. 54) 

in which ( = (r - re)/f3. Using this value in Eq. (25 .53) reduces it to 

To evaluate this integral we use the recurrence relation Eq. (2 1 .49) ; that is, 

This brings J1mn to the form 

- f3(dft) [ foo - �2 1 foo - �2 ] 
ftmn - dr re

Am An n -
00 
Hm«()Hn - 1 «()e d( + :2 - (1)  Hm{()Hn + 1 «()e d( . 

But, by Eq. (21 .47), 

and 



Select ion R u les and Symmetry 651 

This yields for f.1mn 

Using the value of An from Eq. (25.54), we find that 

f.1mn = P(d,L[� bm, n- l  + In : 1 bm, n + l] . (25 .55) 

When m = n + 1 ,  the system is making the transition n --+ n + 1 ,  so the radiation is 
absorbed ; 

Z fJZ(df.1) Z f.1n + l , n = 2 dr re
(n + 1), n = 0, 1 , 2, . . .  (25 .56) 

When m = n - 1 ,  the final state m is lower in energy than the initial state n, so radia
tion is emitted (stimulated emission). The impinging light wave stimulates an excited mole
cule to emit radiation. We have 

n = 1 , 2, . . . (25 . 57) 

Note that the lowest possible value of n in this last formula is n = 1 .  
The selection rule for the harmonic oscillator, Eq. (25 .55), requires that I1n = ± 1 .  

Under the influence o f  a light beam the harmonic oscillator makes transitions only to 
states immediately above and below its original state. The existence of selection rules 
simplifies the interpretation of spectra enormously. 

The other requirement on the transition is that the derivative (df.1/dr)re be non
vanishing. Whether or not a molecule has a dipole moment is not significant ; the dipole 
moment must change as the vibration occurs. For example, the molecule HCI has a perma
nent dipole moment and as the molecule vibrates this dipole moment varies. The molecule 
therefore has (df.1/dr) # ° and exhibits a vibrational spectrum. In contrast consider the COz 
molecule, which has no permanent dipole moment because of the symmetrical distribution 
of positive and negative charges ; in the symmetric vibration, Fig. 25 .3 ,  the charge sym
metry is undisturbed and the dipole moment remains zero throughout this vibration. Hence, 
df.1/dr = ° and this vibration does not appear in the spectrum. In the asymmetric stretching 
vibration, the symmetry is destroyed. The dipole moment varies during this vibration and 
therefore this vibration appears in the spectrum. In the remaining two bending vibrations 
(degenerate since they differ only in the plane in which the vibration occurs) the symmetry 
is destroyed and the dipole moment varies during the oscillation. These vibrations appear 
in the spectrum. 

* 25 . 1 4 S E L E CTI O N  R U LES A N D SYM M ET R Y ' 

For a system in state n, Eq. (25.49) shows that the probability of finding it in state m at a 
later time is proportional to f.1;;m ' The transition moment, f.1mn ' has components that are 
given by integrals such as 

(25 .58) 
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where x could represent any one of the coordinates x, y, or z. We can frequently identify 
from consideration of the symmetry of the system the combinations of m and n for which 
the integral will be nonvanishing. These combinations of m and n are the " allowed " 
transitions for the system. If the integral is zero for a particular combination of n and m, the 
transition has zero probability of occurring ; it is a " forbidden " transition. As we have seen 
in the preceding sections via detailed computations, Eq. (25. 58) provides the basis for 
establishing selection rules. The selection rules govern the type of states between which 
transitions may or may not occur. 

From symmetry we can establish a general selection rule with a minimum of com
putation. To begin, we consider a general wave function, ljJ(x, y, z), for any system together 
with the integral for the total probability of finding the particle, 

f ljJ*(x, y, z)ljJ(x, y, z) dr = 1 .  (25 .59) 

Since the integral in Eq. (25 .59) is a real physical quantity, its value cannot depend on the 
orientation of the coordinate system. Consequently, the integrand, ljJ*ljJ, must be invariant 
under transformations of the coordinate system. This invariance can obtain only if ljJ is 
invariant or merely changes sign under transformations of the coordinate system. 

Suppose that we subject the system to the operation of inversion, symbolized by the 
operator i, which reverses the direction of all three axes. This operation simply changes the 
sign of all the coordinates ; thus 

iljJ(x, y, z) = ljJ( -x, -y, - z). 

If we operate on the integrand in Eq. (25 . 59), we obtain 

i[ljJ*(x, y, z)ljJ(x, y, z)] = [iljJ*(x, y, z)] [iljJ(x, y, z)] 
= ljJ*(- x, -y, - z)ljJ( -x, - y, - z). 

If the integrand is to be unchanged by this operation, it is clear that the worst that may 
happen to the wave function is that it changes sign. Thus we have the two possibilities 
alluded to above : 

iljJix, y, z) = ljJ/-x, -y, - z) = ljJy(x, y, z), 
iljJuCx, y, z) = ljJuC - x, - y, - z) = - ljJu(x, y, z), 

(symmetric) 

(anti symmetric) 

and similarly for the complex conjugate. In the first case, the wave function is said to be 
symmetric under inversion or is an " even " function ; in the second case, the wave function is 
anti symmetric under inversion or is an " odd " function. The subscripts 9 and u (from the 
initial letters of the German : gerade = even : ungerade = odd) are used to describe these 
two kinds of wave function. 

If the inversion operation is applied to the integrand of the transition-moment integral 
in Eq. (25 .58), we note that the coordinate x (or y or z) is an odd function under inversion ; 
ix = - x. Thus, if ljJ! xljJ n is to be invariant under inversion, the product, ljJ; ljJ n must be an 
odd function. This can only be so if ljJm is even and ljJn is odd or vice versa. Thus we have 
the important result that transitions are allowed only between odd and even states, 9 � u. 
Transitions between two odd states, u � u, or between two even state:>, 9 � g, are forbidden. 
This is a fundamental selection rule for dipole radiation. If the system contains several 
particles, the argument is unchanged and leads to the same result. 
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If we seek to apply this rule in the case of the simple harmonic oscillator, we write the 
transition moment integral 

Applying the inversion operator to the Hermite polynomial yields iHn<�) = Hn( - �) = 
( - l)"HnC¢), The last equality is one of the properties of the Hermite polynomials that is 
easily obtained from the definition in Eq. (21 .46). Thus, Hn(�) is even or odd depending on 
whether n is even or odd. Therefore the quantum number must change from even to odd or 
from odd to even in an allowed transition. Detailed evaluation of the integral (Section 
25. 1 3) using the recurrence formula for Hermite polynomials shows that the integral 
vanishes unless m = n ± 1. The selection rule is generally written L'1n = ± 1 .  

To obtain the selection rules for the rigid rotor we must look at  the symmetry of  the 
problem in slightly greater detail. The rotor is described by the two angles e and ¢ and by a 
wave function having the form (omitting normalization constants) 

l/IJ, m = P7(cos e)eim</>. (25.60) 

Suppose we fix the direction of the z-axis and then choose the position of the x- and y-axes 
so that the angle ¢ is established. Then it is clear that if we rotate the x- and y-axes about 
the z-axis to some new position which changes ¢ to ¢ + rx in the new coordinate system, 
nothing is changed physically. We symbolize this rotation operation by CO( ' This operation 
does not affect e in the slightest. Examining the effect on the function e,m</> we find 

Similarly, for the complex conjugate, e � im</> :  

C - im</> _ - im", - 1m</> ", e  - e e . 

(25 .61) 

(25 .62) 

To find the effect of C", on x = r sin e cos ¢ and y = r sin e sin ¢, we construct the sum 
and difference of x and iy ; since cos ¢ + i sin ¢ = ei</>, we have 

Then 

x + iy = r sin Be'</>, 

x - iy = r sin ee - i</>. 

C",(x + iy) = r sin eC", ei</> = r sin eei(</> h) = (x + iy)ei"', 

C",(x - iy) = (x - iy)e - i"'. 

Next we consider the combination of transition-moment integrals, defined by 

Then 

(25 .63) 
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Consider the integral over c/J in Eq. (25 .63) ; let 

f21< 
I+ l {m', m) = 0 ei(m- m' + I )<I> dc/J. 

Then 
2'1r 

C�I+ l (m', m) = 1 C�ei(m- m' + l )<I> dc/J = ei(m -m' + I )�I + l (m', m). 

Since the physical situation requires that this integral be independent of rx, we must have 

CaI+ I Cm', m) = I+ l (m', m). 

It follows that only if ei(m -m' + I )� = 1 ,  that is, if m - m' + 1 = 0, will the integral be 
independent of rx. Let dm = m' - m ;  then dm = + 1 for the integral to be invariant under 
the rotation. Similarly, if we consider the integral 

L ICm', m) = L2"
ei(m- m' - 1 )<I> dc/J, 

which will appear in the combination, f.1x - if.1y ,  we find that the integral is invariant under 
rotation if dm = - 1 . In the case of the z component of the transition moment integral, 
z = r cos e ;  consequently, z is independent of c/J and the integral 

IoCm', m) = f"
ei(m - m' )<I> dc/J 

must be invariant under rotation. This in variance requires dm = 0. 
The selection rules on m can be restated briefly : for the x or y component of the 

transition moment, dm = ± 1 ; for the z component, dm = 0. 
The second consideration of symmetry which arises is that the orientation of the z-axis 

cannot matter. The z-axis may point up or down ; this is equivalent to saying that the 
integrals must be independent of a reflection in the horizontal plane, an operation we 
symbolize by (1h ' This operation changes e into n - e or � = cos e into cos (n - e) = 

- cos e = - �. The integrals for the x and y components of the transition moment both 
have the form 

Ix, y = f"
P�";" '(COS e) sin ep�m l(cos e) sin e de = I I 

p!r' I(�) (1 - e)I /2p�ml (�) d� .  
o - 1 

If we apply the horizontal reflection operator to the integral we obtain 

(1hIx, y = f/�,,;," ( - �) [1 - ( _ �)2] 1/2p�m l( - �) d� .  

But p�ml( - �) = (- V- Im lp�ml (�). Using this relation we obtain 
0' I = ( _ 1)J' - lm' I + J - 1m II . h x, y x, y 

If we replace J' = J + dJ and I m' l  = I m l  + d l m l ,  we obtain 
0' I = ( _ 1)2J +M- 2 Im l - Ll.1m II = ( _ 1)M-Ll.1m II . h X, Y x, y x, y 

If I x, y is to be invariant, ;j.J - d i m  I must be an even number ; since the requirement on 
d i m  I for the x or y component is d i m  I = ± 1 ,  it follows that dJ must be odd. Detailed 
calculation using the recurrence formulas shows that ;j.J = ± 1 only. 
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I m l  = 0 I m I = 1 I m I = 2 
F i g u re 25. 1 3 Al lowed transit ions 
for the r ig id rotor for va r ious I m I = 3 polarizations .  

For the z component, z = r cos fJ, and since we must have I mi l = I m I ,  the integral has 
the form 

then 

Iz = f"
P}'?'(COS fJ) cos fJP�ml(cos fJ) sin fJ dfJ = I

I 
p�,? I(I;)l;p�m l(l;) dl; ; o - 1 

6h lz = fl p�,? I( - 1;) (  - I;)p�m l( - 1;) dl; = ( _ l/' Im l + l + J- 1m llz 

= ( - l)'�J+ IIz ' 
Again this relation requires I1J to be odd if the integral is to be invariant under reflection. 
Detailed calculation using the recurrence formula shows that I1J = ± 1 only. 

The types of transitions and the polarizations that produce them are shown in Fig. 
25. 1 3 ; the vertical axis represents the energy ; the horizontal axis is simply used to space out 
the values of I m I corresponding to a particular value of J. 

* 25 . 1 5 S E L E CTI O N  R U LES FO R T H E H Y D R O G E N  ATO M 

The wave functions for the hydrogen atom have the form of a product of a radial function 
(a function of r only) and the rigid rotor functions. The selection rules for the rotor func
tions must be the same as those obtained above, namely, 

111 = ± 1 

I1 l m l  = 0 (z component) I1 l m l  = ± 1 (x and y component). 
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Thus the only remaining question concerns the radial functions. The transition-moment 
integral has the form 

fo''' Rnlr)rRn' l,(r)rZ dr. 

However, the functions in the integral depend only on r, which is unaffected by any rotation 
ofthe axes or by any reflection in a plane. We conclude that any ofthe symmetry operations 
will leave r and functions of r unchanged. 

Since symmetry imposes no restrictions, there is no selection rule for n, the principal 
quantum number. This result obtained so simply by symmetry considerations would be 
extremely cumbersome to prove by direct evaluation of the transition-moment integrals. 

* 25 . 1 6 S E LECTI O N  R U LES F O R  P O lYATO M I C  M O LE C U L E S  

In  Chapter 23 w e  discussed the wave functions o f  the water molecule and concluded that 
they can be classified by the irreducible representations, or symmetry species, to which 
they belong. We also showed how to classify functions such as x, y, z, xy, yz, xz, and so on, 
according to symmetry species. The symmetry properties can be used to establish the 
selection rules for the spectral transitions. 

If the transition-moment integrals 

f t/I�*xt/l� dT, f t/I�*yt/l� dT, f t/I�*zt/l� dT 

are not to be zero , then the integrands must be invariant under all the operations of the 
symmetry group. This requirement will be met if and only if the integrands belong to 
the totally symmetric representation AI '  We can conclude that if the direct product of the 
representations of t/I�* and t/I� is equal to or contains the representation of one of the co
ordinates, then the direct product of t/I�*t/I� with that coordinate will belong to the totally 
symmetric representation AI ' Using the character table (Table 23 .5) for the group CZv ,  we 
obtain the possible direct products between the representations of t/I�* and t/I�. These 
products are collected in the form of a multiplication table : 

t/ln 
t/I;:. A l Az Bl B1 

A l A l Az Bl Bz 
Az Az A l Bz Bl 
Bl Bl Bz A l Az 
Bz Bz Bl Az A l 

The coordinates belong to AI , B1 , and Bz wherever an Av B1 , or Bz appears in the 
table ; that transition is allowed, since one of the transition-moment integrals is non vanish
ing. Wherever Az appears, that transition is forbidden since the direct product of Az with 
any of the representations belonging to the coordinates cannot be A l ' Thus we conclude 
that, for the water molecule, the transitions 

Al +-+ Az and Bl +-+ Bz 
are forbidden. All other transitions are allowed. 
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25. 1  The Born-Oppenheimer approximation states that a diatomic's electronic energy depends 
only on the internuclear separation. Use this information to sketch and explain the relative 
location of the first few vibrational levels for Hz and Dz . 

25.2 How do the rotational selection rules exclude absorption at the fundamental frequency Va in a 
diatomic vibration-rotation spectrum? 

25.3 Classify the following molecules as spherical, prolate symmetric, oblate symmetric, or asymmetric 
tops : 03 , AICl3 NHt , CHzClz , CH3Br, CHCI 3 ,  CCI4 . 

25.4 Which of the following molecules exhibit infrared absorption? 12 , HBr, CH3CI, CCI4 , SOz , 
CSz , NH3 · 

25.5 Which of the following molecules exhibit a rotational microwave spectrum? HzO, CSz , CH4 , 
OCS, HC-CH, Brz ,  HBr. 

25.6 Which of the following linear molecules exhibit vibrational Raman, but not infrared, spectra ? 
O z , COz , OCS, HCN, Nz , NO. 

25.7 What do overtone and combination bands reveal about anharmonicity ? 
25.8 State and rationalize the Franck -Condon principle and indicate its importance. 
25.9 What types of spectra yield information on the vibrational states of homonuclear diatomics ? 

25.10 Discuss an allowed and forbidden oscillator transition by sketching the integrands of the 
transition-moment integrals flmn for two appropriate oscillator state pairs. 

25.1 1  Repeat Question 25. 10 for the Iz transition-moment integral for a rotor. 

P R O B LE M S  

25. 1  The wavenumbers of the rotational lines of HCI can be fitted to the expression 
V!cm- I = 20.794(J + 1) - 1.64 x 10 -

3
(1 + 1)3 . 

Calculate the moment of inertia of the H
3

SCl molecule and the internuclear distance. H = 
1.007825 g/mol ;  3 sCl = 34.96885 g/mol. Estimate the vibrational frequency of H3SCL 

25.2 The iodine atom has an atomic mass of 126.9045 g/mol and hydrogen has an atomic mass of 
1 .007825 g/mol. If the internuclear separation in HI is 1 60.4 pm, calculate the moment of inertia 
and the separation of the rotational frequencies. 

25.3 Calculate the position of the center of mass, the moment of inertia, and the spacing between 
the rotational lines for each of the following linear molecules. The masses are 12C = 12.0000 ; 
1 4 N  = 14.00307 ; 1 60 = 1 5.9949 1 ; I E  = l .007825 g/mol. 

a) The asymmetrical N- =N+ =O, which has bond lengths N- =N+ = 112.6 pm ; and 
N=O = 1 19 . 1  pm. 

b) The symmetrical O=C=O, which has C=O = 1 16.2 pm. 
c) H-C C-C-N, in which C-H = 105.7 pm ; C C = 120.3 pm ; C-C = 1 38 .2 pm 

and C_N = 1 1 5.7 pm. 
25.4 The fundamental vibration frequency of the 3 5Clz molecule is 1 .6780 x 101 3  s - I . Calculate 

the energies of the first three vibrational levels and the force constant if M eSCl) = 34.96885 
g/mol. 

25.5 The force constant in 7 9Br 2 is 246.053 N/m ; for 79Br and 8 1 Bf the masses (g/mol) are 78.9 183  and 
80.9 1 63 .  Calculate the fundamental vibrational frequencies and the zero-point energies in 7 9Br z ,  
7 9Br8 1Br, and 8 lBrz . 

25.6 The first five vibrational bands (v = 0 -+ 1, 0 ..... 2, . . .  0 --+  5) of H35Cl are centered on the 
wavenumbers, v/cm - 1  = 2886 ; 5668 ; 8347 ; 10 923 ; 1 3  397. Calculate the fundamental frequency 
of the HCl molecule, the anharmonicity constant, the reduced mass, and the force constant of the 
molecule. H = 1.007825 g/mol ; 3 sCl = 34.96885 g/moL 
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25.7 An argon-krypton laser with It = 488.0 nm is used to observe the Raman spectrum of benzene. 
Two of the thirty normal modes of vibration for benzene have the frequencies, vdcm - 1 = 3062 
and V2/cm - 1 = 992. At what wavelengths will the Raman lines for these vibrations be observed? 

25.8 Derive the selection rules for the electronic spectrum of 
a) C2H4 (D2h) ; b) NH3 (C3v) ; c) BF3 (D3h)' 

25.9 The atomic masses (g/mol) are : H = 1 .007825 ; D  = 2.01410 ; 3 5CI = 34.96885 ; 3 7CI = 36.96590. 
The fundamental vibrational frequency in H3 5CI is 2990.946 cm - 1 . 
a) Assuming that the force constant does not change, calculate the reduced masses and the 

fundamental vibrational frequencies in H3 7CI, D3 5CI, and D3 7Cl. 
b) The internuclear distance is the same (128.65 pm) for all of the compounds below. Calculate 

the moments of inertia and the separation of the rotational lines in H3 5CI, H3 7CI, D3 5CI, 
and D37Cl. 

25.10 a) Evaluate the transition moment integral for the particle in a one-dimensional box. 
b) What is the selection rule for this system? 

25.11  Show that for any linear molecule, I = Li m;(xf - X2), where X is the position of the center of 
the mass. 
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26 . 1  I NT R O D U CTI O N  

Two chemically saturated particles, such as two molecules of methane or two atoms of 
argon, are subject to attractive forces as they approach one another. The intermolecular 
forces are electrical in origin ; since they are responsible for the phenomena of gas imper
fection and liquefaction, they are often called van der Waals forces. The energy ofvaporiza
tion of a liquid provides a convenient measure of the strength of these forces, since it is the 
energy required to pull the molecules from the liquid, where they are in proximity, and 
bring them into the gas where they are widely separated. The energy of vaporization is 
simply related to the heat of vaporization of the liquid at constant pressure : 

Qvap = AHvap = LlUvap + P(�as - �iq). 
Approximately, �as - �iq = �as = RTlp, so that LlHvap = AUvap + RT. At the normal 
boiling point, AHvap = 1/, LlSvap ; hence for LlUvap we obtain LlUvap = 1/,(ASvap - R). For 
normal liquids we have the Trouton rule (see Section 9 .3 . 1), ASvap = 90 11K mol ; hence, 

LlUvap � S21/, llmol (26. 1 )  
Even for substances that do not obey the Trouton rule, the proportionality between AU yap 
and the boiling point is roughly correct. In view ofEq. (26 . 1 )  we may take the boiling point 
of a liquid as a convenient measure of the cohesive energy, which in turn depends on the 
strength of the intermolecularJorces. 

Since the intermolecular forces depend on the effect on one molecule of the electrical 
field produced by another molecule, we begin by looking at the effect of an electrical field on 
matter in bulk and then at the effect of a field on individual molecules. The basic equations 
of electrostatics that are required for this are developed in Appendix n. 

26 . 2  P O LA R I ZATI O N  I N  A D i E lE CT R I C  

If an electrical field E is applied between two parallel metal plates separated by a fixed dis
tance (a parallel-plate capacitor), one plate acquires a positive charge and the other a 
negative charge (Fig. 26. 1a). The charge per unit area of the plate is the charge density (J. 
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Figu re 26.1  (aj Charged capacitor .  (b) Capacitor with d ie lectr ic .  
(c)  Cyl i nd rica l  sect ion of d i e lectric .  

Since the charge is uniformly distributed on each plate, the field is perpendicular to the 
plates, En = E, and the tangential components of the field are zero. 

If we draw a gaussian surface, S, which encloses both plates, then the total charge 
enclosed by this surface is q = oA + ( - o)A = 0, where A is the area of the gaussian sur
face parallel to the plates. Then, by Gauss's law, Eq. (A.II. 14), 

LE da = 0, 

which requires that E = 0. The electric field vanishes in the space behind the plates. 
To find the field between the plates we apply Gauss's law to the surface Sf (Fig. 26. 1a) . 

Then q = O"A, and since En = E, 

J O"A E da = - .  
S' to 

Since the tangential components are zero, there is no contribution to the flux from the 
surfaces perpendicular to the metal plates. This leaves 

J f O"A E da + E da = - .  
ou.tside surface ins ide surface to 

But we showed that E on the outside surface is zero, so the first integral is zero . Since the 
charge density is uniform, the E on the inside surface is constant everywhere on the surface 
and can be removed from the integral. The equation becomes EA = O"A/to ,  or 

(in vacuum). (26.2) 

If an insulating material (a dielectric) is placed between the plates, the application of 
the electric field produces in the dielectric a minute shift of negative charge toward the 
positive plate and a shift of positive charge toward the negative plate ; the dielectric is 
polarized. Bound to the surface of the dielectric at the negative plate is a positive charge 
density, + O"p ; at the positive plate a negative charge density, - O"p ' is bound to the surface 
of the dielectric (Fig. 26. 1 b). The quantity 0" p is called the polarization of the dielectric. 
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Figure 26. 1 (c) shows a cylindrical element of the dielectric with its axis in the direction 
of the polarizing field. If the area of each face of the cylinder is A, then the charges on the 
faces are + (J p A and - (J p A. These charges are separated by the length of the cylinder a, 
so that the cylinder has a dipole moment equal to «(J p A)a. Since the volume of the cylinder 
is aA, the dipole moment per unit volume is 

dipole moment 
volume 

= (Jp . (26.3) 

Therefore the polarization (J p in addition to being the charge density on the surface is also 
equal to the dipole moment per unit volume of the dielectric. 

The induced surface charge on the dielectric reduces the net charge per unit area en
closed by the surface Sf to (J - (Jp ; thus for the field in the dielectric we can write 

(26.4) 

But the polarization is itself proportional to the field within the dielectric. This proportion
ality is written 

(26.5) 

where fr is the relative permittivity of the medium ; more commonly, fr is called the dielec
tric constant of the medium. The permittivity of the medium is f = fr fo . 

When we put this value of (Jp into Eq. (26.4) and solve for E, 

(26.6) 

Comparing Eq. (26.6) with Eq. (26.2) we see that in the presence ofthe dielectric the effective 
charge density has been reduced from (J to (Jlfr • This result does not depend on the geo
metry used in Fig. 26. 1 to demonstrate it. Quite generally, the electrostatic equations for 
vacuum can be modified to apply in a dielectric by replacing the field producing charge, 
q, by qlfr • This is equivalent to replacing fo by f. (Strictly speaking this result applies only 
to electrically isotropic media such as liquids and gases. Since most solids are anisotropic, 
the situation is only crudely described by this procedure.) 

Our next task is to calculate the field acting on a molecule immersed in a dielectric. 
Consider a parallel-plate capacitor filled with a dielectric ; there is a molecule at the center 
of a spherical cavity in the dielectric. The cavity is small compared to the macroscopic 
dimensions of the capacitor but large compared to the size of the molecule (Fig. 26.2a). 

The field in the cavity is the resultant of the field in the dielectric, given by Eq. (26.4), 
and the field due to the induced charges on the wall of the cavity. To calculate the field due 
to the charges on the wall, we consider the polarization vector, (Jp ' in Fig. 26.2(b). This 
vector is parallel to the z-axis and is directed from left to right. The component of this 
vector on the ray OP is (Jp cos 8. Just as (Jp is the charge density on the vertical plane, 
(J p cos 8 is the charge density on the spherical surface at the position, r, 8. The total charge 
on the element of area, da, is (J p cos 8 da. The field at the center of the cavity due to this 
charge is, by Coulomb's law, 
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F i g u re 26 . 2  Ca lcu lat ion o f  t h e  f ie ld i ns ide a cavity i n  a d ie lectr ic .  

This field vector is directed along the ray PO ; to obtain the horizontal component, we 
multiply by cos e; this yields 

(J p cos2 e da 
411:£o r2 

To obtain the total effect of the positive charge, we must integrate over the left hemisphere. 
Since da = (r sin e de/» r de, we need to integrate from e/> = 0 to 211:, and from e = 0 to !no 
Thus f1[/2 (J p cos2 er2 sin e de f2"

dA. (J P f"/2 2 e d( e) (J p 
2 'f' = - cos - cos = - .  o 411:£o r 0 2£0 0 6£0 

The effect of the negative charges in the right hemisphere is equal to that of the positive 
charges in the left hemisphere and acts in the same direction. The value is thus doubled, 
2(J p/6£o = (J p/3£o . For the field at the center of the cavity, this yields 

Using E = (Jp/(£r - 1)£0 from Eq. (26.5), this becomes 

E _ (Jp .!!.L _ (Jp(£r + 2) 
cay - (lOr - 1)£0 

+ 3£0 
- 3£o(£r - 1) ' 

Solving for (J P ' we obtain 

(26 .7) 

Note that Eq. (26.7) is based on purely classical electrostatics and is in no way de
pendent on the atomic or molecular structure of the dielectric. The macroscopic property, 
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En is easily measurable ; it is the ratio of the capacitance of a capacitor filled with the dielec
tric material to the capacitance in vacuum. 

C Er = --. Cvae (26.8) 

26.3 M O LA R  P O LA R I ZATi O I\J  

The dipole moment per unit volume of the dielectric is made up of contributions from all 
the molecules in the unit volume. If N is the number of molecules per unit volume, and m is 
the average dipole moment per molecule induced by the field, then the dipole moment per 
unit volume is mN : 

(Jp = mN. 

Using this result in Eq. (26.7), we obtain 

3Eo(E, - l)Eeav m = N(E, + 2) 

(26.9) 

(26. 10) 

which describes the value of m in terms of the macroscopic properties Eeav ' and Er • Having 
obtained such a relation, we inquire as to how the dipole moment m is produced in the 
direction of the field. 

If a molecule that has no permanent dipole moment is placed in an electrical field, the 
electronic cloud will be displaced slightly toward the positive plate. This distorted molecule 
possesses a dipole moment m, which is proportional to the applied field, 

(26. 1 1) 

The constant of proportionality 1X0 is the distortion polarizability of the molecule. The 
polarizability is the dipole moment produced by an applied field of unit strength. 

For any substance it can be shown that 

m = IXE, (26 . 12) 

where IX is the polarizability of the substance. If the substance has a permanent dipole 
moment, then the polarizability is the sum of two terms. 

IX = 1X0 + 1X1l , (26. 1 3) 

where 1X0 is the distortion polarizability, and IXIl is the orientation polarizability. The 
orientation polarizability arises from the tendency of the permanent dipole moment f1 to be 
oriented in the direction of the applied field. 

The field that acts on a molecule in the dielectric is Eeav ' so that m = IXEeav . Using this 
value for m in Eq. (26. 10) and rearranging, we obtain 

Er - 1  NIX 
Er + 2 3Eo ' (26. 14) 

Since N = NA p/M, where p is the density and M the molar mass of the substance, we can 
write this equation in the form 

(26. 1 5) 
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This is the Clausius-Mosotti equation. The molar polarization P is defined by 

P = (:: � D (�) . 
The macroscopic quantities in P are easily measured. Then we have 

P = NA(X . 
3fo 

(26. 1 6) 

(26. 1 7) 

If (X is a constant characteristic of the molecule, then P is a constant, and Eq. (26 . 16) is a 
relation between the dielectric constant and the density of the substance. Furthermore, if (X 
is characteristic ofthe molecule, then (X and the molar polarization P should be independent 
of the temperature. This is substantiated experimentally for nonpolar molecules, those that 
have no permanent dipole moment. 

26 . 3 . 1  O r i entat i o n  P o l a r iza b i l i ty 

Suppose that a large number of polar molecules, each having a permanent dipole moment 
jl, are placed between the plates of a capacitor. In the absence of a field and at reasonably 
high temperatures, the thermal motions ofthe molecules will produce a random orientation 
of the molecules so that there is no net dipole moment in any direction. However, if a field is 
applied across the plates of the capacitor, the dipole molecules will be oriented in the field, 
producing a net dipole moment in the direction ofthe field. The net induced dipole moment 
divided by the number of molecules is the average dipole moment per molecule in the 
direction of the field, m. We can show that 

_ jl2E m = 3kT ' (26. 1 8) 

This equation . shows that m is proportional* to the field E. The orientation polarizability 
(XII is defined by m = (XIIE ;  from Eq. (26 . 1 8), we obtain 

(26. 19) 

At high temperatures m and (XII are much smaller than at low temperatures. At high tempera
ture, the thermal motion is more successful in reducing the orientation in the field. 

The total polarizability of any molecule is the sum of the distortion polarizability and 
the orientation polarizability, Eq. (26. 1 3). Thus we have 

jl2 
(X = (Xo + (XII = (Xo + 3kT ' (26.20) 

Using this result in Eq. (25 . 14), we obtain the Debye equation, (fr - 1 ) (M) N A(XO N Ajl2 
fr + 2 P = � + 9fo kT ' (26.2 1 )  

which is used to obtain the value of  the dipole moment of  a molecule from the measured 
value of the dielectric constant at several temperatures. From the values of fr and p at 

* It is clear that m cannot continue to be proportional to E if the field is strong. A saturation effect occurs. 
If all the molecules are completely oriented, increasing the field does not increase m any further. 
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Molecule 11/1 0 - 3 0 C m 

HF 6.37 
HCl 3 .57 
HBr 2.67 
HI lAO 
CH3F 6.04 
CH30H 5.67 

CH3NH2 4.20 
o-C6H4C12 8.34 
m-C6H4C12 5.74 
p-C6H4C12 0 
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F i g u re 26.3 Typica l  Oebye 
p lot of P versus 1 /  T. 

Tab !e  26 . 1  
D i po le  moments of molecu les 

Molecule 11/10- 30 C m Molecule 11/1 O - 3O C m  

H2O 6 . 17  NH3 4.90 
H2S 3.07 PH3 1 .83 

AsH3 0.53 

CH3OCH3 4.34 C6HsCI 5.67 
CH2-CH2 6.34 C6HSBr 5.67 
'0/ 

C6HSN02 14.2 
o-C6HiN02)2 20 
m-C6H4(N02h 13.0 
p-C6H4(N02)z 0 

Note : The egs unit for dipole moment is the debye : 1 debye = 1 D = 10 - 1 8  esu em = 3 .3356 . . .  x 1 0 - 30 C m.  

several temperatures, the value of the molar polarization (the left-hand side of the equa
tion) is calculated. A plot of molar polarization against the reciprocal of the temperature 
should be linear. By Eq. (26.21), the slope is N A /12/9fo k and the intercept is N A lto/3fo . A 
typical plot is shown in Fig. 26.3 .  From the slope and intercept, the dipole moment /1 and 
the distortion polarizability lto of the molecule are obtained. A few values of /1 are shown in 
Table 26. 1 .  

26 . 3 . 2  M o l a r  R efract i o n  

The dielectric constant i s  ordinarily measured in an alternating current circuit. The direc
tion of the field across the capacitor changes back and forth with the frequency of the 
applied potential. If we imagine a single polar molecule between the plates of a capacitor, 
then if the frequency is not too high, this single molecule will flip back and forth as the field 
oscillates, always adjusting its orientation to match the direction of the field. 

However, the molecule requires a finite time to adjust its orientation. If this time, the 
relaxation time, is very short compared with the time of one cycle of the applied field, then 
the molecule adjusts itself readily to the different orientations of the field. On the other hand, 
if the frequency of the applied field is increased, then finally a situation prevails in which the 
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Tab le  26.2 
M o l a r  refract ions of ions 

Ion He Li + Bez + B3 + C4 + 
RD/( em 3/mo!) 0.50 0.20 0.09 0.05 0.03 

Ion Oz - F- Ne Na+ Mg2 + A!3 + Si4 + 
RD/( em 3/mo!) 7 2.5 1 .00 0.50 0.29 0. 17  0. 1 

Ion Sz - Cl- Ar K+ Ca2 + Se3 + Ti4+ Zn2 + 
RD/(em3/mo!) 15  8.7 4.20 2.2 1 .35  1 .0 0.7 0.3 

Ion Sez - Br- Kr Rb+ Sr2 + y3 + Zr4+ Cd2 + 
RD/(em3/mo!) 16.3 12.2 6.37 3.6 2.3 2.6 2.0 2.4 

Ion Tez - 1 - Xe Cs+ Ba2 + La3 + Ce4+ Hg2 + 
RD/( em 3/mo!) 24.4 18 .5 10.42 6.3 4.3 4.0 3 . 1  5.0 

By permission from C .  P.  Smyth, Dielectric Behavior and Structure. New York : McGraw-Hill, 1 955 .  

molecule does not have time to change its orientation before the field switches back again. 
As a result, at very high frequencies the molecule is not oriented by the field at all, and the 
permanent dipole moment ceases to contribute to the molar polarization ; only the distor
tion polarization remains. 

At high frequencies, Eq. (26. 1 5), even for molecules with a permanent dipole moment, 
becomes 

(:: � D (;) = �::o . (26.22) 

The distortion polarization remains because even at high frequencies the electron cloud is 
mobile enough to adjust to the changing field. 

An electromagnetic frequency ofthe order of 101 4 Hz corresponds to a light wave ; then 
it may be shown that fr = r 2, where r is the index of refraction of the substance for light of 
the frequency in question, and Eq. (26.22) becomes 

(�) (M) = NA cxO , 
r2 + 2 P 3fo (26.23) 

where the quantity on the left-hand side is called the molar refraction R ; thus 

R = G: � �) (;) = �::o . (26.24) 

The value of R can be calculated from the measured value of the refractive index of the 
liquid or solid. Equation (26.24) can be combined with Eq. (26.21) to express the dielectric 
constant at low frequencies : 

(fr - 1) (M) NA f.12 
fr + 2 P = R + 9fo kT ' (26.25) 

The molar refraction of a substance is approximately the sum of the refractions of the 
electron groups within it. The molar refraction of NaCl, for example, is the sum of the 
refractions of the Na + ion and the CI- ion. A few values ofthe molar refraction appropriate 
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to the D line of sodium are given in Table 26.2. The refraction of the inert gases can be 
measured directly. To obtain the refraction of the individual ions from that of their salts, 
the value of the refraction of at least one ion must be known. The refraction of the fluoride 
ion has been accurately calculated from the quantum mechanics, and using this value, we 
can calculate the refractions of the ions Li + , Na + , and so on, from the refraction of the 
corresponding fluorides. Table 26.2 is built up in this way. 

From the values in Table 26.2 it is apparent that the refraction of a particular group of 
electrons decreases greatly as the nuclear charge increases. The group of two electrons has 
a refraction of 0.50 cm3/mol in helium, but only has 0.03 cm3/mol in C4+ . The group of 
ten in the second row has a high value of 7 cm3/mol for 02 - which drops to 0. 1 cm3/mol 
in Si4 + . Clearly, the contribution of the inner core of two electrons drops to a negligible 
value in this group of ten ; the refraction is essentially the refraction of the outer group of 
eight electrons. The more tightly the electrons are bound to the central core, the less they 
are deformed in an applied field and the less contribution they will make to the refraction 
of the compound. If the electron cloud is large, loose, and floppy it is easily deformed in the 
field ; correspondingly, the refraction is large. For this same reason the molar refraction 
(cm3/mol) roughly parallels the molar volume (cm3/mol) of the substance. 

The same argument is applied to electron groups in covalent molecules. The refraction 
of methane is attributed to the refraction offour equivalent electron groups, the pair bonds 
between the carbon and hydrogen atoms. Thus for the carbon-hydrogen bond refraction 
we can assign RC-H = !RCH4 ' Then for the C-C bond, we derive a value from the refrac
tion of ethane ; RCZH6 = 6Rc-H + Rc-c . This procedure yields RC-H = 1 .70 cm 3/mol, 
Rc-c = 1 .21 . cm3/mo!. Using these values, we can calculate the refraction of any saturated 
hydrocarbon. 

The contribution of double and triple bonds to the refraction is found from the 
refractions of H2C=CH2 and HC CH. Table 26.3 lists a few values of bond refractions. 
Note in comparing the single, double, and triple carbon-carbon bond that the refraction 
increases with the multiplicity of the bond. The electron pairs in the n bonds are looser 
than those in the single bond. The values in the table for groups including an oxygen show 
that the refraction depends on the mode of attachment of the oxygen. The refraction, which 
includes the two electron pairs on oxygen as well as the bonding pairs, is different in 
ketones, ethers, and alcohols. 

For simple compounds the sum of the group refractions yields the molar refraction 
of the compound with reasonable accuracy. Difficulties show up in compounds with 

Tab le  26 .3  
M o l a r  refract ions of e lectron g roups 

Group RD/{cm3/mol) Group RD/{cm3/mol) Group RD/{cm3/mol) 

H-H 2.08 H C 
C-H 1 .70 '-. " 3.76 '-. " 2 .85 0 0 
C-C 1 .21  / " / " 

H C 
C=C 4. 1 5  C '-. " 

C=O C-C 6.03 0 3.23 3 .42 
/ " 

H 

By permission from C. P. Smyth, Dielectric Behavior and Structure. New York : McGraw-Hill, 
1955.  
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conjugated double bonds, which have a higher refraction than would be expected. In 
a conjugated system the electrons in the n bonds are free to move over the entire molecule ; 
consequently they are " looser " and more easily deformed. The additional contribution to 
the refraction is called " exaltation." 

26 .4  I N TE R M O L EC U LA R  F O R C ES 

Having described the methods used to obtain such properties as polarizability and dipole 
moment, we return to the problem of intermolecular forces. If two polar molecules have the 
proper orientation, their positive and negative ends produce a mutual attraction between 
the molecules. Furthermore, since the field of one polar molecule should induce a dipole 
moment by distortion of the electron cloud of the other molecule, this effect leads to a 
mutual attraction of the molecules. It is possible to construct a purely electrostatic theory 
of intermolecular forces, at least for polar molecules, based on this mutual interaction. 

To calculate the energy of interaction between two dipoles, consider the approach of 
two dipoles end to end as shown in Fig. 26.4. Let the charge on the ends of the dipoles be q 
and the charge separation be a. The dipole at the left, which produces a field E, is fixed at the 
origin of the coordinate system. The field is, by definition, the force acting on a unit positive 
charge at the point in question. We may form the second dipole at the distance r from the 
first by bringing up the two charges + q and - q, one at a time. The work required to bring 
- q from infinity to the position r is the integral of the force acting on the charge E( - q), 
multiplied by - dr, the distance moved : S:o E( - q) ( - dr). Similarly, the work required to 
bring + q  from infinity to r + a is S:o+ a E( + q) ( - dr). The total potential energy W of the 
dipole at r is the sum of these two integrals : fr fr + a 

foo foo W = Eq dr - Eq dr = - Eq dr + Eq dr, 
00 00 r r + a 

where the change in sign in the second expression is effected by interchanging the limits of 
integration. The first integral may be written as the sum of two terms so that 

(fr + a foo ) foo fr + a 
W = - Eq dr + Eq dr + Eq dr = - Eq dr. 

r r + a r + a  r 
In the limit as a --l- 0, the quantity Eq is constant in the range of integration, and we have 
W = -Eqa. But the dipole moment is m = qa, so that 

W = - Em, (26.26) 

where W is the potential energy of a dipole of moment m in the field E produced by the 
other dipole. 

So far as electrostatics is concerned, Eq. (26 .26) is fine for classical dipoles, that is, 
disembodied electrical charges at certain fixed distances of separation. The situation with 
molecules is not so simple. Consider molecule 1, having a permanent dipole moment J.l, and 
a fixed orientation in space. Molecule 2 approaches. The orientation of the dipole axis of 
molecule 2 relative to molecule 1 is completely random. The field of molecule 1 acts on mole-

o r 
�I ------- r------�·I 

e (£) 0 0 i-a4 i-a-j F i g u re 26.4 
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cule 2 to induce a dipole moment in molecule 2. The induced moment may result from 
distortion or orientation of a permanent moment. In either case, the induced moment is in 
the direction of the field. We write 

(26.27) 

where mz is the moment induced in molecule 2 by E 1, the field of molecule 1 ;  the quantity 
az is the polarizability of molecule 2. [Compare with Eq. (26 . 12).J 

To induce the dipole momcnt, a charge q must be moved through a distance a ;  the 
element of work dW' done in this process is the force E1 q multiplied by the distance moved 
da. Hence, dW' = E1q da. Since mz = qa, then dmz = q da so that 

W' = f dW' = Lm2E1 dmz · 
From Eq. (26.27), E1 = mz/az , so that 

W, - 1m2 mz d _ m� - - mz - -· o az 2az 
This can be expressed in terms of E1 by using Eq. (26.27) again : 

W' = taz Ei. (26.28) 

The total energy Wz of molecule 2 in the field of molecule 1 is the sum of the potential 
energy due to its position, which is given by Eq. (26.26), and the energy of distortion or 
orientation given by Eq. (26.28) :  

which in view of Eq. (26.27) becomes 

Wz = - azEi + taz Ei = -taz Ei· 
A similar expression, W1 = -ta1EL can be written for the energy of molecule 1 in the 
field of molecule 2. The interaction energy per molecule lti is the sum 

lti = t(W1 + Wz) = -ta1E� - taz Er. 
If the molecules are the same kind, then a1 = az = a and E1 = Ez = E. Therefore 

(26.29) 

Since a is positive and EZ is positive, the interaction energy is negative. The molecules are 
lower in energy at the distance r than at r = Cf) (E = 0 at r = Cf) .  This lower energy means 
that the molecules attract each other because ot their mutual influence. 

The remaining difficulty is that the field depends on the angle of approach of the two 
molecules. If EZ is averaged over all the possible angles of approach, then <EZ) = 
2/1z /(4nco)Zr6 . Using this value of <EZ) in Eq. (26.29) yields 

a/1z 
lti = - (4 )Z 6 · nco r 

But, by Eq. (26.20), a = ao + /1z /3kT, so that 

(26.30) 

(26. 3 1 )  
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where the first term represents the attraction resulting from the distortion of the electron 
cloud of one molecule by the permanent moment of the other molecule, and the second 
term represents the attraction resulting from the favorable induced orientation of the 
permanent moment of one molecule by the field of the other. The order of magnitude of W; 
is easily estimated : /1 ;:::0 3 x 10- 3 0 C m, IX ;:::0 10 - 40 C m2 (V, 4nfo ;:::0 10 - 1 0 C V jm. If 
we calculate the interaction when the molecules are very close to each other, r ;:::0 10- 1 0 m. 
From Eq. (26 .30) we obtain 

(10- 40 C m2jV)(3 x 10- 30 C m)2 
W; ;:::o - (10 l O CjV m)2(1O 1 0 m)6 - 9 x lO- 2° J ;:::o - 50 kJjmol. 

Since this is the correct order of magnitude of energies of vaporization of liquids, it seems 
that this may be a reasonable way to explain the cohesive energies of liquids. 

26 .4 . 1  The  D i spers i o n  E n e rgy 

The treatment of  intermolecular forces in Section 26.4 presupposed that the molecules 
possess a permanent dipole moment. We now ask how it is possible for two molecules 
such as H2 or CH4 or argon, which have no permanent dipole moment, to attract one 
another. This pro blem was first considered by F. London ; the forces producing attraction 
are sometimes called London forces, sometimes dispersion forces. 

To visualize the physical situation consider an atom of an inert gas such as helium or 
argon. The electron distribution around the positive nucleus is spherical so that there is no 
net dipole moment. However, the electron distribution is an average over time (see 
Section 19 . 12). Suppose that the electrons are moving relative to the nucleus in such a way 
that the time average of the electron positions yields the spherical electron cloud, yet at any 
instant the atom has a separation of positive and negative charge, a dipole moment. The 
orientation of the dipole moment vector changes constantly as the motion continues so 
that the average dipole moment is zero . 

If two such atoms are brought near one another, each has a momentary dipole and the 
electronic motions in the two atoms are coupled by the electrical interaction of the mo
mentary dipoles. The electronic motions in the two atoms synchronize so that the mo
mentary dipoles remain in an attractive orientation, and thus lower the energy of the 
system. The interaction energy is 

3 ( eto ) 2 ( 1 ) Ud = -"4hvo 4nfo r6 (26.32) 

For many simple molecules the quantity hvo is equal to the ionization energy of the mole
cule. The polarizability 1X0 can be calculated from the molar refraction of the liquid. 

The values of 1X0 parallel those of the volume of the molecules. Therefore the dispersion 
energy is greater for large than for small molecules. Comparing the large iodine molecule 
with the small fluorine molecule, we note that iodine is a solid at room temperature, while 
fluorine is a gas. This implies that the intermolecular forces are larger in iodine than in 
fluorine. The values of hvo are slightly different, also, but this effect is minor compared with 
the effect of the larger molecular volume. The dispersion interaction is usually the most 
important part of the interaction even if the molecules have a dipole moment. For any 
molecule the interaction energy per pair, Vi ' is a sum of terms ; Eqs. (26.3 1) and (26.32) : 

U. 
_
_ 

_ 
21121X0 2/14 31X6 hvo 

I (4nfo)2r6 3( 4nEo)2 k Tr6 4( 4nfo)2r6 . (26.33) 
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* 26 . 5  I NT E RACTI O N  E N E R G Y  A N D 
T H E  VA N D E R  WAALS " a "  

The attractive forces discussed so far are inversely proportional to the sixth power of the 
distance of separation r of the molecules, so we write Eq. (26.33) in the form 

A 
Vi =  - 6 ' r (26.34) 

where A is a constant of proportionality having a different value for each kind of molecule. 
The energy Vi is the interaction energy of a pair of molecules separated by a distance r. In a 
gas, the distances of separation may have many different values. What is the average 
interaction energy between all the molecules of a gas ? 

To solve this problem we fix our attention on a molecule at the center of a spherical 
container of radius R, having a volume v = 4nR 3/3 . If there are N molecules in the con
tainer, then the number per unit volume is N. How many molecules are at a distance 
between r and r + dr from the central molecule ? The volume of the spherical shell 
bounded by spheres of radii r and r + dr is d V.hell = 4nr2 dr. The number, dN, of molecules 
in this shell is dN = N4nr2 dr. The energy of interaction of these molecules with the 
one at the center is Vi dN ; the average interaction energy of all the molecules with the one 
at the center is f U· dN <U;) = T '  
Using Eq. (26. 34) for Vi and the value of dN, we obtain 

<V .) = _ 
4nAN fR dr = 4nAN (� _ �) , N a r4 3N R3 (j3 ' (26 .35) 

where the lower limit (j is the distance of closest approach of the centers of the molecules, 
the molecular diameter (Fig. 26.5). 

In any reasonable situation, the radius R of the container is very much larger than (j, so 
that Eq. (26.35) reduces to 

(26 .36) 

which is the average interaction energy per pair of molecules in the gas. The total interac
tion energy is obtained by multiplying this average by the number of pairs of molecules . 
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........... """'- - - - _ / F i g u re 26.5  The exc l uded vo l u me.  
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If there are N molecules, the first one of a pair may be chosen in N ways, the second member 
may be chosen in N - 1 ways, then the total number of pairs is the product of N(N - 1) ; 
since N is very large, this is effectively equal to N2• But this enumeration of the number of 
pairs counts both the pair between molecules a and b and the pair between molecules b and 
a as being different ; so we divide by 2 and get !N2. The total interaction energy is 

U = !N2(Ui) = _ 
2rr��A 

The energy per mole U = N A U / N = -2rrN AN A/3a3 ; the volume per mole V = N AI N, 
so that 

By differentiation we obtain 

u = _ 
2rrN1 A 
3a3 V 

. 

(au) 
_ 

2rrN;, A 
ay T 

- 3a3 V2 . 

(26 .37) 

(26.38) 

Problem 10. 1  required proof that (au/av)y = a/V2 for a van der Waals gas .  Comparing 
this result with Eq. (26.38) shows that the van der Waals constant a is given by 

2rrN1 A 
a = 

3a3 • (26.39) 

The form of Eq. (26.38) is in fact a justification of the form of the term a/V2 in the van der 
Waals equation. The van der Waals a is proportional to the coefficient A in the interaction 
energy. Comparing Eqs. (26 .33) and (26.34), we see that A depends onL temperature if the 
molecule has a permanent dipole moment. Thus we expect, correctly, that the van der 
Waals equation would be improved considerably if a were allowed to depend on tempera
ture. 

For the sake of completeness we note that the van der Waals b is related to the volume 
of the molecules and therefore to a. Figure 26.5 shows that the center of a molecule cannot 
come closer than a distance a to the center of any other. A molecule thus excludes the 
volume Vx = j-rra3 • If molecules are added to a container one by one, the volume available 
to the first molecule is V, and that available to the second is V - Vx ; if Vi is the volume 
available to the ith molecule, then Vi = V - (i - 1)vx . The average available volume is 
V - b = (L vi)/NA . It is easy to show that (L vi)/NA = V - !NA vx , so that 

b = !NAvx = irrNAa3 • 
But the volume of the molecule Vm = !rr(a/2)3 = vx/8, so that 

b = !NA(8vm) = 4NA vm • 

(26.40) 

(26.41)  

Since N A vm is the volume of the molecules, b i s  four times the volume of the molecules. 
Using Eq. (26.40) to express a3 in terms of b, Eq. (26.39) becomes 

4rr2Nl A 
a = 

9b 
(26.42) 

From the molecular diameter a, b can be calculated by Eq. (26.40). Then, knowing A, we 
can calculate the constant a using Eq. (26.42). 
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Considering that the van der Waals equation is not a particularly good one for the inter
pretation.of the p- V-Tdata, it seems a hollow victory to be able to calculate the constants a 
and b. Illustration of the technique involved is the more important achievement. In seeing 
how to proceed from the energy of interaction of two molecules to the macroscopic con
stants a and b, we gain insight into the refinements and modifications that could be made to 
yield a more accurate equation of state than the van der Waals equation. Even without that 
insight it is consoling to be able to calculate van der Waals constants from such seemingly 
unrelated properties as the refractive index, the dielectric constant, and the ionization 
energy of the molecule. 

Returning to the energy of interaction between two molecules as a function of distance, 
we see that the energy at large distances decreases as 1/r6 until r reaches the value (1. At 
r ::; (1, the energy becomes infinitely positive ; this is shown by the vertical line in Fig. 26.6(a). 
'this form of the interaction energy results from the supposition that the molecules are 
" hard spheres "  of diameter (1. 

Considering the diffuse electron cloud around the molecule, we would be surprised if 
the molecule behaved as a hard sphere of definite diameter. The repulsion of the molecules 
should begin smoothly as the electron clouds of the molecules begin to encroach upon 
each other's domain. The repulsion energy has been given many different mathematical 
forms. One of the commonest forms is a term proportional to l/rn, where n is a large integer. 
The total interaction energy would then be written 

A B Ui = - - + -. 
r6 rn (26.43) 

This form of the interaction law is called the Lennard-Jones potential. In practice the 
law is most easily handled if n = 1 2 ;  it is then called a 6-12 potential. The shape of the 
Lennard-Jones potential is shown in Fig. 26.6(b). 

Other modifications of the interaction energy can be made by adding additional 
attractive terms in 1/r8 , for the dipole-quadrupole interaction, and even higher terms for 
the higher multipole interactions. These higher terms arise because the distance between 
positive and negative charges in a molecular dipole is not infinitesimal but finite. These 
higher terms make comparatively small contributions to the interaction energy. 
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F i g u re 26.6 I nteract ion energy as a fu nction  of the d i stance of separation .  
( a )  van  der  Waa ls  potent ia l .  (b)  Lenna rd-Jones potentia l .  



674 I ntermo lecu la r  Forces 

26 . 7  C O M PA R I S O N  O F  T H E C O N T R I B UTI O N S  TO T H E 
I NTE RACTI O N  E N E R GY 

In Section 26. 1  it was shown that the boiling point is a qualitative measure of the inter
action energy between the molecules of the substance. Three contributions make up the 
interaction energy : 

1 .  The orientation effect, produced by the mutual action of the permanent dipole 
moments of the molecules ; 

2. The distortion effect, produced by the interaction of an induced dipole moment of one 
molecule with the permanent dipole moment of another molecule ; 

3. The dispersion effect, produced by the synchronization of the electronic motion in two 
molecules, which results in momentary dipole moments oriented so as to produce an 
attraction between the molecules. 

First we compare the interaction energy, the boiling points, of molecules that have no 
permanent dipole moment. The interaction energy is due solely to the dispersion effect, and 
this, by Eq. (26.32), depends on the polarizability eto , and hvo , which may be thought of as 
the binding energy of the least tightly bound electron in the molecule. In most molecules, 
hvo � 10 eV � 1 MJ/mol and does not change very much for different molecules ; we will 
assume that it has the same value for all the molecules under discussion. Listed in Table 
26.4 are the number of electrons N, the polarizabilities eto ,  and the boiling points 1;" for a 
number of simple molecules that have no permanent dipole moment. The boiling point 
increases with the value of eto , as we expect. The atoms with more electrons have larger and 
floppier electron clouds that are more easily deformed in a field ; the polarizability is there
fore larger, and this is r�ected in a larger value of the interaction energy and a higher 
boiling point. 

As a general rule the more electrons a molecule has, the larger and less tightly held will 
be the electron cloud. The large loose cloud is easily deformed, so that the polarizability, 
the dispersion energy, and the boiling point are all large. A few more examples of this for 
molecules that have f1 = 0 are listed in Table 26.5 . The increase in boiling point of hydro
carbons with increase in molecular weight is, of course, a result of the larger number of 
electrons, and is not immediately related to the larger mass. 

Tab le  26.4 

Molecule He Ne Ar Kr Xe 

N 2 10 18 36 54 
lXo/(1O- 40 C m2jV) 0.226 0.436 1 . 8 1  2.74 4.46 
7b/K 4.216  27.3 87.3 1 19.9 165 . 1  

Tab le  26 . 5  

Molecule Hz Nz Oz CH4 CzH6 C3HS 

N 2 14 16 10 18  26 
lXo/(1O- 40 C mZ jV) 0.90 1 .9 1  1 .72 2.9 5.0 7.1 
7b/K 20.4 77.3 90.2 1 1 1 . 7  1 84.5 23 1 
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Tab le  26 .6  

Molecule Isobutane Isobutylene Trimethyl amine 

Formula (CH3)3CH (CH3)2C=CH2 (CH3hN 
lXo/(1O� 40 C ml jV) 9.30 9 .30 8 .99 
f1/1O� 30 C m 0.440 1 .63 2.23 
Ib/K 263 267 278 

Tab le  26.7 

Molecule Propane Dimethyl ether Ethylene oxide 

Formula (CH3)lCHl (CH3)lO ClH40 
lXo/(10�40 C mljV) 7 . 1  6.7 5.8 
f1/1O� 30 C m 0.28 4.34 6.34 
Ib/K 23 1 248 284 

Tab le  26.8 

Dichloro benzene Dinitro benzene 

para meta ortho para meta ortho 

f1/1O� 3O C m  0 5 .74 8.34 0 1 3 .0 20 
Tb/K 446 445 453 572(subl) 576 592 

Next we examine the effect of a permanent dipole moment, choosing first a group of 
small molecules with about the same number of electrons so that 1X0 is about the same, as in 
Table 26.6. The presence of the dipole moment in isobutylene and trimethyl amine results 
in a slight increase in boiling point. The effect is not very dramatic, but then the dipole 
moments are not very large. The effect of large dipole moments on moderately sized mole
cules is illustrated by the compounds listed in Table 26.7. In these compounds, the polariz
abilities are roughly the same ; the dipole moments are large, and we see a marked effect on 
the boiling point. 

If the molecules are large (have many electrons), the presence or absence of a dipole 
moment makes little difference in the boiling points ; see Table 26.8 .  The three dichloro
benzenes have about the same value of 1X0 = 17 X 10 - 40 C m2 IV; for the three dinitro
benzenes, 1X0 = 21 X 10- 40 C m2 IV. In these large molecules, the dispersion interaction 
is the most important part of the cohesive energy. The presence or absence of a dipole 
moment in the dichlorobenzenes makes little difference in the boiling point. In the case of 
the dinitro benzenes, the increase in dipole moment from 0 to 20 x 10 - 3 0 C m produces 
only a 20 K change in boiling point. Compare this with propane and ethylene oxide, where 
an increase in f.1 from 0 to 6.34 x 10 - 3 0 C m increases the boiling point by 53 K. 

We can conclude that the larger and more complicated a molecule is, the less the 
presence or absence of a dipole moment matters to the interaction energy. The dipole 
moment must be quite large in a large molecule if it is going to affect the interaction energy. 
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26. 7 . 1  H yd rogen F l u o r i d e, Water, A lcoho ls ,  A m i nes 

We return to the discussion of small molecules and consider ethyl alcohol, which has 

(xo = 5.8 X 10- 40 C m2/V 

and 

f1, = 5.67 X 10- 3 0 C ill. 

From our experience with dimethyl ether and ethylene oxide, we should expect a boiling 
point somewhere between the values for those compounds, a value somewhat less than 
284 K. The actual boiling point is about 70 K higher, 3 52 K. We can compare HF ; 
(xo = 0.9 X 10- 40 C m2/V, f1, = 6.37 X 10- 3 0 C m. Looking at ethylene oxide, which has 
the same f1, but a considerably higher (xo , we expect that HF should boil at a temperature 
considerably below 284 K. HF boils at 291 K. Water and ammonia behave in the same 
way. The properties of the several compounds are shown in Table 26.9. By comparison of 
any of the compounds on the left of Table 26.9 with ethylene oxide, all should have boiling 
points considerably lower than 284 K. Methane and neon fulfill this expectation ; ammonia 
has a somewhat lower boiling point, but not as low as one would expect. Water boils 90 K 
higher than ethylene oxide. Since NH3 , HF, and H20 are very small molecules, we might 
argue that this increase in interaction energy results from dipole-dipole interaction at very 
close distances. This is not so, as we can demonstrate by comparing methyl fluoride and 
methyl alcohol, which are essentially the same size, as in Table 26. 10. Methyl alcohol has a 
lower value of (xo and f1, and so should have a lower boiling point. In fact the boiling point 
is higher by 143 K. A final example is provided by dimethyl ether and ethyl alcohol. These 
molecules are roughly the same size, as shown in Table 26. 1 1 . It is apparent that the boiling 
point of ethyl alcohol is about 100 K too high. 

Most compounds containing OR, NH, or NH2 groups have higher boiling points 
than would be predicted on the basis of their dipole moments and polarizabilities. Among 
the fluorides, only HF has this anomaly ; other fluorides behave normally. 

Tab le  26 .9 

Hydrogen Ethylene 
Molecule Neon Methane Ammonia Water fluoride oxide 

Formula Ne CH4 NH3 H2O HF C2H4O 
0:0/(10- 40 C m2 jV) 0.436 2.88 2.60 1 .77 0.89 5.8 
11/10 - 30 C m 0 0 4.87 6 . 17  6 .37 6 .34 
7b/K 27.3 1 1 1 . 7  240 373 293 284 

Tab le  26. 1 0  Tab le  26. 1 1 

Formula CH3F CH30H Formula CH3OCH3 C2HsOH 

0:0/(10- 40 C m2/V) 4.27 3 .3  0:0/(10-40 C m2 jV) 6.7 5 . 1 8  
11/10- 30 C m 6.04 5.67 11/10- 30 C m 4.34 5.67 
7b/K 195 338 7b/K 248 352 
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26 .8  T H E H Y D R O G E N  B O N D 

The anomalies observed in the boiling points of compounds containing hydroxyl, amino, 
and imino groups indicate that there exists in these compounds an additional interaction 
energy over and above the van der Wa'als interaction energy. The m,agnitude of this addi
tional energy is comparable to the van der Waals interaction energy, being of the order of 
20 to 40 kJjmol. This additional energy is a result of the formation of a weak bond between 
the oxygen atoms in two molecules of ethanol, for example. A hydrogen atom lies between 
the two bonded oxygen atoms. This bond is called a hydrogen bond and is given the 
conventional structural representation, O · . ·H-O. A hydrogen bond can be formed 
between any two highly electronegative atoms ; this requirement restricts the hydrogen 
bond to fluorine, oxygen, and nitrogen, so that the following types occur : F-H· . · F, 
O-H- . · 0, N-H· . ·N ;  and, of course, mixed types such as N-H· . · 0. The effects of 
hydrogen bonding with S and CI are very slight. 

Although much has been written in the attempt to explain the stability of the hydrogen 
bond, its fundamental nature remains somewhat obscure. Because of reluctance to assign 
two covalent bonds to a hydrogen atom, great emphasis has been placed on interpreting 
the bond on a purely electrostatic basis, which has been successful in explaining some of 
the properties of the hydrogen bond. More recently, it has been realized that hydrogen can 
be connected to more than one atom by bonds that are distinct from the ordinary covalent 
bond, since they involve three nuclei rather than two, yet seem to have some characteristics 
of the covalent bond. 

One of the most striking illustrations of the effect of hydrogen bonding on physical 
properties is shown by the plot of boiling points of the hydrides of the elements in periodic 
groups IV, V, VI, and VII, shown in Fig. 26.7 ; the horizontal axis serves only to separate 
one compound from the next. The melting points of these compounds exhibit a similar 
anomaly. The high boiling points of water, ammonia, alcohols, amines, and hydrogen 
fluoride are a consequence of the fact that these substances are hydrogen bonded in the 
liquid into polymers ; for example, a liquid alcohol can be viewed as a mixture of polymers, 

R R R 
I I I 

O-H· · ·O-H" ' O-H 

Once we adopt the view that these kinds of compounds are capable of association, then a 
number of diverse observations come into focus. 
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F i g u re 2Ei.1 B o i l i ng poi nts 
of hydr ides .  
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Hydrogen bonding accounts for unusually high melting and boiling points of such 
compounds as alcohols, sugars, organic acids, and simple inorganic acids such as H2S04 , 
HN03 , H3B03 . A compound such as urea, NH2 -CO-NHz , is solid at room tempera
ture, but acetone, CH3-CO-CH3 , having the same number of electrons, is a volatile 
liquid. Urea is hydrogen bonded ; acetone can form hydrogen bonds only in the enol form, 
CH2=C(OH)CH3 . Boric acid should be a gas or at worst a volatile liquid at room tempera
ture ; BF 3 , with the same number of electrons, is a gas. In fact, boric acid is an involatile 
solid that melts with decomposition at 1 85 °C. The formula, when written correctly as 
B(OH)3 , betrays the possibility of hydrogen bonding. 

The unusual values of entropies of vaporization of these associated liquids are under
standable. While so-called normal liquids have entropies of vaporization of about 
90 J/K mol, the values for these hydrogen-bonded compounds are usually (but not always) 
higher. This is illustrated by the following data. 

Compound H2O NH3 CH30H CH3NH2 HF CH3COOH 

�Svap/(J/K mol) 109 97 105 97 26 62 

In those cases for which LiSvap is higher than the normal value, the liquid, as a result of 
being associated, has a higher degree of order than a normal liquid. Therefore the transition 
from liquid to gas is attended by an unusually large entropy increase. Substances such as 
HF and acetic acid, which have unusually low values of LiSvap , are polymerized even in 
the vapor state. This polymerization reduces the disorder in the vapor and so lessens the 
value of LiSvap • It is known independently of this that HF is highly polymerized in the vapor 
state. The polymers are zigzag chains (or rings). The chain in HF has the structure 

F 
"

H 
F 

"
H H 

/ 
F 

F 
"

H 

The vapor of acetic acid contains an appreciable amount of the dimer 

This accounts for the low value of LiSvap for this substance. 
Hydrogen bonding also affects the appearance of the infrared spectrum. The OH 

group absorbs at a frequency 0[3500 cm - 1 . If the spectrum of a hydroxyl compound is 
measured in the vapor, where it is not hydrogen bonded, this absorption shows up as a 
sharp peak centered at this frequency. If the spectrum of the hydrogen-bonded compound 
is examined, the peak is greatly broadened and the center is shifted to a lower frequency. 
The broadening of the absorption peak is characteristic of hydrogen bonding. 

Additional evidence of hydrogen bonding in solids is provided by x-ray diffraction 
studies of crystals . In the crystal of a substance containing hydroxyl groups, certain of the 
oxygen-oxygen distances are abnormally short, indicating bond formation between these 
oxygens. There are just enough of these short distances to account for the hydrogen atoms 
in the hydroxyl groups. 
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26. 1  Sketch Debye plots for gaseous ·HF, HCI, HBr and HI. Indicate the relative sizes of the inter
cepts and the slopes. 

26.2 Explain why the net attractive forces between polar molecules decrease as T increases. Compare 
this with the T dependence of the molar polarization of a polar substance in an external field. 

26.3 Sketch and explain the behavior of the polarization of a polar substance as a function of the 
frequency of an external electric field. 

26.4 The larger a molecule, the larger is the dispersion energy, and the higher is the boiling point. Use 
this idea and the T dependence of the polar attractive energy to rationalize the relative influence 
of J1 on the boiling points displayed in Tables 26.6, 26.7, and 26.8 . 

P R O B LE M S  

26. 1 By combining the thermodynamic equation of state with the van der Waals equation, we can show 
that (8Uj8V)T = ajV2 . Below the critical temperature, the van der Waals equatiQI,l predicts, 
approximately, a liquid volume equal to b, and a gas volume equal to RTjp. Assuming tliat the 
substance follows the van der Waals equation, what increase in energy attends the isothermal 
expansion of one mole of a substance from the liquid volume to the gaseous volume? 

26.2 A.D. Buckingham and R.E. Raab [J. Chern. Soc. 55 1 1  ( 1961)] measured the limiting value at 
zero pressure of the molar polarization of gaseous acetonitrile as a function of temperature. 

t;oC 
Pj(cm3 jmol) 

80.64 
273.68 

100.48 
258 .50 

1 3 1 .69 
239.26 

From a least-squares fit of the data, find c(o and J1 for CH3CN. 

160.00 
224.01 

26.3 From the values in Table 26.3, calculate the molar refraction of butane, propene, and acetone. 
26.4 From the value of RD in Table 26.3, calculate the polarizability of water. 
26.5 Compare the magnitude of the average interaction energy between two molecules in the two situa

tions : a liquid having a molar volume of 20 cm3 ; a gas having a molar volume of 20,000 cm3 • 
26.6 The Lennard-Jones potential f = - Ajr6 + Bjr" can be expressed in terms of fm' the energy at 

the minimum, and ro , the distance of separation at the minimum. Find A and B in terms of 
ro , fm ' and n. Write the potential in terms of the new parameters. If (J is the distance of separa
tion when f = 0, find the relation between ro and (J. 

26.7 Using "the results in Problem 26.6, note the simplification in the form of f if n = 12. Write f in 
terms of fm and ro and in terms of fm and (J if n = 12 .  

26.8 Calculate the dispersion interaction energy at 500 pm separation between two molecules of 

a) neon, c(o = 0.436 X 10- 40 C m2jV ; N A hvO = 2.080 MJjmol ; 
b) argon, C(o = 1 . 8 1  X 10- 40 C m2jV ; N A hvO = 1 . 520 MJjmol ; 
c) kryp!oq, C(o = 2.74 X 10- 40 C m2jV ; N A hvO = 1 . 350 MJjmol ; 
d) xenon, C(o = 4.46 X 10-40 C m2jV ; N A hvO = 1 . 1 70 MJjmol. 
e) Plot the boiling points of each (Table 26.4) as a function of the dispersion energy. 

26.9 For water, C(o = 1 . 77 X 10- 40 C m2jV, J1 = 6 . 17  X 10- 30 C m, NA hvo = 1 .216 MJjmol, and 
(J = 276 pm. At 20 °C evaluate and compare the three contributions to the interaction of a pair of 
water molecules at the distance of closest approach. 

26.10 According to classical electrostatics, the polarizability of a perfectly conducting sphere in a 
vacuum is equal to 41Ofo r3 where r is the radius of the sphere. Using this relation, and the data 
in Table 26.2, compare the calculated radii of the species in the second row of Table 26.2 ; 
02-,  F - ,  Ne, and so on. 
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27 . 1  T H E  STR U CT U R A L  D I ST I N CTI O N  B ETWE E N  
S O L I D S  A N D L I Q U I DS 

The word " solid " will be applied only to crystalline solids, since it is always possible to 
distinguish between a crystalline solid · and noncrystalline phases such as liquid and 
amorphous " solids." Structurally, the constituent particles-atoms, molecules, or ions
of a crystalline solid are arranged in an orderly, repetitive pattern in three dimensions. 
If we observe this pattern in some small region of the crystal, we can predict accurately the 
positions of particles in any region of the crystal however far they may be removed from the 
region of observation. The crystal has long-range order. 

The particles composing a liquid are not arranged in such a precise fashion. In a small 
region of a liquid, there may appear to be a pattern of arrangement. However, if we observe 
a neighboring region, the pattern will be somewhat different, or if it is nearly the same, it 
rna y not be accurately joined to the first region. In terms of the arrangement of the particles, 
a liquid has short-range order but lacks the long-range order that characterizes the solid. 
Figure 27. 1 illustrates the distinction in two dimensions. The difference between solid and 
liquid is the difference between two ways of putting ball bearings in a box : they may be 
carefully packed row upon row or may simply be dumped into the box. 

The irregular arrangement of particles in the liquid results in the appearance of voids or 
holes here and there throughout the structure. Note that a nearly regular arrangement exists 
around many of the particles in Fig. 27. 1 (b). The presence of the holes requires a larger 
volume, and in most cases the volume of the liquid is larger than that of the solid. The 
ease of flow is also related to this larger volume of the liquid. Amorphous " solids " have 
the same structural features as liquids, and are conveniently regarded as extremely viscous 
liquids. 
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(a) 

F i g u re 27 . 1  Schematic view of struc
tu re i n  a c rysta l  ( a )  and  i n  a l i qu id  (b) . (b) 

27 . 2  A N  E M P I R I CA L  C LASS I F I CATI O N  O F  S O LI D  TYP E S  

There i s  n o  unique way o f  classifying solids. The method chosen depends in great measure 
on the purpose at hand. For the present we will classify solids according to the type of 
bond that holds the constituent particles of the solid together. 

Four types of bonds are operative in binding individual species into a crystal. On this 
basis we distinguish four types of solids : (1) metals, (2) ionic crystals, (3) van der Waals 
crystals, and (4) covalent crystals. The crystals bound by hydrogen bonds are usually 
classed with van der Waals crystals, since the strength of bonding is of the same order of 
magnitude in both types. However, since the arrangement of the hydrogen atoms in a 
molecule permits hydrogen bonds only in special directions, the hydrogen-bonded crystals 
have some of the features of covalent crystals. 

In the first three solid types (metals, ionic crystals, van der Waals crystals), the forces of 
interaction that hold the particles together do not act in any preferred direction ; in covalent 
crystals, the bonds are formed only in special directions because of the directional char
acter of the covalent bond. The principles governing the direction of bond formation in 
covalent crystals are the same as those governing the covalent bond in molecules. 

27 . 3  G EO M ET R I C  R EQ U I R E M E N TS I N  T H E  
C LO S E - PAC K E D  STR U CT U R ES 

If we ask how atoms or molecules can be arranged in "a regular way to build a crystal, it 
seems that the possibilities might be unlimited. Although there are a great number of 
possible arrangements, a relatively small number ofthese recur again and again. One factor 
that limits the possibilities is the requirement that the arrangement be the most stable one 
energetically. Some departure from this principle is allowed, but generally different 
crystalline forms of a single substance do not differ greatly in energy. Energies of transitions 
between different crystalline forms of a substance are usually of the order of 1 kllmol. 

First consider those crystals in which the energy of interaction between the particles 
does not depend on the direction of approach. As two particles approach, the energy of the 
system decreases and passes through a minimum at some distance. The two-particle system 
has its greatest stability at this point. If a third particle is introduced, the energy of the 
system decreases further. The maximum stability is attained when each particle in the 
aggregate is surrounded by the greatest possible number of neighbors. In brief, the particles 
must be as closely packed as possible. If the particles are spheres of the same size, the 
problem reduces to how to pack as many balls as possible in a given space. 
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F i g u re 27.2  

Clearly, the balls will be packed in layers, and each layer must be closely packed. We 
begin by arranging the layer as shown in Fig. 27.2. In the layer, each sphere has six nearest 
neighbors. To build the crystal in three dimensions, we stack the layers one on top of the 
other in a regular way. Two possibilities exist after the second layer is put on. Consider 
sphere A in the figure and suppose that the spheres in the next layer nestle in the notches at 
the positions marked with dots. Three of these will make contact with A.  In this second 
layer there is a notch over A, but there are also notches over the positions marked with 
crosses. The third layer may then repeat the arrangement in the first layer or not. If the third 
layer repeats the first, then there are only two kinds of layers, denoted x and y, and the 
patterns of layers is xyxyxy . . . .  If the third layer does not repeat the first, it is denoted by z 

and the pattern of layers is xyzxyzxyz . . . .  * These two arrangements are common ones in 
metals and in van der Waals crystals composed of effectively spherical molecules such as 
CH4 , HCl, Ar. 

The arrangement of close-packed layers in the pattern xyxy . . .  is the hexagonal close
packed structure (hcp) ; the pattern xyzxyz . . .  is the cubic close-packed (ccp) or face
centered cubic (fcc) structure. In each of these structures, every sphere is in contact with 
twelve others : six in its own layer, three in the layer above, and three in the layer below. 
The twelve coordination in these structures is shown by an exploded view in Fig. 27.3(a) 
and (b), and in a different view in Fig. 27.3(c) and (d). The hcp and fcc structures are the 
typical structures encountered in metals. The high coordination number (twelve) in these 
structures results in a crystal of comparatively high density. 

In some structures the repetition pattern of the close-packed layers is more complicated, 
and we find the CH notation is useful to describe the structure. If we choose any close
packed layer, and if the two layers on each side of it are identical, the layer is designated 
by H, since repetition of these layers will build the hexagonal close-packed structure. Thus 
the alternation xyxyxy . . .  is denoted by HHHH . . . .  If the two layers on each side of the 
chosen layer are not identical, the layer is designated by C, since repetition of layers of this 
kind will build the cubic close-packed (the fcc) structure. Thus the repetition pattern, 
xyzxyz . . .  is denoted by CCce. . . .  More sophisticated repetition patterns are possible ; 
for example, in lanthanum the repetition is xyxzxyxz . . .  , which becomes HCHCHe. . .  , and 
in samarium, we have xyxyzyzx . . .  , which becomes HHCHHe. . . . The relative simplicity 
of the CH notation for these complicated repetitions is apparent. 

Another common arrangement of spheres that occurs in a few metals is the body
centered cubic (bcc), which is built up of layers having the arrangement shown in Fig. 27.4. 
The second layer fits in the notches of the first and the pattern of layers repeats, xyxy . . . .  In 
these layers the number of nearest neighbors around any sphere is four, as compared with 
six in the close-packed layers. In the body-centered structure the overall coordination 
number is eight ; there are four nearest neighbors within the most closely packed layer, two 

* Twenty or thirty marbles or coins can be helpful in working out these arrangements. 
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(a) 

(c) 

F i g u re 27.3 Close- packed structu res. (a )  and  (c)  fcc .  (b )  and (d )  hcp.  

(d) 



Geometric Req u i rements i n  C l ose- Packed Structu res 685 

F i g u re 27.4 M ost c losely packed layer i n  bcc structure. 

in the layer above, and two in that below. As a result of the less efficient packing, the bcc 
structure has an inherently lower density than the hcp or the fcc structures. 

The positions of the atom centers in the three structures are shown in a different view 
in Fig. 27.5 .  To describe these structures completely requires the specification of the edge 
length a of the fundamental cube in the face-centered and body-centered cubic arrange
ments. The hexagonal close-packed structure requires the specification of two lengths, the 
nearest-neighbor distance a within the close-packed layer, and the distance c between the 
two repeating layers .  If the spheres were truly rigid spheres, geometry would require 
c = 1 .633a. Since the particles in a crystal are not truly rigid spheres, this relation is not . 
exactly fulfilled ; a and c must be specified· separately. In metals having the hcp structure, the 
relation is nearly fulfilled. Table 27. 1 lists a few of the metals that crystallize in the three 
structures, along with values of the lattice parameters. 

fce hep bee 

F i g u re 27.5 Locat ion of atom centers i n  fcc,  hcp, and  bcc structu res. 
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Tab le  27 . 1  
C rysta l structu re and lattice constants for common meta ls 

Hexagonal 
Face-centered cubic close-packed 

Metal a/pm Metal a/pm Metal a/pm c/pm 

Co(f3) 355 Ni 352 CoCa) 251 407 
Cu 362 Pd 389 Mg 321 521 
Au 408 Pt 392 Ti 295 468 
Pb 495 Ag 409 Zn 266 495 

Bod y-centered 
cubic 

Metal a/pm 

Cr 288 
Fe 287 
W 3 1 6  
Na 429 

Note that cobalt may be fcc or hcp depending on the temperature of crystallization. 
Some metals have structures that are slight distortions of these ; mercury, for example, has 
a rhombohedral structure related to the fcc which has been compressed along one of the 
body diagonals. 

27 . 3 . 1  Pack i n g  i n  I o n i c  C rysta ls  

The packing of  spheres in ionic crystals i s  complicated by the fact that the ions are positively 
and negatively charged. Suppose that the electrical charges on the positive and negative 
ions are equal, though opposite in sign. To build an electrically neutral structure requires 
that the number of negative ions around each positive ion be the same as the number of 
positive ions around each negative ion. If the positive and negative ions are the same size, 
we find that it is not possible to build a layer of alternating positive and negative ions with 
six positive ions around each negative ion, and vice versa, to yield a total coordination of 
twelve positive ions around each negative ion. The highest coordination possible, if the 
structure is to be electrically neutral, is that having the most closely packed layers built in 
the manner shown in Fig. 27.6a. In the layer each positive ion (shaded circles) is surrounded 
by four negative ions (open circles), and each negative ion by four positive ions. Piling up 
layers of this kind in the order xyxy . . .  yields a cubic type of structure in which the central 

. particle is an ion of one charge, with eight oppositely charged ions at the cube corners. The 
structure consists of two interpenetrating simple cubic lattices ; (a simple cubic lattice is 
shown in Fig. 27. 19) . The positions of one lattice are occupied by positive ions, while those 
of the other are occupied by negative ions. The result is the cesium chloride, CsCI, structure 
(Fig. 27.6b). 

w W 
F i g u re 27.6 ( a )  Layer i n  CsCI structu re; (b)  CsCI structu re .  

. Cl-
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F i g u re 21.7 Octahedra l  ho les i n  the fcc structure. ( a )  Centra l ho le .  ( b) Ho le  centered on  a n  edge. 

A curious compromise is reached in many ionic crystals. The crystal N aCI, for example, 
is based on two interpenetrating close-packed (fcc) lattices. The positions of one lattice 
are occupied by positive ions, while those of the other are occupied by negative ions. 
Consider the unit cube of the fcc structure in Fig. 27.7(a). There is a void, or hole, outlined 
by the octahedron, at the center of the cube. An identical octahedral hole is centered on 
each edge of the unit cube (Fig. 27. 7b). Each hole is at the center of an octahedron, which 
has atoms at each of the six apices. The centers of the octahedral holes occupy the positions 
of an fcc lattice, which interpenetrates the lattice on which the atoms are located. Small 
foreign atoms, such as H, B, C, N, can occupy these holes. Many carbides, hydrides, borides, 
and nitrides of the metals are interstitial compounds formed in this way. 

If we wish to locate comparatively large particles in these holes, then all the particles 
of the original lattice must move apart ; the structure expands to enlarge the holes to 
sufficient size. We can view the sodium chloride structure as an fcc arrangement of chloride 
ions that has expanded sufficiently to permit the sodium ions in the octahedral holes. As a 
result, neither of these interpenetrating lattices is closely packed in the sense of having all 
the particles in contact as they are in metals, but both have the symmetry of the close
packed fcc lattices. Each sodium ion is in contact with six chloride ions, and each chloride 
ion is in contact with six sodium ions ; 6-6 coordination. Figure 27.8  shows the NaCI 

F i g u re 21.8 The NaC I  structure. 
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structure ; the fcc arrangement of the negative chloride ions is apparent ; there is a sodium 
ion at the center of the cube. 

In addition to the CsCl structure, 8-8 coordination, and the NaCl structure, 6-6 
coordination, there are two structures having 4-4 coordination, the cubic ZnS (zinc 
blende) structure and the hexagonal ZnS (wurzite) structure (Fig. 27.9a and b). Note that 
the zinc blende structure is an fcc array of sulfide ions. There is a tetrahedrally coordinated 
hole at each corner of the cube ; the zinc ions occupy four of the eight tetrahedral holes. 
In wurzite, the sulfide ions form an hcp array, and the zinc ions occupy half of the tetra
hedral holes (Fig. 27.9c). 

Unsymmetrical valence types of compounds such as cubic CaF 2 and Na20 have more 
complicated structures, because the coordination number of the ion with the larger charge, 
Ca 2 + in the case of CaF 2 , must be twice that of the ion of lower charge if the crystal is to 

• Zinc 

• Sulfur 

(a) (b) 

(c) 

F i g u re 27.9 ( a )  U n it ce l l  i n  cub ic ZnS,  z inc  b lende .  (b )  U n it ce l l  i n  hexagona l  ZnS, 
wu rzite. (c )  Extended wurzite structure showi ng hexagona l  symmetry. 



., Ca2+ 
(@) F-

(a) 
F i g u re 27 . 1 0 
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• Ti 4+ @ 0 2-
(b) 

U n it ce l l s  in (a )  f luorite (cub ic)  and (b)  rut i l e  (tetragona l ) .  

be  electrically neutral. For compounds o f  the 1-2 valence type, the typical structures are 
the cubic fluorite (CaF 2) structure and the tetragonal rutile (Ti02) structure ; Fig. 27. 10. 

The Ca 2 + ions in fluorite are in a face-centered cubic arrangement. This lattice has, in 
addition to the octahedral holes mentioned earlier, holes that are tetrahedrally coordinated. 
The tetrahedral holes of the fcc structure are occupied by F- ions in fluorite. Each F- ion is 
tetrahedrally coordinated to Ca2 + ions. Figure 27. 1O(a) also shows that the Ca2 + ion on 
the top face is connected to four F- ions below it ; it is similarly connected to four F- ions 
(not shown) lying above it. The coordination of the Ca2 + ion is eight, and the fluorite 
structure is described as having 8-4 coordination. Fluorite may be considered as a face
centered cubic array of Ca2 + ions interpenetrated by a simple cubic array of F- ions. 

In rutile, having 6-3 coordination, the octahedral coordination of Ti4 + to 02 - and 
the triangular coordination of 02 - to Ti4 + is evident in Fig. 27 . 1O(b). 

We have described structures of metals and ionic crystals in terms of close-packed 
arrangements of spheres. Clearly, if the particles are not spherical, the close packing must 
be done in a manner appropriate to the shape of the particle. We could scarcely expect 
long rod-shaped molecules to pack as spheres would ; such particles pack into the crystals 
as matches in a box. 

27 . 3 . 2  The R ad i us R at i o  R u l es 

A factor of great importance in ionic crystals is the difference in size of the positive and 
negative ions. Pauling has shown how the geometric requirements for close packing of 
spheres of different sizes can be simply expressed in terms of the radius ratio p = rslrz , 
defined as the ratio of the radius of the smaller ion, r s ' to that of the larger ion, rl . 

For simple ionic compounds of symmetrical valence type, the radius ratio rules are : 

p p < 0.414 0.414 < p < 0.732 p >  0.732 

Coordination 4-4 6-6 8-8 

Structure zinc blende or NaCl CsC! 
wurzite 
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These rules enable us to predict the structure of the compound from the relative sizes 
of the two ions. Applied to many different ionic crystals of different valence types, the 
rules are quite good. There are at least two reasons for the exceptions to the radius ratio 
rules : (1 ) the ions are not rigid spheres ; (2) the ions of opposite charge are not in contact. 

27 . 4  G EO M ET R I C  R EQ U I R E M E NTS I N  C O VA L E N T  C R YSTA LS 

The notable exception to the rule of close packing appears in covalent crystals in which the 
maximum stability is obtained, not with the greatest possible number of neighbors, but by 
forming the allowed number of covalent bonds in the proper directions. This requirement 
is peculiar to the individual substance so that a generalization of the kind embodied in the 
radius ratio rules is out of the question for covalent crystals. We cannot build up typical 
structures with the ease and confidence with which we stacked spheres into layers and 
layers one upon another. Rather than struggle with this host of individual problems, we 
will make only a few elementary remarks about the subject. 

First of all, comparatively few solids are held together exclusively by covalent bonds. 
The majority of solids incorporating covalent bonds are bound also by either ionic or van 
der Waals bonds. The common occurrence is to find distinct molecules held together by 
covalent bonds and the molecules bound in the crystal by van der Waals bonds. The 
covalent bonds may hold a complex anion or cation together ; the cations and anions are 
bound in the crystal by ionic bonds. 

Only those atoms that form four covalent bonds produce a repetitive three-dimen
sional structure using only covalent bonds. The diamond structure, Fig. 27. 1 1 , is one of 
several related structures in which only covalent bonds are used to build the solid. The 
diamond structure is based on a face-centered cubic lattice wherein four out of the eight 
tetrahedral holes are occupied by carbon atoms. Every atom in this structure is surrounded 
tetrahedrally by four others. No discrete molecule can be discerned in diamond. The entire 
crystal is a giant molecule. 

Generally the covalent solids have comparatively low densities as a result of the low 
coordination numbers. This effect is intensified in those crystals in which covalently 
bound structural units are bound in the crystal by van der Waals forces. The distance 
between two units held by van der Waals forces is significantly greater than that between 
units held by covalent, ionic, or metallic bonds ; these large distances result in solids having 
comparatively low densities. 

F i g u re 21.1 1 D iamond structure. 
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21 . 5  T H E SYM M ET R Y  O F  C RYSTALS 

The symmetry exhibited by a macroscopic crystal is a consequence of the symmetrical 
arrangement of the units of structure that compose the crystal. To understand the choice 
of a unit of structure and how a repetitive structure is built from that unit, we examine the 
problem in two dimensions. Any area-filling repetitive pattern on a plane surface is based 
on a unit of pattern that may be outlined by a parallelogram (Fig. 27. 12). The entire pattern 
can be generated by translating this parallelogram, the unit of pattern, by definite distances 
parallel to its edges. We describe the unit of pattern in terms of two vectors of lengths a and 
b, which form two sides of the parallelogram. Starting at a point and moving any integral 
multiple of the distance a in the direction of the first vector, we reach an equivalent point in 
the pattern ; similarly, moving an integral multiple of the distance b in the direction of the 
second vector, we reach an equivalent point in the pattern. The two vectors are the primitive 
translations of the pattern. 

In two dimensions there �re five possible units of pattern, unit cells, which can build a 
repetitive pattern by translation in directions parallel to the edges (Fig. 27. 1 3). The unit 
cell with the 120° angle is interesting because it permits a threefold or sixfold axis of sym
metry at a point in the pattern, which is a permissible type of symmetry in two-dimensional 
patterns. 

To generate a repetitive pattern in three dimensions, an additional repetition vector 
out of the plane of the first two must be added. The three vectors define a parallelepiped. 
Any repetitive pattern in three dimensions has a parallelepiped as a unit cell. There are 
seven distinct parallelepipeds, those labeled (P) or (R) in Fig. 27 . 1 9  (on p. 696), which can 
generate by translation any repetitive pattern in three dimensions. Crystals are classified 
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F i g u re 21.1 2 U n it of pattern i n  two d i mensions.  

Q 
a 

a = b  

F i g u re 27.1 3 The five u n its of pattern i n  two d imensions .  
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Tab le  27.2 
The seven crysta l  systems 

Axes 

a i= b i= c  
a i= b i= c  
a i= b i= c  
a = b i= c  
a = b i= c  
a = b = c  
a = b = c  

Angles 

ex i= j3 i= y i= 90° 
j3 i= ex = y = 90° 
ex = j3 = y = 90° 
ex = j3 = 900 ; y = i20° 
ex = j3 = y = 90° 
ex = j3 = y  
ex = j3 = y = 90° 

System 

Triclinic 
Monoclinic 
Orthorhombic 
Hexagonal 
Tetragonal 
Rhombohedral (trigonal) 
Cubic 

into seven crystal systems according to the shape (the lengths and inclinations of the 
vectors) of the unit cell. The lengths of the primitive translation vectors, the axes of the 
unit cell, are denoted by a, b, and c. The angle between a and b is y, that between b and c 
is IX, and that between c and a is {3. Table 27.2 lists the relations between the lengths and 
between the angles for the crystal systems. In all cases the edges of the unit cell are parallel 
to edges or possible edges of the crystal. 

27 . S  T H E C R YSTA L C LAS S E S  

Having divided crystals into systems according t o  the possible shapes o f  the unit cell, we 
can make a further division according to the combinations of symmetry elements that are 
compatible with each system. An element of symmetry is an operation that brings the 
crystal into coincidence with itself. The elements of symmetry are : rotation about an axis, 
reflection in a plane, inversion through a center of symmetry, and rotation inversion. For 
example, consider the simple cube shown in Fig. 27 . 14( a). Rotation through 90° around the 
vertical axis brings the cube into coincidence with itself. This axis is a fourfold axis of 
symmetry. (If a rotation of 3600/p around an axis brings the figure into coincidence, then 
the axis is a pfold axis of symmetry.) The cube has three fourfold axes of symmetry, which 
are symbolized by the small squares at the ends of the axes. A twofold axis, rotation through 
1 80°, is shown in Fig. 27. 14(b), symbolized by ellipses at the ends of the axis. The cube has 

(a) (b) (c) 
F i g u re 27. 1 4 Axes of symmetry of the cu be. ( a )  Fourfo ld .  (b)  Twofol d .  (c)  Threefo ld .  



(a) (b) 
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F i g u re 27 . 1 5 P lanes of symmetry of the cube.  (a) Pr inc ipa l  p la nes (3) . 
(b)  D iagona l  p l anes (6 ) . 

six twofold axes. The four main diagonals of the cube are threefold axes of symmetry, 
symbolized by the triangles in Fig. 27. 14(c). The threefold axis has been emphasized in 
Fig. 27. 14(c) by truncating one corner of the cube to display the triangle. 

A plane of symmetry divides any figure into mirror images. The cube has nine planes 
of symmetry, as shown in Fig. 27. 15 .  

Finally, the cube has a center of symmetry. Possession of a center of symmetry, a 
center of inversion, means that if any point on the cube is connected to the center by a line, 
that line produced an equal distance beyond the center will intersect the cube at an equiva
lent point. More succinctly, a center of symmetry requires that diametrically opposite 
points in a figure be equivalent. These elements together with rotation-inversion* are the 
symmetry elements for crystals. The elements of symmetry found in crystals are : (a) center 
of symmetry ; (b) planes of symmetry ; ( c) 2-, 3-, 4-, and 6-fold axes of symmetry ; and 
(d) 2- and 4-fold axes of rotation-inversion. Of course, every crystal does not have all 
these elements of symmetry. In fact, there are only 32 possible combinations of these 
elements of symmetry. These possible combinations divide crystals into 32 crystal 
classes. The class to which a crystal belongs can be determined by the external symmetry 
of the crystal. The number of crystal classes corresponding to each crystal system are : 
triclinic, 2 ;  monoclinic, 3 ;  orthorhombic, 3 ;  rhombohedral, 5 ;  cubic, 5 ;  hexagonal, 7 ;  
tetragonal, 7. 

To illustrate how crystals with the same crystallographic axes (belonging to the same 
crystal system) can have different combinations of symmetry elements, we choose the cubic 
system with three equal axes at 90°. Rock salt belongs to the cubic system ; the crystals have 
the full symmetry of the cube described above : three fourfold axes, four threefold axes, six 
twofold axes, nine planes of symmetry and a center of symmetry. The crystal shown in 
Fig. 27. 1 6(a) also belongs to the cubic system. However, the crystallographic axes have only 
twofold symmetry ; the principal diagonals are threefold axes of symmetry still ; there are 
only six mirror planes. This figure has the symmetry of the tetrahedron (Fig. 27. 1 6b). The 
crystal shown in Fig. 27. 1 6(a) belongs to the tetrahedral class of the cubic system rather 
than the normal class, which has the full symmetry of the cube. 

The most common method of determining the symmetry class is by examining the 
symmetry of the x-ray diffraction pattern of a small single crystal specimen. However, 

* The pfold axis of rotation-inversion : rotation through 3600/p, followed by inversion through the center. 
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it is possible to determine the symmetry class to which a given crystal belongs by examin
ing a number of specimens of the crystal : measuring interfacial angles, etc. Measurement of 
optical properties, such as refractive index, which may have different values along different 
axes, can aid in the determination of symmetry class. It is essential to examine a number of 
crystals preferably grown under different conditions. The habit of the crystal (but not the 
symmetry class) depends on how the crystal is grown. Various possible habits of NaCl are 
shown in Fig. 27. 1 7. Both the cube and the octahedron have the same combination of 
symmetry elements ; therefore a substance such as NaCI may show the faces appropriate to 
either. Another variation in habit is shown by sodium chlorate, NaCI03 . It may grow as a 
cube, or a tetrahedron, or in a crystal showing a more complicated pattern of faces. The 
symmetry class is correctly assigned by judging the least symmetrical crystal. The cubic and 
tetrahedral habits of NaCI03 both exhibit higher symmetry than is proper to the crystal 
class. The exhibition of a higher symmetry than the true symmetry is a common occurrence. 
If the crystals are grown quickly, they do not develop all the faces that are proper to the 
crystal class. The absence of these faces gives the appearance of higher symmetry. 

27 . 7  SYM M ET R Y  I N  T H E ATO M I C  PATT E R N  

The division of crystals into crystal systems and crystal classes is based on the symmetry of 
the crystal as a finite object, or the symmetry of a single unit cell. In a unit cell all of the 
corners are equivalent points, since by translation along the axes the entire pattern can be 
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F i g u re 27.1 8 A point l attice .  

generated ; this is shown in Fig. 27. 18 ,  where the unit cell is heavily outlined. By translation 
of the unit cell, the entire pattern of equivalent points, called a point lattice, is generated. 
However, all the possible point lattices cannot be obtained if points are placed only at the 
corners of the unit cells in the seven systems. It was shown by Bravais that there are seven 
more unit cells which are required to produce every possible arrangement of equivalent 
points in space, that is, every point lattice. These additional lattices are conveniently 
described in terms of centered lattices. These fourteen unit cells are the Bravais lattices 
(Fig. 27. 1 9). 

In addition to the symmetry within any particular cell, the points in the neighboring 
cells are related by symmetry to those in that particular cell. Thus we can add symmetry 
operations that contain an element of translation as well as the other elements appropriate 
to the finite figure. The addition of translation to the possible symmetry operations greatly 
increases the number of possible combinations of the symmetry elements. There are 230 
possible combinations (space groups) ; any atomic arrangement in a crystal must have the 
symmetry corresponding to one of these 230 combinations of symmetry operations. To 
determine the space group requires a detailed examination of the crystal by x-rays. 

The new symmetry elements that are introduced are screw axes and glide planes. A 
screw axis in a pattern is exemplified in the structure of selenium, which has a threefold 
screw axis. The chain of selenium atoms winds around the edge of the unit cell. If we 
imagine a cylinder centered on the edge of a unit cell, Fig. 27.20(a), then a rotation of 120° 
with a translation of t the height of the cell moves atom a to position b, atom b to position c, 
atom c to ai, atom a' to a position in the next unit cell, and so on. Repetition of this opera
tion three times moves a to a'. The unit cell has been transformed into itself, but moved 
upward to the position of the next unit cell. 

Figure 27.20(b) shows the operation of a glide plane. If the upper layer of atoms is 
moved a distance !a and then reflected in the plane MM', the lower layer of atoms is 
generated. Repetition of this operation regenerates the upper layer, but translated by the 
distance a. 
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* 27 . 8  T H E D E SI G N ATI O N  O F  CRYSTA L P LA N ES A N D FAC E S  

Knowing that a crystal i s  built up  by  the repetition o f  a unit cell, we can explain the develop
ment offaces of various kinds ; Fig. 27.21 (a) illustrates this in two dimensions. The faces F 1 
and F 2 are formed by the bottoms and sides of the unit cells. Other faces F 3 and F 4 are 
possible, formed by the comers of the unit cells. Since the unit cell is of atomic size, we do 
not see the little steps but see only another face of the crystal. Because the crystal is built in 
this special way an important relation exists between the axial intercepts of any face and 
those of any other face. We compare the intercepts on the axes of the face F 3 with those of a 
possible face F 4 '  The geometry of these faces is shown in Fig. 27.21(b). The line P L is 
produced until it intersects the x-axis at a and the y-axis at b. In intercept form the equation 
of the line is 
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F i g u re 21.21 The law of rat iona l  i ntercepts. 

(27 . 1 )  
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Let the width of the unit cell be a' , and the height of the unit cell be b'. For the face F 3 , 
suppose MP is pb' and ML is la', where p and I are integers. Then tan e = pb'/Ia', and also 
tan e = b/a ; therefore, b/a = pb'/Ia', so that b = (p/l) (a/a')b' and Eq. (27 . 1 )  becomes, after 
multiplying by a/a', 

x y a 
d + (P/l)b' 

= 
d ·  (27.2) 

But there are other points on F 3 : x = ma', y = nb', where m and n are integers. Equation 
(27 .2) must be satisfied at these points. Hence 

nl a m + - = - ·  p a" (27.3) 

the left-hand side of this equation involves only integers ; hence ala' is rational, expressible 
as a ratio of integers. From the earlier equality, bib' = (p/l) (a/a'), it follows that bib' is 
rational. Since the face F 3 was not a special one, it follows that the axial intercepts of any 
face, measured in units of the length of the unit cell, are rational numbers. The argument in 
three dimensions goes in the same way, except that we deal with the intercepts of planes on 
the three axes. Since the intercepts of any plane are rational multiples of the length of the 
unit cell, it follows that the intercepts of two planes are rational multiples of each other. 
Let the intercepts on the x-axis of two faces be al and a2 ; then al = rla' and a2 = r2 a', 
where rl and r2 are rational. It follows that a2 = (r2/r l)al . Since rl and r2 are rational a2 is a 
rational multiple of a1 . The same argument can be made for the y and z intercepts. 

Therefore, if to a given face, F 3 , of a crystal we assign intercepts, a, b, c on the co
ordinate axes, then the intercepts al ' bl , C l of any possible face, such as F 4 ,  of the crystal are 
rational multiples of a, b, c. This is a fundamental law of crystallography, the law of 
rational intercepts. 

Instead of describing a given face of the crystal by multiples of standard intercepts, we 
use the reciprocals ofthese multiples. That is, in terms of the intercepts a, b, c ofthe reference 
face, the intercepts of any face are given by 

al = a/h, bl = b/k, Cl = c/l. 

The numbers h, k, I are rational numbers or zero. If any of h, k, or I are fractions, the whole 
set is multiplied by the least common denominator to yield a set of integers h, k, I. The 
resulting integers h, k, I are called the Miller indices of the face. Through this process of 
taking reciprocals and clearing fractions, the law of rational intercepts becomes the law of 
rational indices. It should be clear that they are one and the same law. The indices of a face 
describe its orientation relative to the reference face, but do not describe the actual position. 
The usefulness of the indices in describing the face can be seen from writing the equation of 
the plane in intercept form : 

� + L + � = 1 .  al bl C1 
But in terms of the intercepts of the reference plane, al = a/h, and so on ; hence 

hx ky lz - + - + - = 1 .  a b c  
If we measure distances in terms of the reference intercepts, x in units of a, y in units of b, 
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and so on, the equation becomes 

hx' + ky' + lz' = 1 ,  (27.4) 

where x' = x/a, y' = y/b, z' = z/c. 
Consider the cube in Fig. 27.22. The intercepts of the right-hand side of the cube are 

00, 1 , 00 .  The reciprocals (indices) are 010. The front face of the cube has intercepts 1, 00, 00,  
and indices 100 ; the left face has intercepts 00, - 1, 00 ,  and indices 010 .  (The minus sign is 
written over the number.) The rear face has indices 100. The indices of the top and bottom 
faces of the cube are 001 ,  and 001 . Any plane parallel to an axis has an intercept of 00, and 
an index of zero for that axis. 

The crystal consists of atoms, ions, or molecules ; any face of a crystal consists of a la yer 
of atoms, ions, or molecules. The method of describing faces of a crystal can be used to 
describe the planes of atoms in the crystal. Consider the body-centered cubic cell in 
Fig. 27.23(a) ; the intercepts of the shaded planes of atoms are 00, 1, 1, so the indices are 
OI L In Fig. 27.23(b), the shaded plane has intercepts 00, 2, 1, so the reciprocals are 0, 1, 1 ;  
clearing the fraction, we obtain the indices : 012. Figure 27.23(c), (d), and (e) show the 
101 ,  the 1 10, and the 1 1 1  planes. 

Figure 27. 17(b) showed the development of octahedral faces on a cube. These faces are 
obtained by truncating the eight corners of the cube. The crystal faces are designated by 
Miller indices obtained in the usual way. The angle between the 100 and 1 1 1  face is always 
54° 44' 8" . 

The constancy of interfacial angles is a law of crystallography that has been recognized 
since the 17th century. In 1669, Nicolaus Steno observed that regardless of how the real 
crystal might be distorted from the ideal shape, the angles between two types of face were 
always constant. For example, a crystal of quartz has hexagonal symmetry, and a section 
cut perpendicular to the hexagonal axis should have a regular hexa gonal shape, Fig. 27.24(a), 
each interior angle being 120° ; in actual fact, because the growth of certain faces in the 
crystal is inhibited by the crowding of neighboring crystals and other influences, the faces 
of a real crystal develop unequally, and the section of real quartz crystals may have shapes 
such as those shown in Fig. 27.24(b) and (c). In all the possible distortions, the interfacial 
angle remains at 120°. This constancy of interfacial angles introduces an enormous sim
plification into crystallography, for it permits the recognition of the fundamental crystal 
symmetry from the interfacial angles of imperfect crystals. 



700 Structure of So l ids  

x 

x 

z z 

y 

(a) z x (b) z 

-:o*---- Y 

(e) z x (d) 

x (e) 

F i g u re 21 .23 P lanes i n  the bee l attice.  ( a )  0 1 1 p l anes .  (b)  01 2 p la nes. (c)  1 0 1 p lane .  
(d )  1 1 0  p lanes.  (e)  1 1 1  p l anes .  

(a) (b) (e) 
F i g u re 27 .24 The constancy of i nterfac ia l  ang les .  ( a )  
Sect ion of  a n  i dea l  q u a rtz crysta l .  (b )  and (c)  Poss ib le  
shapes of the crysta l  sect ion .  

* 27 . 9  T H E X- RAY EXA M I N ATI O N  O F  C RYSTA LS 

y 

y 

The conclusion that x-rays were light rays of very short wavelength and the realization that 
a crystal consisted ofa regular array of planes of atoms prompted Max von Laue in 19 12 to 
suggest that the crystal should behave as a diffraction grating for x-rays if the wavelength 
were comparable to the spacing in the crystal. This suggestion was confirmed experimental-
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ly almost immediately by Friedrich and Knipping. Figure 27.25 shows a typical setup for 
the Laue method. The diffraction pattern of spots produced on the photographic plate is 
called a Laue pattern. 

An x-ray beam progressing through a crystal is reflected from every possible plane of 
atoms in the crystal by the usual law of specular reflection, the incidence angle equal to the 
reflection angle. Since there are many different planes of atoms all oriented at different 
angles relative to the incident beam, we might expect that the emergent beam would be 
completely diffused over all angles. The fact is that the emergent beam appears only at 
certain particular angles, and thus produces the Laue pattern. This happens because a plane 
of atoms is not present in the crystal by itself but with an enormous number of similar 
planes parallel to it. As a general rule the reflected beams from these parallel planes inter
fere destructively, and there is no emergent beam in most directions. 

The condition for the reflected beams from a given set of parallel planes to reinforce 
each other and produce a spot is easily derived. Figure 27.26 shows a set of planes within a 

F i g u re 27.26 X- ray ref lection from a 
set of p l anes.  
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crystal having an interplanar spacing d. The angle between the planes and the direction of 
the beam is the glancing angle 8. Ray R 1 is reflected specular ly by the first plane to yield R'l ' 
Similarly, ray R2 is reflected specularly from the second plane to yield R� . If the rays R� 
and R� are to reinforce one another, they must have the same phase ; this condition is met if 
the extra distance traversed by R2 R� is equal to an integral number of wavelengths of the 
x-ray. The extra distance is 2x, so that 2x = nA, where n is an integer. But from the geometry 
of the situation, x = d sin 8. Consequently, in terms of the interplanar spacing d, the 
condition for constructive interference becomes 

2d sin 8 = nA, n = 1 , 2, 3, . . .  , (27. 5) 

which is the fundamental law of x-ray crystallography, the Bragg condition, or Bragg's law : 
for a given wavelength of x-rays, the reflected beam will emerge only at those angles 
for which the condition is satisfied. This accounts for the Laue pattern of spots. Each 
spot is produced by a certain set of planes that fulfills the condition. Since similar sets of 
planes are disposed within the crystal in accordance with the crystal symmetry, the 
arrangement of the spots in the Laue pattern has the symmetry of the crystal to a certain 
degree. 

The reflected beam makes an angle 28 with the direction of the incident beam. This is 
shown by the simple geometry of Fig. 27.26. For a set of planes with specified values of h, k, 
1 and a 8 fixed by the geometry of the experiment, there are several wavelengths (determined 
by the Bragg relation) that combine constructively to produce the spots in the Laue pattern. 
In principle every set of planes can produce several spots. In practice, the number of spots 
is restricted by the limited range of wavelengths in the incident radiation and the limited 
range of observable values of 8. If monochromatic radiation were used in the Laue method 
no pattern would be produced, unless the Bragg relation were accidentally fulfilled for some 
set of planes. 

The fact that some planes have a higher density of atoms than others produces the 
variation in intensity of the diffracted beam for different sets of planes. The planes of high 
atomic density scatter x-rays better and produce the more intense beam. If more than one 
kind of atom is present in the crystal, the species with the greater number of electrons has 
the greater scattering power. For light elements, the scattering power is proportional to the 
number of electrons around the atom. 

F i g u re 27.21 X - ray d iffractometer. 
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In the Bragg x-ray diffractometer, Fig. 27.27, x-radiation from the tube T bathes a 
crystal C, which is mounted so that it may be rotated ; the angle of rotation is measured on 
the scale of the instrument. By rotating the crystal it is possible to bring the coherent 
scattered beam from each set of planes into the detecting chamber D. The response of the 
detector, an ionization chamber or a Geiger counter, at various angles of rotation can be 
recorded to produce a pattern of peaks at various values of e. From this measurement of e, 
the interplanar spacing can be calculated from the Bragg equation. 

* 27 . 1 0 D E BY E-S C H E R R E R  ( POWD E R )  M ET H O D  

The Bragg method of obtaining interplanar spacings has the disadvantage that mounting 
the crystal on a precise axis is time consuming. The rotating crystal method of obtaining a 
diffraction pattern, one of the most valuable methods for structure determination, also 
requires precise mounting of the crystal. 

The simplest method of obtaining interplanar spacings is the Debye-Scherrer method. 
A sample of the crystal is ground to a powder and placed in a thin-walled glass tube 
mounted in the x-ray beam. Since many crystals are present, all ha vingdifferent orientations, 
some will be so oriented as to satisfy the Bragg relation for a given set of planes. Another 
group will be oriented so that the Bragg relation is satisfied for another set of planes, and so 
on. If a given set of planes satisfies the Bragg condition, the reflected ray produces a spot. If 
this set of planes is rotated about the axis of the incident beam, the corresponding rotation 
of the reflected ray generates a cone. In the powder method, a cone of reflected radiation is 
produced (Fig. 27.28) because all the orientations of a given set of planes about the axis of 
the beam are present in different particles of the powder. Figure 27.28 shows the conical 
reflected radiation and the position of the film that results in the line pattern. The film 
makes a nearly complete circle so that even the rays reflected at large angles are recorded 
on the film. 

Point where 
incident beam 
enters (20 = 180° )  

F i g u re 27.28 Debye-Scherrer powder method . 
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We measure accurately the distances between the lines on the film. From these and the 
dimensions of the camera, the diffraction angle 28 can be calculated for each set of planes. 
From the Bragg angle 8 the interplanar spacings d are calculated from the Bragg equation. 

Through the use of a densitometer, a device for measuring the light transmission of the 
developed film, we can measure the intensity of the lines on a powder photograph. If, for 
example, the material whose structure is under study is a metal, then all the atoms are of 
the same kind. The most intense line will be reflected from the planes that are most closely 
packed. These would be the 1 1 1  planes in an fcc structure and the 001 planes in the hcp 
structure. Having identified the most closely packed planes and calculated their spacing 
from the Bragg equation, we can sometimes use other simple features of the pattern to 
identify the structure and establish all of the interplanar spacings by simple geometry. 

Figure 27.29 shows a powder diffraction pattern obtained by mounting a capillary 
tube filled with fine tungsten powder in the center of the diffractometer illustrated in 
Fig. 27.28. The numbers on the peaks are the indices of the planes which produce that peak. 
By measuring the values of 8, the interplanar spacing can be calculated from the Bragg 
equation. 

* 27. 1 1 I NT E N S IT I E S  A N D STR U CT U R E  D ET E R M I N ATI O N  

Consider the face-centered cubic lattice in Fig. 27.30. The 100 planes are interleaved at just 
half the spacing by the 200 planes, which contain only face-centered atoms. The reflected 
rays from this second set of planes are 1 800 out of phase with those from the 100 planes. 
The two reflections interfere destructively so that a first-order reflection does not appear 
from the 100 planes in this lattice. (Higher-order reflections appear from both sets, but the 
intensities are much weaker.) For the same reason the first-order reflection from the 1 10 
plane does not appear, being destroyed by the first-order reflection from 220 planes. The 
1 1 1  planes are not interleaved in this way, so the first-order reflection comes through loud 
and clear, especially because the 1 1 1  planes are close packed. The absence of certain lines 
helps enormously in the assignment of indices, the indexing, of the lines that do appear. 
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From a complete study of line spacings and intensities in the diffraction pattern we can 
determine the size and shape of the unit cell and the arrangement of the kinds of atoms 
within the cell. In crystals of high symmetry, which have no more than two kinds of 
particles, it is possible to do this directly with relative ease ; in metals, for example, or in 
crystals such as NaCl or ZnS. As we mentioned above, symmetrically interleaved layers 
of atoms of the same kind can completely extinguish certain reflections. Suppose, however, 
that the interleaved layers are not just halfway between, so that the reflected radiation 
is neither completely in nor out of phase with that from the first set of layers ; add to this 
the fact that the interleaved layer may contain atoms of different scattering ability. The 
problem becomes quite complicated ; nonetheless, for small molecules the solution can 
usually be accomplished by direct methods. From the positions of the lines we can 
establish the principal spacings in the structure, the shape and size of the unit cell, and 
the crystal class. That much is straightforward. Knowledge of the chemical constitution 
and density of the crystal establishes the number of atoms of each kind in the unit cell. 
Then the problem is to fix the positions of the various atoms in the unit cell. We do this by 
establishing the phase associated with each reflection. We then calculate the intensities 
of the lines in the diffraction pattern from an assumed arrangement of the atoms, a trial 
structure. We compare the calculated intensities with the observed intensities, and refine 
the trial structure by the least squares method. The procedure is repeated until reasonable 
agreement is obtained. 

These calculations are extremely tedious ; fortunately, they can be done by computer. 
But even before the advent of high-speed computers, the structures of hundreds of crystals 
had been worked out by hand calculation. The fruits of these x-ray studies are seen in the 
structures described earlier in this chapter. 

* 27 . 1 2 X- RAY D I F F RACTI O N  I N  L I Q U I D S 

The diffraction pattern of a liquid resembles a powder photograph except that the very 
sharp lines of the powder photograph are replaced by a few broad bands of reflected 
radiation. From an analysis of the intensity distribution in these broad bands, we can 
construct the radial distribution function for particles around a central particle in the 
liquid. This distribution function is interpreted in terms of the average number of atoms 
surrounding a central atom at the distance corresponding to the peak. 
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Figure 27. 3 1  shows the radial distribution function, 4nr2 p ,  in liquid sodium. The 
upper drawing interprets the peaks in terms of " shells " of atoms around the central atom. 
At 400 pm from the central atom, the average number of atoms in the liquid is 10.6. This 
number is determined by the shaded area under the curve. The vertical lines show the 
number of atoms in successive " shells " in solid sodium. 

QU ESTI O N S  

27.1 Contrast the bonding and structure in (a) metals and (b) ionic crystals. 
27.2 Ionic crystals are quite brittle and easily cleave when struck. Explain this by considering the 

electrostatic forces generated when two layers in the crystal are displaced. 
27.3 Diamond is one of the hardest substances known. Account for this in terms of its structure. 
27.4 Why are radio waves unsuitable for determining crystal structure ? 
27.5 How does Fig. 27.3 1  reflect the differences in order for a solid and a liquid ? 
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27. 1  Using the data in Table 27. 1 ,  compute the axial ratio cia for the metals crystallizing in the 
hcp system and compare with the ideal value, 1 .633 .  

27.2 Figure 27 .5( a) and (c) show the unit cell for the fcc and bcc structures. How many atoms does the 
unit cell contain in each of these cases ? [Note : an atom on a face is shared between two cells ; 
an atom at a corner is shared between a number (how many?) of cells.] 

27.3 The hexagonal cell shown in Fig. 27.5 consists of three unit cells. How many atoms are in the 
hexagonal cell shown and how many in the unit cell ? 

27.4 Referring to Fig. 27.5, which shows the location of the atom centers for the fcc, hcp, and bcc 
structures, if the edge length of the cube is a, compute, for the fcc and bcc structures, the volume 
of the cube and the volume of the cube that is actually occupied by the spheres. The spheres are in 
close contact ; keep in mind that a sphere on a face or at a corner is only partially inside the cube. 
What percent of the space within the cube is empty? 

27.5 Figure 27 .6(b) shows two unit cells of CsC!. How many Cs + and Cl- ions in the unit cell ? 
27.6 Figure 27.8 shows the unit cell of NaC!. How many Na + and CI- ions in the unit cell ? (There is a 

sodium ion at the center of the cube !) 
27.7 Using Fig. 27.7, how many octahedral holes per atom are present in the fcc structure ? By 

sketching the bcc structure decide how many octahedral holes per atom are present. 
27.8 Calculate what size of sphere can be accommodated in the octahedral hole of the fcc structure ; 

cube edge = a, atom radius = ra . 

27.9 How many atoms (or ion pairs) are in the unit cell of 
a) diamond, Fig. 27. 1 1 ; 
b) zinc blende, Fig. 27.9(a) ; 
c) wurzite, Fig. 27.9(b) ; 
d) fluorite, Fig. 27. 10(a) ; 
e) rutile, Fig. 27. 10(b). 

27.10 Consider eight small spheres, radius = r" at the corners of a cube ; they are small enough so 
that they are not in contact. Now place a larger sphere, radius = rl , at the center of the cube. 
This sphere is just large enough so that it is in contact with the eight small spheres. Now let the 
radius of the large sphere shrink, but keep the small spheres in contact with it. What is the radius 
ratio, rslr/ > when the small spheres at the cube corners come into contact with each other ? 
Compare your answer with the numbers in Section 27.3 .2. 

27. 1 1  Consider a large sphere, radius = rl , which has four small spheres, radius = r" arranged 
symmetrically (at the corners of a square) around its equator. There are also two small spheres 
in contact with the large sphere at its poles. The large spheres is now allowed to shrink, keeping 
the small spheres in contact with it. What is the radius ratio, rslr/ > when the small spheres come 
in contact with each other ? Compare your answer with the numbers in Section 27.3.2. 

27. 12 What are the elements of symmetry of a tetragon ? 

a = b i= c, 

27. 13 a) Sketch a cube and label each face with the proper Miller indices. 
b) Suppose that every edge of the cube is truncated by a plane perpendicular to the plane 

containing the edge and center of the cube. Sketch at least two of the faces exposed and 
find the Miller indices of these faces. 

27.14 Using Fig. 27.5, sketch the fcc arrangements of atoms in 1 1 1  plane, in the 100 plane, in the 0 1 1  
plane. Which plane i s  close packed ? 

27.1.5 Using x-rays of wavelength A. = 1 79.0 pm, a metal produces a reflection at 2(} = 47.2°. If this 
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is a first-order reflection from the 1 10 planes of a body-centered cubic lattice what is the edge 
length of the cube ? 

27.16 The lattice parameter of silver, an fcc structure, is 408 .6 pm. An x-ray beam produces a strong 
reflection from the 1 1 1  planes at 2fJ = 38.2° . What is the wavelength of the x-ray? 

27.17 Using x-radiation, A = 1 54.2 pm, a face-centered cubic lattice produces reflections from the 
1 1 1  and 200 planes. If the density of copper, which is face-centered cubic, is 8 .935 g/cm3, at what 
angles will the reflections from copper appear ? 



E l ectro n i c  Stru ctu re 
a n d a c rosco p i c  P ro pe rt i es 

28 . 1  P R E LI M I N A R Y  R E M A R KS 

In the discussions of the kinetic theory of gases and of intermolecular forces, we obtained 
expressions for properties of matter in bulk in terms of the properties of the individual 
molecules. In this chapter we will describe the cohesive energy of ionic crystals in terms of 
the interactions of the ions in the crystals, and some of the properties of metals and covalent 
crystals in terms of the quantum mechanical picture obtained from the Schrodinger equa
tion. In Chapter 29 we will describe the method for calculating the thermodynamic 
properties of bulle systems from a knowledge of structure. 

28 . 2  C O H E S I V E  E N E R G Y  I N  I O N I C  C RYSTA LS 

A satisfactory theory of the cohesive energy of ionic crystals can be based almost ex
clusively on Coulomb's law. If two particles i and j, having charges Zi and Zj ' are placed a 
distance rij apart in vacuum, the energy of interaction between them is 

Z · Z · Eij = __ , _J_ .  4nEo rij 
(28 . 1 )  

I f  Zi and Zj have the same sign, Eij i s  positive, the particles repel one another, and the sys
tem lacks stability. If Zi and Zj are opposite in sign, the energy is negative, and the two are 
bound together by the energy Eij . The more ions of opposite charge that surround a 
particular ion, the greater is the stability of the structure. We used this result implicitly in 
arguing for close-packed structures in ionic crystals in Section 27.3 . 1 .  

Consider a crystal, such a s  NaCl, in  which the charges on  the ions are equal and op
posite in sign, Z + = - Z _ . To calculate the cohesive energy of a crystal that contains N ions 
of each sign, N ion pairs, we add the interaction of every ion with all the others. Since the 
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interaction energies depend on the distances between the ions, we must know the geo
metrical arrangement of the ions in the structure. Fortunately, for symmetrical salts (rock 
salt, CsCI, zinc blende, and wurzite), the possible structures are all cubic, so that if we 
know the distance r between a cation and the nearest anion, then the distance between any 
two ions in the crystal can be calculated from the geometry of the structure. We write for the 
distance between ions i andj, rij = aij r in which aij is a numerical factor obtained from the 
geometry of the structure. The expression in Eq. (28 . 1 )  becomes 

z · z · Eij = ' J  4nfO raij 
The interaction energy of ion i with all of the others, j, is obtained by summing this ex
preSSIOn. 

In every term of this sum, Zj = ± Zi ; furthermore, each term in the sum is simply a number, 
determined by geometry, so the sum is a number that we write as Zi Si ' Then 

z2S ·  E . = -'-' , 4nfo r ' 

Summing the energies of all the ions in the lattice yields the total energy of interaction U M : 

1 Z2 1 UM = "2 I Ei = -- I "2 Si ' i 4nfo r  i 
where the factor ! appears because we must count the interaction between any pair of ions 
only once. The sum is a sum of numbers ; it is negative and proportional to N, so we write 
! L: Si = - N A, where A is a numerical factor, the Madelung constant (named after E. 
Madelung, who first evaluated sums of this type). The total electrostatic energy, the 
Madelung energy, is 

4nfo r ' (28 .2) 

Values of the Madelung constant calculated from the geometry of the symmetrical struc
tures are given in Table 28. 1 .  

The cohesive energy of  ionic crystals given by  Eq. (28 .2) i s  about 10 % too large. This is 
a consequence of neglecting the repulsion that arises at close distances. Figure 28 . 1  shows 
how this comes about. As a function of r, the energy given by Eq. (28.2) follows the dotted 
curve in the figure. At the equilibrium separation ro , the depth of the curve is somewhat 
below that of the minimum in the solid curve, which represents the actual cohesive energy. 

Tab le  28.1 

Structure Coordination A 

CsC] 8-8 1 .7627 
NaC] 6-6 1 .7476 
Zinc blende 4-4 1 .6381 
Wurzite 4-4 1 .641 
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u 
Including repulsion 

I 
I / Neglecting repulsion 

I 
I 
I 

The repulsion that develops as the ions come in contact is represented, just as with 
neutral molecules (Section 26.6), by a term bjrn, where b and n are constants and n is a large 
power, usually n = 6 to 12. This form of the repulsion energy was first introduced by M . 
. Born, and is called the Born repulsion. The cohesive energy is written 

NAz2 b 
U = - -- + -. 4nco r rn (28 .3) 

The two empirical constants b and n are determined by two conditions. First we require 
that the energy have a minimum value at ra , the equilibrium separation in the crystal ; 
(dUjdr), = ro = O. Differentiating Eq. (28 .3), we have 

dU NAz2 nb 

Setting this equal to zero at ra and solving for b, we obtain 

NAz2rn - 1 
b = 

a 

which reduces Eq. (28 .3) to 
4nEa n 

U = 
NAz2 [ra 1 (ra) n] -
4nEo ra -;: - � -;: . 

At r = ra this becomes the negative of the cohesive energy - Uc : 

(28 .4) 

(28 .5) 

- Uc = - �:az
r

2

a 
(l - �) . (28 .6) 

The cohesive energy Uc is the Madelung energy at r = ro multiplied by (1 - ljn). If n is 
about 10, then the 10 % error noted above is explained. Using Eq. (28 .6) in Eq. (28 .5), we 
obtain 

U = _ � [ro _ � (ra) nJ . n - l r n r 
(28 .7) 

The constant n is determined from the compressibility of the crystal at 0 K ;  K = 
- (ljVa) (o V  joph . At T = 0 K the thermodynamic equation of state, Eq. (10.28), becomes 
p = - (oUjoVh ; bydifferentiating, (opjoVh = - (o2 UjoV2h · Combining this result with 
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Tab le  28.2 

Salt LiC! NaCI KC! 

n 7.0 8.0 9.0 

Uc/kJ mo! - l 808 .8 754.8 687.8 

the definition of K ,  we obtain 
1 (82 U) 

Vo K = 
8 V2 T

' 

RbC! CsCl 

9 .5 10 .5 

664.8 623.0 

(28.8) 

To express the energy in terms of the volume of the crystal, we observe that the volume is 
proportional to the cube of the interionic distance r, so that r is proportional to the cube 
root of the volume ; therefore, (roM = ( VO/V)1 /3 ,  and Eq. (28 .7) becomes 

U = - n
n�\ [(� y / 3 - � (� f] 

Differentiating, we have 

and 

d2 U _ _ nUc [4VlP _ (n + 3) V�3J dV2 - 9(n - 1) V7/3 V2 + n/3 '  

At V = Yo , this becomes (d2 U/d V2)r = nUj9V6 . Using this value and the value of Uc 
from Eq. (28 .6) in Eq. (28 .8), we obtain after solving for n, 

1 9(4nfo)Vo ro n = + --�'--'-
NAz21( 

(28 .9) 

Having determined the value of n from the compressibility and the volume Vo , by Eq. (28 .9), 
the cohesive energy of the crystal can be obtained from Eq. (28 .6). A few values for U c are 
given in Table 28.2. 

The cohesive energy U c of an ionic crystal is the energy of the crystal relative to the 
infinitely separated ions, the energy required for the reaction 

The energy of this reaction is not directly measurable, and therefore is determined indirectly. 
The Born-Haber cycle of reactions is used. 

Reaction 

M(s) ----> M(g) 
M(g) ----> M + (g) + e - (g) 

!Xig) ----> X(g) 
e - (g) + X(g) -> X- (g) 

X- (g) + M + (g) ----> MX(s) 

Energy 

S = sublimation energy 
I = ionization energy 

!D = ! the dissociation energy 
- EA = minus electron affinity 
- Uc = minus cohesive energy. 
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Summing these yields the formation reaction of MX(s) ; 

Therefore 
M(s) + !Xig) --+ MX(s), I1U f = energy of formation. 

I1U f = S + I + !D - EA - Un 

Uc = S + I + !D - EA - I1U f '  (28 . 1 0) 

The values computed for Uc from the experimental values of the quantities on the right of 
Eq. (28. 1 0) agree with the values predicted by Eq. (28 .6) to about 4 % for the alkali halides. 

The theory can be refined somewhat by including the van der Waals attraction of the 
electron clouds of the ions ; this is more important for a substance such as CsI, in which the 
electron clouds are large and floppy, than for LiF, in which the electron clouds are small 
and tightly bound. The presence of van der Waals interaction increases the cohesive energy 
slightly. The only important contribution of quantum mechanics to this problem is the 
requirement that the zero-point energy of the crystal be included in the calculation. This 
decreases the calculated value of the cohesive energy by about 0.5 to 1 .0 %. These additional 
contributions do not change the values in Table 28.2 by more than 2 or 3 %. 

Attention should be directed to the magnitude of the cohesive energy in uni-univalent 
ionic crystals, which ranges from 600 to 800 kJ/mol. This is 10 to 20 times larger than that 
found in van der Waals crystals. Furthermore, as the ions get larger, the cohesive energy 
decreases, Eq. (28 .6). The extreme values are : LiF, Uc = 1004 kJ/mol ;  CsI, Uc = 569.4 
kJ/mol. The larger ions are simply farther apart in the crystal. Finally, if we consider 
crystals made up of divalent ions, such as CaO and BaO, Eq. (28 .6) predicts that the 
cohesive energy should be proportional to the square of the charge so the energies should 
be roughly four times greater than the energies of 1 - 1  salts. This is approximately correct ; 
the values for CaO and BaO are 3523 kJ and 3 125 kJ, respectively. 

The increase in cohesive energy in the 2-2 salts explains the generally lower solubility 
of these salts (for example, the sulfides, as compared with that of the alkali halides). The 
greater the cohesive energy, the more difficult it is for a solvent to break up the crystal. 

28 . 3  T H E E LECTR O N I C  STR U CT U R E  O F  S O LI DS 

For an isolated atom quantum mechanics predicts a set of energy levels of which some, but 
not all, are occupied by electrons. What happens to this scheme of energy levels if many 
atoms are packed closely together in a solid ? Consider two helium atoms, infinitely far 
apart ; each has two electrons in the Is level. As these two atoms approach, they attract each 
other slightly ; the interaction energy has a shallow minimum at some distance. Since each 
atom is influenced by the presence of the other, the energy levels on each atom are slightly 
perturbed. The Is level splits into a set of two levels, which may be thought of as the energy 
levels for the systems (He)2 ' EL..:h of these levels can accommodate two electrons ; the four 
electrons of the system fill the two levels. The average energy of the two levels is slightly less 
than the energy of the 1s level of the isolated atom. This slight lowering of the average 
energy is the cohesive energy, the van der Waals interaction energy, of the system (He)2 . 
If three helium atoms were brought together, the system would have a set of three closely 
spaced Is levels. In a system of N atoms, the 1s levels split into a group of N closely spaced 
levels called an energy band, the 1s band. For a collection of N helium atoms, since the Is  
level is fully occupied in the individual atoms, the 1s band is completely occupied. For 
helium and for any saturated molecule that forms a van der Waals solid, the width of the 
band (the energy difference between the topmost and lowermost levels in the band) is very 
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E 

Number of electrons 
3d 10 3p 6 
3s 2 
2p 2s 6 2 

--...,;1;,;;.s_ 2 
Atom 

I ON f/W( '(mvA 
6N t222?/2?Z?Z7?J 
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6N W/'i!'Z0'/Il 2N (0;2'W&,/) 

F i g u re 28 .2  Correspondence 
between energy l evels in  
the atom and energy bands 
i n  a so l id  (schematic ) . 

small, because of the weak interaetion between saturated molecules. To a good approxima
tion, the energy level scheme in a van der Waals solid is much like that in the individual 
molecules which compose the solid, the filled levels being displaced downward very slightly 
to account for the cohesive energy of the solid. 

Consider a solid that contains N atoms of one kind only. For each energy level in the 
isolated atom that accommodates two electrons there is in the solid an energy band 
containing N levels each of which can accommodate two electrons. This energy band has a 
definite width, a fact which implies that the N levels within the band are very closely 
spaced. They are so closely spaced that the band may be considered as a continuum of 
allowed energies ;  it is often called a quasi-continuous band of levels. Figure 28.2 illustrates 
schematically the contrast between the energy level systems in an isolated atom and in a 
solid. The shaded regions in the figure cover the ranges of energy permitted to an electron 
in the solid, the energy bands ; the spaces between the bands are the values of energy that 
are not permitted. Figure 28.2 has been drawn so that none of the bands overlap ; ordinarily 
the higher energy bands do overlap. 

Consider metallic sodium. The sodium atom has eleven electrons in the configuration 
ls22s22p63s. Bringing many sodium atoms together in the crystal scarcely affects the 
energies of the electrons in the Is, 2s, and 2p levels, since the electrons in these levels are 
screened from the influence of the other atoms by the valence electron ; the corresponding 
bands are filled. The levels in the valence shell are very much influenced by the presence of 
other atoms and split into bands as shown in Fig. 28 .3(a). The 3s and 3p bands have been 

E 

D D 4p 

3p 

3s 4s 
(a) (b) 

F i g u re 28.3 Band structu re i n  sol ids .  ( a )  Sod i u m .  (b )  Ca lc i u m .  (c)  D iamond .  

(sp) 
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displaced horizontally to illustrate the effect of overlapping bands. The N valence electrons 
fill the lowest levels available, which results in a partial filling of both the 3s and 3p bands ; 
the filled portion of the bands is indicated by the shading. The overlapping of s and p bands 
is a characteristic feature of the electronic structure of metals ; the merged bands are often 
designated as an sp band. 

The s band can hold 2N electrons or 2 electrons/atom. Were it not for the fact that the p 
band overlaps the s band, the s band would be completely filled in divalent metals such as 
calcium. As we shall see shortly, if the s band were filled and a gap of forbidden energies 
separated the top of the s band from the bottom of the p band, then the divalent metals 
would be insulators. As is shown in Fig. 28 .3(b) the p and s bands in calcium overlap 
slightly ; the shaded area indicates the way in which the two electrons of calcium fill the 
bands. 

Diamond is a crystal with filled bands. The s band, which holds 2 electrons/atom, and 
the p band, which holds 6 electrons/atom, interact in diamond to form two distinct bands 
each of which holds four electrons per atom ; these bands are designated sp and (sp)' in 
Fig. 28 .3(c). The four electrons per atom in diamond exactly fill the lower band. Diamond 
with this filled band is an insulator. 

28.4 C O N D U CTO R S  A N D I N S U LATO R S  

A crystal with completely filled energy bands i s  an insulator, and one with partially filled 
bands is a conductor. The band in a real crystal contains as many levels as atoms in the 
crystal, but for argument's sake suppose we imagine that the band has only eight levels in 
it (Fig. 28 .4a). We may suppose that half of these levels are associated with motion of the 
electrons in the + x direction and half with motion in the - x direction. This is indicated by 
the arrowheads on the levels . No matter how the band is filled, half of the electrons are in 
levels corresponding to motion in the + x direction and half in levels corresponding to 
motion in the - x direction ; consquently there is no net motion in one direction and no 
current flow. Ifwe apply an electric field in the + x direction, the energy of one set of levels is 
lowered and the energy of the other set is rasied (Fig. 28 .4b). If the band is full, then all levels 
are occupied before and after the application of the field, and there is still no net electronic 
motion in either direction ; the crystal is an insulator. However, if the band is only partly 
filled, then only the lowest levels are occupied ; application of the field rearranges the 
positions of the levels, and the electrons drop into the lowest set of levels in the presence of 
the field. In this lowest set of levels, the ones corresponding to motion in the - x direction 
predominate, so there is a net flow of electrons to the left ; a net current flows and the crystal 
is a conductor. 

Energy Field 
.. 

direction 
Ii' 
III 

OIl ill 
011 ID> 
II! 
ill 

(a) (b) 

F i g u re 28.4 D isplacement of energy l evels in a band by an e lectr ic 
f ie ld.  (a) F ie ld off. (b )  Fie ld on. 
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Metals that conduct by electron flow have incompletely filled bands, while insulators 
such as diamond have completely filled bands. If it is possible to raise electrons from a filled 
band in an insulator to an empty band of higher energy, then these excited electrons can 
carry a current. Since the energy gap between the bands is fairly large, this ordinarily 
cannot be done by an increase in temperature to supply sufficient thermal energy. By using 
light of high enough frequency it is possible to excite the electrons. The phenomenon is 
called photoconductivity. Visible light will do this for selenium. 

28 . 5  I O N I C  C R YSTA LS 

In the first approximation, the band system of a crystal containing two different kinds of 
atom may be regarded as a superposition of the band systems ofthe two individual-particles. 
The band system for sodium chloride is shown in Fig. 28 .5 .  The eight electrons occupy the 
3s and 3p bands of the chloride ion, while the 3s band of the sodium ion, which has a higher 
energy, is vacant. This is a quantum-mechanical way of saying that the crystal is made up of 
sodium ions and chloride ions rather than of atoms of sodium and chlorine. The filled �ands 
are separated from the empty bands by an energy gap so that sodium chloride is an 
insulator. 

D 3S(Na+) 

28. 6  S E M I CO N D U CTO R S  

F i g u re 28.5 Energy bands i n  N a C I .  

Semiconductors are solids which exhibit a feeble electrical conductivity that increases 
with increase in temperature. (The conductivity of metals decreases with increase in 
temperature.) Semiconductivity appears in insulators that are slightly contaminated with 
foreign substances, and in compounds, such as Cu20 and ZnO, which do not contain 
exactly stoichiometric amounts of metal and nonmetal. 

Pure silicon is an insulator, similar to diamond in both crystal structure and electronic 
structure. The electronic structure in pure silicon can be represented by the filled and empty 
bands shown in Fig. 28.6(a). Suppose that we remove a few of the silicon atoms and replace 
them by phosphorus atoms, each of which has one more electron than the silicon atom. 
The energy levels of the phosphorus atoms, impurity levels, are superposed on the band 
system of the silicon ; these levels do not match those in silicon exactly. (Since there are so 
few phosphorus atoms, the levels are not split into bands.) It is found that the extra elec
trons introduced by the phosphorus atoms occupy the impurity levels shown in Fig. 28 .6(b), 
which are located slightly below the empty band of the silicon lattice. In these levels the 
electrons are bound to the phosphorus atoms and cannot conduct a current ; since the 
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F i g u re 28 .6  (a )  Pu re s i l i con .  
(b )  I mpu rity l evels i n  s i l icon,  
an  n-type semiconductor. 

energy gap between these levels and the empty band of silicon, the conduction band, is 
comparable to kT, the thermal energy, a certain fraction of these electrons are thermally 
excited to the conduction band in which they can move under the influence of an applied 
.field. At higher temperatures more electrons are excited to the conduction band and the 
conductivity is larger. If very many phosphorus atoms are introduced . in the lattice, the 
impurity level itself widens into a band that overlaps the conduction band of the silicon ; 
the conductivity then becomes metallic in character. This is an example of n-type semi
conductivity, so-called because the carriers of the current, the electrons, are negatively 
charged. 

If atoms of aluminum or boron are introduced in the silicon lattice, they also introduce 
their own system of levels . Since the aluminum atom has one less electron than silicon, the 
impurity levels are vacant. Figure 28.7(a) shows the position of the impurity levels, which 
in this case are only slightly above the filled band of the silicon lattice. Electrons from the 
filled band can be excited thermally to the impurity levels (Fig. 28.7b), where they are 
bound to the aluminum atoms to produce the species AI- in the lattice. The holes left in the 
band effectively carry a positive charge, can move under the influence of an applied field, 
and thus carry a current. This is an example of p-type semiconductivity, since the carrier is 
positively charged. 

The semiconductivity of nonstoichiometric compounds such as ZnO and Cu20 can 
be explained in a similar way. If ZnO loses a little oxygen, it can be considered as ZnO 
with a few zinc atoms as impurities . The zinc atoms have two more electrons than the zinc 
ions ; therefore the semiconductivity is n-type. Since the crystal CU20 may contain extra 
oxygen, it may be considered as CU20 with some Cu2 + ions as impurities. The Cu2 + ion 
has one less electron than the Cu + ion, so the conductivity is p-type. Sodium chloride 

E 

sp 

(a) 

D 

--
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F ig u re 28.7 I mpu rity levels 
i n  a p-type semiconductor. 
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exposed at high temperatures to sodium vapor incorporates sodium atoms as impurities ; 
the impure crystal has n-type semiconductivity. Excess halogen can be introduced into 
sodium chloride to yield a p-type semiconductor. 

Until the late 1940s the study of semiconductivity was a frustrating occupation. 
Reproducible measurements were very difficult to obtain. To study the phenomenon in 
silicon, for example, it is necessary to begin with silicon of a fantastic degree of purity, less 
than one part per billion of impurity. Accurately controlled amounts of a definite type of 
impurity are then added. If ordinary silicon is used, the accidental impurities and their 
concentrations vary from sample to sample, making the experimental measurements 
nearly valueless. In the years since 1948 the technique of producing materials of the re
quired degree of purity, the technique of zone refining, has been developed to such an extent 
that semiconductors with reproducible characteristics are produced with ease on a 
commercial scale. Devices made of semiconducting materials are commonplace items. 

28 . 7  CO H ES IVE E N E R G Y  I N  M ETA LS 

Any detailed calculation of the cohesive energy of metals is quite complicated ; however, it 
is possible from a qualitative examination of the band systems to gain a little insight into 
the problem. Consider the transition metals that as isolated atoms have partially filled d 
shells, and as solids have partially filled d bands. The d band can hold 10  electrons/atom. 
Since the d shell in the atoms is shielded somewhat by the outer electrons, the d band is very 
narrow compared with the sp band. Figure 28 .8(b) shows the relative widths and the filling 
of the d and sp bands in copper. The d band is completely filled. In nickel, which has one less 
electron per atom, the d band is only partially filled (Fig. 28 .8a). The lower cohesive energy 
of copper compared with that of nickel is a result of the higher average energy of the elec
trons in the sp band of copper. Zinc has one more electron than copper ; adding this electron 
to the sp band fills it to a much higher level (Fig. 28 .8c), resulting in a marked decrease in 
the cohesive energy. The cohesive energies are nickel, 425 . 1  kl/mol ; copper, 341 . 1  kJ/mol ;  
zinc, 1 30.5 kl/mol. The lower the energy of the electrons in the metal, the more stable is 
the system and the greater is the cohesive energy. It is evident from Fig. 28 .8 that a partially 
empty d band in a metal is an indication of a large cohesive energy, since the average energy 
of the electrons is low. Addition of an electron to the sp band, as in going from copper to 
zinc, increases the average electronic energy rapidly, because the very wide sp band ac
commodates only 4 electrons/atom, while the very narrow d band accommodates 10. 

� � � 
d d d 

sp sp 
(a) (b) (c) 

F i g u re 28.8 Effect of the d band on the e lectron ic  energy. 
(a) N icke l .  (b) Copper. (c)  Z inc .  

sp 
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28. 1  Why is the Madelung energy UM (a) negative ? (b) proportional to the number of ion pairs ? 
28.2 What is the approximate dependence of the cohesive energy on the magnitude of the ionic 

charges ? 
28.3 How is the ionic character of an ionic solid reflected in the band picture ? 
28.4 Identify the current carriers in n- and p-semiconductors. 
28.5 Explain the temperature dependence of the conductivity of semiconductors. 

P R O B LE M S  

28.1 Consider the following arrangements of ions : 

a) + b) + + 
+---;:----+ +--------+ 

r 

c) + + + d) + Ir ( 

+ +--------+ 
r 

The charge on the positive and negative ions is + e and - e respectively ; the spacing in the 
linear arrays is r between any two neighbors. Calculate the Madelung constant for these arrange
ments of ions. 

28.2 The ion radii for Na + and Cl - are 95 pm and 1 8 1  pm. Calculate the cohesive energy neglecting 
repulsion ; A = 1 . 7476. Calculate the cohesive energy if n = 8.0. 

28.3 Using the Madelung constants in Table 28 . 1 ,  compare the cohesive energy of RbCl in the NaCl 
structure and in the CsCl structure. The radii are r + = 148 pm, r _ = 1 8 1  pm, and are assumed 
to be the same in both structures. 

28.4 a) Arrange the alkali metal fluorides in order of increasing cohesive energy. 
b) Arrange the potassium halides in order of increasing cohesive energy. 

28.5 What is the approximate ratio of cohesive energies of NaF and MgO ? 
28.6 The density of NaCl is 2 . 165 g/cm3. Calculate the interionic, Na+ -Cl- , distance. If n = 8.0, 

calculate the compressibility of solid NaCL 





Stru ct u re a n d 
T h ermodyn a m i c  P ro pe rt i es 

29. 1  T H E E N E R G Y  O F  A SYST E M  

The energy of an individual atom or molecule can be calculated from quantum mechanics. 
In a collection of a large number of molecules there is an energy distribution ; some 
molecules have more energy and some less. The average energy of the collection of 
molecules is identified with the thermodynamic energy of the system. It is our aim to 
discover the relation between the properties of the individual molecule, obtained from the 
Schr6dinger equation, and the thermodynamic properties of the bulk system, which 
contains many individual molecules. 

Consider a system of fixed volume V, which contains a very large number N of 
molecules. Since the energies of the individual molecules have discrete values, the possible 
energies of the system have discrete values E1 , E2 , E3 " ' "  Ei • We find these energy values 
by solving the Schr6dinger equation. We specify that the temperature is constant, since 
the system is immersed in a heat reservoir at constant temperature. The system exchanges 
energy with the reservoir ; thus if we make a number of observations of the system, we 
will find that it is in a different quantum state, that it has a different Ei , in each observation. 
The thermodynamic energy is the average of the energies exhibited in a large number of 
observations. If we wish, instead of observing one system a large number of times, we 
can construct a large number of identical systems, immerse them in the same temperature 
reservoir, and make one observation on each system. Each is found to be in a different 
quantum state ; the energy is obtained by averaging over all the systems. 

Consider a collection of a large number, N, of identical systems, an ensemble. Every 
system in the ensemble has one of the energy values, so we may write the energy distribu
tion as follows : 

Energy 
Number of systems 
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The probability of finding a system with the energy E; is P; = D;/N. This probability 
depends on the energy E; , so we write 

Similarly, the probability of finding a system with energy Ej is 
Pj = feE). 

(29 . 1 )  

(29.2) 
Suppose that we choose two systems from the ensemble ; the probability Pij that one 
has E; and the other has Ej is the product of the individual probabilities, 

(29.3) 
There is another way to choose two systems from the ensemble. Suppose that we pair 
off the systems randomly, to form tN paired systems. The probability that a pair has 
energy E; + Ej is also Pij and must be the same function of the energy of the paired 
system as the P; is of the energy of the single system ; P;j differs at most by a multiplicative 
constant B, since the total number of systems involved is different. Therefore 

Pij = Bf(E; + E). (29.4) 
Combining this with the result in Eq. (29. 3), we obtain the functional equation 

f(E;)f(Ej) = Bf(E; + E). (29. 5) 
We have met a similar equation, Eq. (4.27), in the kinetic theory of gases. Equation 
(29 .5) is satisfied if feE;) has the form 

feE;) = Be - fJEi, (29 .6) 
where f3 is a positive constant, and the negative sign in the exponential was chosen to 
avoid predicting an infinite probability of finding systems with infinite energy. The 
constant f3 must be the same for all systems ; otherwise the functional relation, Eq. (29. 5), 
would not be fulfilled. The property common to all the systems is the temperature, so 
without further argument, we set 

(29.7) 

where k is the Boltzmann constant. The relation in Eq. (29.7) can be proved rigorously, 
of course, but to avoid rewriting many equations, we will not undertake the proof here. 

Finally, the probability becomes 

(29.8) 
The constant B is determined by the condition that the sum of the probabilities over 
all possible energy states is unity : 

so that 

I p; = 1 ,  ; 

B I e -E;jkT = 1 .  ; 

(29.9) 

(29. 10) 

The summation in Eq. (29. 10) is called the partition function, or the state sum, and is 



given the symbol Q : 

Thus, B = l/Q, and 
e -E,/ kT 

Pi = -Q-

Defi n it ion  of the Entropy 723 

(29. 1 1) 

(29. 12) 

Knowing the probability of finding the system with energy Ei , we can calculate 
the thermodynamic energy U of the system, which is the average energy of the ensemble : 

L OiEi 
U = (E) = T ' 

Since Oi!N = Pi ' this becomes 

(29. 1 3) 

By the same reasoning, any function ofthe energy Y(Ei) has the average value < Y) given by 

< Y) = L Pi Y(EJ (29 . 1 4) i 
The argument assumes that the probabilities of choosing one system with energy 

Ei and another with Ej are independent ; this leads to a distribution function Pi ' which is 
of the Maxwell-Boltzmann type. The independence of the probabilities implies that the 
distribution is a random one. 

29 . 2  D E F I N IT I O N  O F  T H E E NT R O PY 

In the ensemble the systems are distributed over the various quantum states ; every possible 
way of arranging the systems in the quantum states is called a complexion of the ensemble. 
The number of complexions is denoted by 0. ;  then the entropy of the ensemble is defined, 
as in Section 9 . 12, by 

S = k In O.. (29. 1 5) 
The entropy of the system is the entropy of the ensemble divided by the number of systems 
N, so that 

S = � = k In n  
N N '  (29 . 16) 

We regard the quantum states with energies Ei as boxes and the systems as balls to be 
distributed among the boxes. The total number of distinguishable ways of arranging 
the balls in the boxes (the systems in the quantum states) is the number of complexions 0. 
of the ensemble. This number is given by Eq. (9.70) : 

To find S we first calculate In n. 

N !  0. =  I I I "1 . °2 . °3 ' . . .  

In 0. = In N !  - L In OJ ! i 

(29 . 1 7) 



724 Structure and Thermodynamic  P ropert ies 

If N is large, the Stirling formula yields In N !  = N In N - N. Then 

In n = N In N - N - L: "i In "i + L: ni · 

Since �i "i = N, and "i = PiN, this reduces to 

i i 

In ,Q = N In N - N L: Pi In (NP;). 
i 

Expanding In (NPJ and using the fact that 1:; Pi = 1 ,  this becomes 

In n = - N L: P; ln P; . 
; 

Using this result in Eq. (29. 16), we obtain for the entropy of the system 

S = - kL: P; ln P; . 

(29. 1 8) 

(29. 19) 

Equation (29. 19) expresses the dependence of the entropy on the Pi ' It is important 
to observe that P; is the fraction of the systems in the state with energy E; , so that the form 
of the sum in Eq. (29 . 19) has the appearance of an entropy of mixing. The systems in the 
ensemble are "mixed," or spread over the possible energy states of the system. It is this 
" mixing " or spreading that gives rise to the property of a system we call the entropy. 

29. 3  T H E  T H E R M O DY NA M I C  F U N CTI O N S  I N  
T E R M S  O F  T H E PARTITI O N  F U N CTI O N  

Equations (29. 1 3) and (29. 19) relate the energy and entropy to the Pi ' From these 
equations, the relation between P; and Q, Eq. (29 . 12), and the definition of Q, Eq. (29. 1 1), 
all of the thermodynamic functions can be expressed in terms of the partition function Q 
and its derivatives. We begin by differentiating Eq. (29. 1 1) with respect to temperature : 

(aQ ) = _1_· " E . e -EdkT 
aT v kT2 7' , . (29.20) 

Since the E; are obtained ultimately from the Schrodinger equation, they do not depend 
on temperature ; they may, however, depend on the volume, so the derivative is a partial 
derivative. Using Eq. (29 . 12), the exponential in the sum in Eq. (29.20) may be replaced 
by QPi , which brings the equation to the form 

kT2G�t = Q f P;E; .  

By comparison with Eq. (29. 1 3) this summation i s  equal to the energy, so we have 

U = 
kT2 (aQ ) = kT2 (a In Q) Q aT v aT v

' 

which relates the energy to the partition function. 
To obtain the entropy, we calculate In P; using Eq. (29. 12) : 

B -
In p .  = - -' - In Q. , kT 

(29.21) 
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this expression in Eq. (29. for the entropy yields 

Using Eqs. (29.9) and (29. we obtain 
u s = T + k In Q. 

Insertion of the valm; of U from Eq. yields 

S = k In Q + kTe �� Q)v ' (29.22) 
which expresses the in terms of the function. Since all of the other 
thermodynamic functions are simply related to S, U, T, and V, it is an easy matter to 
calculate them. For example, the Helmholtz function A = U - TS. Using the values for 
U and S in terms of Q, we obtain for 

A = - kT ln Q. (29.23) 
From the fundamental equation, Eq. 
we obtain for the pressure, 

p = - (aA/o V)y . Differentiating Eq. (29.23), 

P = k T(O!� Q) T '  
Then the values of H and G follow immediately from the definitions : 

[ (a In Q) (0 In Q) ] H = kT T aT v + V av T ; 
[ (0 In Q) ] G = - kT In Q - V av- T . 

Finally by differentiating Eq. we obtain the heat capacity Cv : 

Cv = kT [2e �l� Q)v + T (a��p)J . 

(29.25) 

(29.26) 

(29.27) 
In a certain sense we have solved the problem of obtaining thermodynamic functions 

from the of molecules. These functions have been related to Q, which, its 
definition, is related to the energy levels of the system, which are in turn related to the 
energy levels of the molecules in the system. To make these expressions useful, we must 
express the function in terms of the energies of the molecules. 

29.4 T H E M O LEC U LA R  PA RTiTI O N  f U N CTl o r\l  
Consider the quantum state of the system that has the energy Ei . This energy is composed 
of the sum of the energies of the molecules £1> £2 ' . . . , plus any interaction energy W 
between the molecules : 

(29.28) 
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For the present we assume that the particles do not interact (ideal gas) and set W = O. 
Each energy ti corresponds to one of the allowed quantum states of the molecule. Because 
the energy E; has the form given Eq. (2928), it is possible to write the partition function 
as a product of partition functions of the individual molecules q. The final form is, for 
indistinguishable molecules, 

1 Q = N !  
where N is the number of molecules in the system and 

(29.29) 

(29. 30) 

The sum in Eg. (29 . 30) is over all the quantum states of the molecu le, so q is the molecular 
partitionfunction. If gi quantum states have the same energy, they are said to be degenerate ; 
degeneracy = 9i ' The terms in the partition function can be grouped according to the 
energy level. The gi  states 9i equal terms in the partition function. The expression 
in Eq. (29. 30) can be written as 

(29. 30a) 

in which the sum is taken over the different energy levels of the system. 
If two kinds of molecules are present, No of A and Nb of B, then 

qNaqNb 
Q = 0 b . Na !Nb ! (29. 3 1 ) 

We will not justify these equations except to say that i f the Q were written simply as 
qN, too many terms would be included ; division by N !  is required to yield the correct 
result . 

Since only In Q appears in the formulas for the thermodynamic functions, we find, 
using the Stirling formula, from Eq. (29.29) 

In Q = N ln q - N ln N + N. (29. 32) 
Using the expression in Eq. (29.32), we can express an the thermodynamic functions in 
terms of In q instead of In Q. 

29 ,5 T I-l E C H E M I CA L  POT E NTIAL 

We calculate the value of the chemical potential in a mixture by using the relation /10 = 
(aA/aNah, V, Nb ' By differentiating Eq. (29.23), we obtain ( aA ) (a In Q) 

aN 
-kT � = /10 ' 

a T, V, Nb 0 T, V, Nb 
From Eq. (29. 3 1) we have 

In Q = No In qa + Nb In qb - Na In No + No - Nb In Nb + Nb •  
Differentiating with respect to Na , this becomes (a In Q) ( qa ) -- = In qo - 1 - In No + 1 = In - . 

oNa T, V, Nb No 
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Thus 

Ila = - kT In (�J (29 .33) 

which expresses the chemical potential of a gas (indistinguishable molecules) in terms of 
the molecular partition function per molecule qal N a ' a result that is useful for the discussion 
of chemical equilibria. If we were dealing with a solid in which the molecules are locked In 
place andtherefore are distinguishable, the factors N a !  and Nb ! do not appear in Eq. (29 .3 1), 
so we have the simpler result 

11 = -kT In (qe- W/NkT), (29. 34) 
where the interaction energy W appears, since W is not zero in a solid. 

29. 6  A P P LI CATI O N  TO T R A N S LATI O N A L  D EG R E ES O F  F R E E D O M  

The application of the formulas is simplest if the molecules possess energy in only one form. 
Therefore we consider a system such as a monatomic gas, which has only translational 
energy. For the moment we ignore any contribution of the internal electronic energy of the 
atom to the properties of the system. The energy of translation tt is made up of the energies 
in each component of the motion, so we write 

tt = tx + ty + tz · 
Again, because these energies are additive, the translational partition function qt factors 
into a product : 

(29 .35) 
The energy levels for translation are the energy levels for a particle in a box (Section 

21 . 3). If the width of the box in the x direction is a, then the permitted values of the kinetic 
energy from the Schrodinger equation are 

h2n2 
tx = 

S----Z ' ma n = 1 , 2, 3, . . .  (29 .36) 

It was shown in Section 21 .3 .2 that the spacing between levels in a box of macroscopic 
dimensions is extremely small-too small to distinguish the levels observationally. There
fore we choose a new set of distinct levels, t; , but separated by an energy dt. Let there be g; 
levels in the energy range dt between t; and t; + l' All of these levels in this energy range will 
be assigned the single energy value t; . Then the terms in the partition function group into 
sets, and we can write the partition function as 

qx = L g; e - <dkT, 
; 

(29. 37) 

since g; terms containing the single exponential e - <dkT appear when the sum is made over 
all levels. 

To obtain g; we calculate the spacing between levels : 

h2 
tn + 1 - tn = (2n + 1) �-2 ' 8ma 

If n is very large, then 2n + 1 ::::; 2n = (4alh) (2mt)1 /2, where the last form is obtained by 
solving Eq. (29 .36) for 2n (the subscript x on t has been dropped). The value of the spacing 
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becomes 

tn + 1 _ tn = � (�)
l/Z . 

a 2m 
The number of levels in the range dt is g and is obtained by dividing the range by the 
spacing between levels : 

_ a (2m) 
l iZ Ar g - It --; ,", c .  

When we put this value of g in the partition function and change the summation to 
integration from t = ° to t = 00, Eq. (29.37) becomes 

qx = lX) � e�r/Z e - <lkT dt. (29. 3 8) 

We change variables to yZ = tlkT; then dt = 2kTy dy, and the integral in Eq. (29. 38) 
becomes 

qx = 2h
a 
(2mkT) 1 /2 1X) e- y2 dy. 

The integral has the value !n1/Z ; hence 

Similarly, if b and c are the widths of the box in the y and z directions, we get 

The translational partition function qt is the product of these, by Eq. (29.3 5) ; we obtain 

_ (2nmkT) 3/Z qt - -h-z- V, (29. 39) 

where the product of the dimensions of the box abc has been replaced by the volume V. 
Using Eq. (29. 32), we obtain for Q 

In Q = N In qt - N In N + N. 
The derivatives of In Q are (8 In Q) 

8T v 

3N 
2T and 

(8 In Q) 
8V T 

N 
V 

(29.40) 

We can easily verify that the energy of the system is 1NkT and that p = NkT IV, which are 
the values we expect for a monatomic gas in which the interaction energy is zero. From the 
values of the derivatives and In Q itself, any of the thermodynamic quantities can be 
calculated using the formulas in Section 29.3 . 

29.7 PA RTITI O N  F U N CTI O N  O F  T H E H A R M O N I C  O S C I LLATO R 

If the particles composing the system have only vibrational motion, the energies permitted 
are given by 

ts = (8 + !)hv, 8 = 0, 1 , 2, . . .  , 
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where v is the frequency of the oscillator. Using this value for the energy, we see that the 
vibrational molecular partition function becomes 

00 
qv = L e-

·<s/kT = L e - (s + 1 /2)hV/kT, 
s = O  

where the sum is over all the integral values of s from zero to infinity. To simplify, let 
y = e - hv/kT

, then 
00 

qv = yl /2 L yS = yl/2(1 + y + y2 + . . .  ) . 
S = O  

Since 1/(1 - y) = 1 + y + y2 + y3 + . . .  , we see that qv becomes 

yl/2 e - hv/2kT 
qv = 1 � y 

= 1 _ e hv/kT · (29.4 1) 

It is customary to define a characteristic temperature for the oscillator, e = hv/k. Then 
e - 8/2 T 

qv = 1 _ e 8/T · (29.42) 

H the temperature is either very high or very low, this equation takes on a simpler form. 

Case I. T is very low ; elT � 1 .  Then, e - 8fT is negligible compared with unity in the 
denominator of Eq. (29 .42) , and we have 

(low temperature) . (29 .43) 

Case II. T is very high ; elT � 1 .  Then the exponential in the denominator can be 
expanded e - 8/T = 1 - elT, and we have 

T q = _ e - 8/2T v e 

29 .8  T H E M O N ATO M I C  S O LI D  

(high temperature). (29.44) 

The monatomic solid has only vibrational motion. The partition function can be written as 
a product of the partition functions of the atoms composing the solid and an exponential 
factor that includes the interaction energy W of the atoms in the solid : 

(29.45) 
Since each particle in the solid has three vibrational degrees of freedom, the partition 
function for each atom is a product of three vibrational partition functions ; thus Q 
contains a product of 3N vibrational partition functions : 

(29.46) 
Each partition function contains a frequency, so that there is a total of 3N frequencies and, 
correspondingly, 3N values of e which are involved. We cannot do anything further at low 
temperatures without knowing something more about the frequencies. 

At very high temperatures we can do a little bit. Taking the logarithm of Q from Eq. 
(29.46), we obtain 

(29.47) 



730 Structu re and Thermodynamic  P roperties 

But from Eq. (29.44) at high temperatures we have 

() 
In qv = - 2T -

In () + In T, 

and the temperature derivative (8 In qv) () 1 
----aT v 

= 
2Tz + T ' 

so that the energy in the individual vibration is 

<Ev) = !k() + kT = !hv + kT. 

(29.48) 

(29.49) 

It is apparent from the form of Eq. (29.47) that the total energy of the solid is made up of a 
sum of the contributions from each vibration, <Ev), and a contribution from the term 
- W INkT. This last term contributes W, so we have for the energy of the solid, 

3N 
U = W + I <Ev) 

From Eq. (29.49) this becomes 
3N 3N 

U = W + I !hVi + I kT. 

The summation in the second member on the right is the sum of the zero-point energies of 
all the oscillators. The third member is a sum of 3N terms each of value kT, so that it is 
equal to 3NkT. Since the first two members are constant, we combine them in a single 
term U o . The final result at high temperatures is 

U = Uo + 3NkT. (29.50) 

The heat capacity of the solid is, by differentiation, . 
Cv = 3Nk. (29. 5 1) 

The value of the heat capacity in Eq. (29. 5 1 )  does not depend on any assumption about the 
frequencies in the solid. This should be the value of the heat capacity of any monatomic 
solid if the temperature is sufficiently high. If we deal with one mole of the solid, then 
N = N A , and N Ak = R. For one mole, Cv = 3R � 25 J/K mol. This result is the law 
of Dulong and Petit, recognized for a c�ntury and a half. 

The result in Eq. (29. 5 1 )  is confirmed at high temperatures for many solids. At 
ordinary temperatures the heat capacity is often less than the ideal value 3R. In diamond at 
room temperature the heat capacity is only 6.07 J/K mol, indicating that the vibrations 
are not fully excited ; temperatures of the order of 2000 to 3000 K are required before 
diamond has the high-temperature value. A crystal such as NaCI has 2N A atoms per 
mole and should therefore have Cv = 6R = 49.89 J/K mol. For NaCI at 25 °C, the value 
of Cp = 49.71 J/K mol. Ferric oxide, Fez03 , with 5N A atoms per mole should have C = 
1 5R = 125 J/K mol. The 25 °C value of Cp = 105 J/K mol. 

A salt such as NaN03 has a vibrational heat capacity of 6R contributed by vibrations 
ofNa + and N03 in the solid and an additional contribution from the vibrations within the 
nitrate ion, which are partly but not fully excited. Some metals, notably the transition 
metals, exhibit values of Cv greater than 3R at high temperatures ;  this extra contribution 
comes from the heat capacity of the electron gas in the metal. 
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To discuss the heat capacity at intermediate and low temperatures requires some 
additional assumption about the 3N frequencies. The simplest approach is that of Einstein 
who assumed that all the frequencies have the same value, VE . The partition function then 
takes the form 

(29.52) 
where qv has the form given by Eq. (29.41) with v = VE . The Einstein model agrees well with 
experimental values of Cv at intermediate and high temperatures, but predicts values that 
are too low at low temperatures. 

The Debye theory assumes that there is a continuous distribution of frequencies from 
v = ° to a certain maximum value v = VD . The final expression obtained for the heat 
capacity is complicated, but succeeds in interpreting the heat capacity of many solids over 
the entire temperature range rather more accurately than the Einstein expression. At low 
temperatures, the Debye theory yields the simple result 

_ 12n4 (�)3 
Cv - 5 Nk BD ' (29. 53) 

where BD = hVD/k. This is the Debye " T-cubed " law for the heat capacity of a solid. At 
temperatures near the absolute zero the great majority of solids follow this law quite 
accurately. 

29 .9  T H E R OTATI O NA L  PARTITI O N  F U N CTI O N  

The rotational energy of a rigid linear molecule is 

E _ J(J + l)h2 
J - 21 (29. 54) 

Since the z component of the angular momentum may have any of the values 0, ± 1 , 
± 2 , . . .  , ± J, there are 2J + 1 orientations of the angular momentum vector ; the de
generacy, gJ = 2J + 1. The rotational partition function is therefore given by 

qr = I (2J + l)e - J(J + l)Jj2/ZIkT. 
J= O  

If we define a characteristic rotational temperature as 

li2 Br = 21k ' 

then 
qr = I (2J + l)e - J(J + l)8r/T. 

J= O 

(29. 55) 

(29. 56) 

(29. 57) 

Unfortunately, the sum on the right side cannot be evaluated in closed form. Nonetheless, 
using Eqs. (29.27) and (29.32) we find that the heat capacity, Cv(rot) , due to the rotation of 
the molecules becomes 

(29. 58) 

We can evaluate this expression by performing the required differentiations on the series in 
Eq. (29. 57), inserting the numerical values, and summing term by term until the desired 
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2 

F i g u re 29.1 Rotat iona l  heat capacity 
of an unsymmetrica l  d i atomic mo lecu le .  
( From T. L. H i l l ,  Introduction to 
Statistical Mechanics. Read i ng,  M ass. : 
Addison -Wesley, 1 960. ) 

accuracy is attained. The behavior of Cv(roq/R as a function of temperature is shown in 
Fig. 29. 1 .  It is clear from the figure that at all values of Tier > � 1 .2, the heat capacity has 
reached the classical value, R. Suppose that we estimate the value of e/. for a molecule such 
as CO. Since m = (0.028 kg/mol)/(6 x 1 02 3 Imol) :::::; S x 1 0 - 2 6 kg, then I = mr2 :::::; 
(S x 1 0 - 26 kg)( 1 0 - 1 0 m)2 :::::; S x 1 0 - 46 kg m2 , and 

(1 x 10 - 34 J 8)2 er = 2(S x 10 46 kg m2)(1 x 10 2 3 J/K) :::::; 
1 K .  

Some actual values o f  en a s  well a s  ev , are given in  Table 29. 1 .  Except for those diatomic 
molecules containing hydrogen, the values of er are indeed about 1 to 2 K. Thus these 
molecules have the classical value of the heat capacity at any temperature above about 
2. S K. 

When erlT � 1 , we can replace the sum in Eq. (29. SS) by an integral. Let y = J(J + 1) ; 
then dy = (2J + 1) dJ. But since J is an integer, the difference between successive values is 
1 ;  thus dJ = 1 and therefore dy = 2J + 1 .  Using this result in Eq. (29.55) and replacing 
summation by integration, we obtain 

H2 
N2 
O2 
CO 
NO 
HCl 
HBr 
HI 
el2 
Br2 
12 

qr = L'" e- y8r/T dy = � = 
2��T 

Tab le  29.1 
Para meters for d i atomic molecu les 

ejK eriK relpm Do/l0 - 1 9 J 

6210 85 .4 74.0 7. 1 74 
3340 2 .86 109.5 15 .637 
2230 2.07 120.4 8 . 196 
3070 2.77 1 12 .8 17.798 
2690 2.42 1 1 5.0 10.426 
4140 15 .2 127.5 7. 109 
3700 12. 1 141 .4 5 .071 
3200 9.0 1 60.4 4.892 
8 10  0 .346 198 .9 3 .985 
470 0. 1 16 228.4 3 . 1 58  
3 10  0.054 266.7 2.474 

From T. L. Hill , I ntroductiol1 to Statistical Thennody
namics. Reading, Mass. : Addison-Wesley, 1 960. 

(29. 59) 
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This is the value of the rotational partition function for unsymmetrical linear molecules 
(for example, heteronuc1ear diatomic molecules). Using this value of qr we can calculate 
the values of the thermodynamic functions attributable to rotation. 

For nonlinear molecules with principal moments of inertia, I IX' I p , and I y ' the value of 
the rotational partition function at high temperature is 

= 11: 1/2 (2IlX kT) 1 /2 (2Ip kT) 1 /2 (2Iy kT) 1/2 qr (f li2 li2 li2 ' (29.60) 

in which (f is the symmetry number. 
If we rotate a homonuc1ear diatomic molecule through 1 800 around an axis perpen

dicular to the molecular axis, the final configuration is indistinguishable from the initial 
one. This means that the expression for the partition function given in Eq. (29. 59) must be 
divided by 2 for homonuc1ear molecules to avoid counting indistinguishable configura
tions as distinct. Thus, for diatomic molecules when f)rlT � 1, we have the general ex
pression 

2IkT 
qr = (fli2 (29.61)  

in which (f = 1 for a heteronuc1ear molecule and (f = 2 for a homonuc1ear molecule. 
For the same reasons, the symmetry factor, (f, was introduced in Eq. (29.60) for 

polyatomic molecules. Consider CH4 , methane, a molecule with 12 indistinguishable 
configurations. Suppose that the carbon atom is at the origin and hydrogen atom number 1 
is on the vertical axis ; then the three hydrogen atoms in the horizontal plane can be in any 
of three indistinguishable configurations. But any one of the four hydrogen atoms may be 
on the vertical axis ; thus there are 4 x 3 = 12 indistinguishable configurations and there
fore, for methane, (f = 12 in Eq. (29.60). 

29. 1 0 T H E E LECTR O N I C  PARTITI O N  F U N CTI O N  

Using Eq. (29.30a) we can write the electronic partition function in the form, 

qe = L gei e - eeilkT = ge l e - ee t ikT + ge2 e - ee2lkT + . . .  , i 
or, factoring the first term out of the sum, 

qe = ge l e - ee tlkT [1 + (:::)e - <eer ee l l/kT + . .  J 

(29.62) 

For most atoms and molecules the energy of the next higher electronic state is very much 
greater than Ee l ' SO that (Ee l - Ee2)lkT is very large unless the temperature is exceedingly 
high. It follows that the second and following t�rms in the sum are negligibly small. This 
reduces qe to the one term 

(29.63) 
If these conditions are not met, we simply add as many higher terms as are required by the 
particular case. In many practical cases Eq. (29.63) is all that is needed. 

The degeneracy of the electronic state is given by 

Atoms : ge = 2J + 1 ;  Molecules : ge = 2Q + 1 . (29.64) 
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For atoms, J is the quantum number for the total angular momentum, orbital plus spin ; 
J = L + S. The number J is the right-hand subscript in the term symbol derived in 
Section 24.7. For example, for the halogen atoms the term symbol for the ground state is 
2p3/2 ' Then J = t and ge l = 2(1) + 1 = 4. Similarly, for molecules, Q is the quantum 
number for the total angular momentum of the molecule ; Q = A + L (Section 25.9). For 
the vast majority of chemically saturated molecules, Q = 0 in the ground state so that 
ge l = 1. Oxygen is an exception ; for oxygen, Q = 1 and ge l = 3. Molecules with an odd 
number of electrons, such as NO and N02 , are exceptions. For 1'\TO, ge l = 2. Also for NO 
the second term in the partition function must be included even at ordinary temperatures. 

As we will see below, if we are to use the expression in Eq. (29.63) in the calculation of 
an equilibrium constant for a chemical reaction, we must choose a common energy zero for 
all the species involved in the reaction. The condition of separated atoms at rest in the gas 
phase (that is, at T = 0 K) is usually the most convenient choice of energy zero. The 
situation is illustrated for a diatomic molecule in Fig. 29.2. The depth of the minimum is the 
value of te l ; thus te l = - De . This position is the origin for the vibrational energy of the 
molecule. Thus, if the dissociation energy is Do (a positive number), then 

- Do = - De + !hv. (29.65) 

If the molecule has more than one vibrational degree of freedom, we have 

- Do = - De + L !hVi ' (29.66) i 
in which te l = - De , the summation is over all the vibrational modes, and Do is the energy 
required for the reaction 

molecule --+ gaseous atoms (at 0 K). 
Some values of Do for diatomic molecules are given in Table 29. 1 .  Note that Do and Vi are 
measurable while De is calculated from Eq. (29.66). For a polyatomic molecule in which the 
various vibrations are independent, it is convenient to combine the product ofthe electronic 
and vibrational partition functions. We have for qe qv ,  

E 

_ - 'e l/kT 
( e - ei/2 T ) 

qv qe - If 1 _ e ei/T ge le 

O �4-------------� __ --------- r 

F i g u re 29.2 G round state and fi rst excited state 
(dashed cu rve) e lectron ic  energ i es as a funct ion of 
i nternuc lear  separat ion .  (Adapted from T. L. H i l l ,  
Introduction to  Statistical Mechanics. Read ing ,  
M ass. : Addison -Wesley, 1 960. ) 
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where 8i = hvJk. Since n e- Oi/2T = e- 'i:-i Oi/2T
, 

i 

ge e - (Ee l  + I; 1 /2hv;)/kT 
qv qe = n (1 _ e- Oi/T) 

i 
f1 ( 1  - e Oi/T) 

, 

i 

(29.67) 

where we have used Eq. (29.66) to obtain the second equality on the right. Note that at 
T = 0 K, the energy change in a chemical reaction is given by I1Do . 

29. 1 1 ORTHO- A N D PARA - H Y D R O G E N  

The quantum-mechanical interpretation of the appearance of the symmetry number in the 
rotational partition function has its basis in the symmetry of the total wave function of the 
molecule. We will consider only the case of the hydrogen molecule. 

The total wave function, 'P, ofthe hydrogen molecule is a product of the wave functions 
for the various modes of motion of the molecule. We write 

(29.68) 
in which t/I el is the electronic wave function, t/I rot is the rotational wave function, t/lvib is the 
vibrational wave function, and t/lns is the nuclear spin wave function. The Pauli exclusion 
principle requires that the wave function be anti symmetric under the interchange of any 
two identical elementary particles. Consequently, if we interchange the two protons (the 
nuclei), the total wave function must change sign. Since t/lel and t/lvib are symmetric under 
the interchange of the nuclei, the product t/I rot t/I ns must be antisymmetric. This requirement 
can be satisfied in two ways, each way corresponding to a different kind of hydrogen. 
If t/lns is symmetric, then t/lrot must be antisymmetric and vice versa. If J is odd, t/lrot is 
anti symmetric, while if J is even, t/I rot is symmetric. Thus we have the two kinds of hydrogen 
molecules : 

1/Ins t/lrot 

artho-hydrogen (o-H2) Symmetric Antisymmetric J = 1 , 3, 5, . . .  

para-hydrogen (P-H2) Antisymmetric Symmetric J = 0, 2, 4, . . . 

Since the nuclear spin quantum number for the proton is !, and there are two protons, 
it follows that the spins can add to give a total spin quantum number of 1, or they can 
subtract to give a net spin quantum number of O. The first case corresponds to a triplet 
(three symmetric spin functions) and the second corresponds to a singlet (one antisym
metric spin function). The functions are the same as those for the electron pair : 

Symmetric functions et(l )et(2) {3(1){3(2) et( 1 ){3(2) + {3( 1  )et(2) 

Antisymmetric function et(l )P(2) - {3(1  )et(2) 
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It follows that, in the absence of any other infiaence, hydrogen atoms will combine to 
yield o-H2 and p-H2 in a three to one ratio, simply because there are three symmetric 
nuclear spin wave functions and one anti symmetric nuclear spin wave function. This 3 :  1 
ratio is observed at high temperatures, where the molecules are spread out over enough 
rotational states that the energy difference between the populations in the odd and even 
rotational states is insignificant. 

The rotational partition function for para-hydrogen is 

qy(para) = I (21 + l )e - J(1 + l )6rIT, 
J = even 

for ortho-hydrogen, we have 

qy( ortho) = 3 I (21 + 1)e - J(1 + l )6rlT 

J = odd 

(29.69) 

(29.70) 

Note that for any particular hydrogen molecule, the allowed values of 1 are either even or 
odd, but not both. This limitation, which allows the occupation of only one-half of the 
possible states, effectively divides the partition function by a factor of two. This division by 
two was accomplished in our elementary argument by introducing the symmetry factor. 

The weighting factor, 3, appears in front of the sum in Eq. (29.70) for o-H2 because 
there are three nuclear spin states permitted for each value of 1. 

The rotational heat capacities, Cv, roP for the various forms of hydrogen are shown as 
functions of temperature in Fig. 29.3 .  So-called normal-hydrogen, n-H2 ' consists of three 
parts 0-H2 to one part p-H2 . This is the equilibrium ratio at high temperature. In the 
absence of a catalyst for the conversion between the two forms, this ratio is maintained as 
the temperature is lowered. Therefore the experimental heat capacity curve shown in the 
figure corresponds to what we would calculate for a mixture of -i 0-H2 and * p-H2 • 

On the other hand, if the 3 :  1 ortho to para mixture at high temperature is cooled in the 
presence of a catalyst (activated charcoal), which brings the reaction o-H2 ¢ P-H2 to 

TIK 
F i g u re 29.3 Rotationa l - nuc lear  contribut ion to the heat 
capac ity for 0 - H 2'  p- H 2'  e- H 2 (eq u i l i bri u m  m ixtu re at each 
temperatu re) , and  n - H 2 ( labe led " exper imenta l ") .  ( From T. L. 
H i l l ,  Introduction to Statistical Mechanics. Read i ng,  M ass. : 
Add ison -Wes ley, 1 960. ) 
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equilibrium, then the relative amounts of the two species change with temperature. At 
absolute zero, all the hydrogen will be c.onverted to para-hydrogen. Since p-Hz has 1 = 0 
at zero kelvin, it has a lower rotational energy than a-Hz , which has 1 = 1 in its lowest 
possible rotational state. Thus in the presence of a catalyst the a-Hz is converted to p-Hz 
because of the lower rotational energy of the p-Hz . 

At any temperature in the presence of a catalyst, the equilibrium ratio of artha- to 
para-hydrogen is given by 

No qr( artha) 
Np qr(para) 

3 I (21 + l)e - J(J + l }8rlT 

J = odd 

I (21 + 1)e J(J + 1 }8rlT . 

J = even 

(29.71 )  

The slight difference in the average rotational energy of the two forms enhances the heat 
capacity due to the LeChatelier shift in the equilibrium position as the temperature is 
changed. This effect is exhibited in the curve for Cv. rot labeled e-Hz . Equilibrium-hydrogen, 
e-Hz , is hydrogen that is kept in the presence of a catalyst to ensure that the equilibrium 
between a-Hz and p-Hz is established at all temperatures. The curve for e-Hz is typical of 
the heat capacity of a reactive mixture maintained in equilibrium as the temperature is 
changed. 

At 0 K, 1 = 1 for or tho-hydrogen, and 21 + 1 = 3. These three rotational states 
combine with the three nuclear spin states to yield nine quantum states available to the 
0-Hz molecule at 0 K. In normal hydrogen, the i mole fraction of a-Hz is evenly distributed 
over all nine of these states. On the other hand, for p-Hz at 0 K, 1 = 0 and 21 + 1 = 1 .  
This one rotational state combines with the one nuclear spin state to  yield a single quantum 
state that is available to the p-Hz molecule. The entire i mole fraction of p-Hz in n-Hz 
occupies this single quantum state at 0 K. 

At 0 K normal hydrogen has a residual entropy due to the entropy of mixing the i mole 
fraction of p-Hz with the nine different states occupied by the i mole fraction of a-Hz . Each 
of the nine states has !(i) = lz mole fraction in it. The f1S of mixing is 

f1Smix = - R(i In i + i ln lz) = 2.21R = 1 8. 38  J/K mol. 

The nuclear spin can be oriented in two ways ; this leads to an entropy of R In 2 per nucleus 
or a total of 2R In 2. Since this contribution to the entropy persists through all changes, it is 
not taken as part of the residual entropy and so must be subtracted from the entropy of 
mixing above. This yields for the residual entropy of hydrogen at 0 K, 1 8. 38  - 2R In 2 = 
6. 8  J/K mol, which is in good agreement with the observed value of 6.2 J/K mol. 

29 . 1 2 G E N E RA L  EX P R ES S I O N S  F O R  
T H E  PA RTITI O N  F U N CTI O N  

In general the molecules composing a system will possess energy in several ways : in 
translation, rotation, and vibration. In a diatomic gas, for example, there are three 
translational degrees of freedom, two rotational degrees of freedom, and one vibrational 
degree of freedom. If the energies in these various degrees of freedom are additive, the 
molecular partition function factors into a product of partition functions for the various 
degrees of freedom. For a diatomic molecule, for example, 

(29 .72) 
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29. 1 3 T H E E Q U I LI B R I U M  C O N STA N T  I N  TE R M S  
O F  T H E PARTITI O N  F U N CTI O N S  

Consider the chemical equilibrium in a system of ideal gases : 

0 = L vAlg)· ; 
The equilibrium condition, Eq. (1 1 . 33), is 

L V;},/,; = o. ; 
Using Eq. (29 .33) for },/,; and dividing each term in the sum by - kT, we obtain 

or L In ( q; ) Vi = o. ; N; 

But the sum of logarithms is the logarithm of a product, so that 

L In (q; ) Vi = In IT (�) Vi = 0 
; N; ; N; 

or IT ( q; ) Vi = 1 .  
; N; 

(Since the logarithm of the product is zero, the product must be equal to one.) This result 
can be restated in terms of the concentrations, N; = N;/Y. Thus we replace N; by N; = N; Y = (N;/N°)N°Y, in which N° is a standard concentration. This yields 

. IT (qJNOY)Vi ( q . ) V. . 
If (N;/N�)N°Y = h (N;/NOyi = 1 .  

; 
Then 

(N.) Vi ( q . ) Vi If N� = If N:Y . (29.73) 

The left side of this equation is the concentration equilibrium constant, 

(29.74) 

The second equality in this equation obtains since N;/N° = c;/co if N° and CO refer to the 
same standard concentration but simply express it in different units. This Kc is the same 
as that defined in Section 1 1 . 1 1  if we choose CO = 1 moljL. Combining Eqs. (29.73) and 
(29.74) we have 

(29.75) 

This equation says that Kc is proportional to the proper quotient of partition functions per 
unit volume. As usual, we have expressed the equilibrium constant as a product of dimen
sionless ratios. 

If the standard state of concentration is CO = 1 moljL, then the corresponding value of N° = c°(1000 L/m3)NA = 1000 NA moljm3 • Equation (29.75) then becomes 

1 (q;) Vi Kc = 
(1000 N A moljm3)dV If Y (29.75a) 
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Equation (29.75) is an important link between quantum mechanics and chemistry. 
Knowing the energy levels of the molecules, we can calculate the molecular partition 
functions. Then we use Eq. (29.75) to obtain the equilibrium constant for the chemical 
reaction. 

For systems involving substances other than ideal gases, the equilibrium constant can 
be obtained in a similar way from the partition functions . 

• EXAMPLE 29.1 From the hydrogen spectrum we find that the ionization energy of 
the hydrogen atom is 2. 1 782 x 10- 1 8 J. Calculate the equilibrium constant for the 
reaction 

H(g) � H + (g) + e - (g) 

at 2000 K. The term symbol for the ground state of the hydrogen atom is 2S1/2 ' The 
electron has a spin quantum number of ! and thus a spin degeneracy, 
gspin = 2(!) + 1 = 2. 

The expression for the equilibrium constant, since .�v = 1 ,  is 

We assume that all the species are ideal gases. Then the partition functions are 
qH = (qt)H(qe)H ; qH + = (qt)H + ; qe - = (qt)e - (qe)e - . It is convenient to group the 
translational functions together and the electronic functions together in the equilibrium 
constant : 

Since mH+ � mH ' it follows from Eq. (29. 39) that (qt/V)H + = (qt/V)H ; then the first part 
of Kc reduces to 

1 1 (qt) 1 (2nme kT) 3/2 
N° Ftrans = N° V e -

= N° h2 
1 [2n(9. 1095 x 10- 3 1 kg) (1 . 3807 X 10- 2 3 J/K)2000KJ

3/2 

6.0220 X 1026 m 3 (6.6262 x 10 34 J S)2 
= 0. 35863 .  

We arbitrarily choose the separated ions as the state of zero energy ; then for the H 
atom we can write, Ee l = - 2. 1782 X 10- 1 8 J. Since for the H atom, 
ge l = 2(!) + 1 = 2, and for the electron, gspin = 2, the partition functions become 

But 
(qe)H = ge l e - <· ,/kT = 2e- <, ,/kT and (qe)e - = gspin = 2. 

Ee l - 2. 1 782 X 10- 1 8 J 
kT = 

(1 . 3807 x 10 2 3 J/K) (2000 K) = - 78. 882. 

Then we find for Fel ,  
2 - 7 8 . 8 8 2 - 3 5 Fel = 2e ( 7 8 . 8 8 2) = e = 5. 5206 x 10 . 

Finally, we obtain Kc = 0.35863(5. 5206 x 10- 3 5) = 1 .9798 x 10- 3 5 . 
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III EXAMPLE 29.2 Using the data in Table 29. 1 calculate the equilibrium constant at 
500 K for the reaction 

H(g) + IzCg) � HI(g) + I(g). 
The ground electronic state for the H atom is 2S 1/2 ; for the I atom it is 2P3/2 . For both 
12 and HI in the ground state, ge = 1. For the energies relative to the separated atoms, 
we have Do(I2) = 2.4736 x 10- 1 9 J and Do(HI) = 4.89 17 x 10- 1 9 J. 

The partition functions are 

qI = (qt)lqe)I ; qH = (qt)H(qe)H ; 
qHl = (qt)Hlqr)Hl(qv)Hl(qe)HI ; qr, = (qt)12(qr)r,(qv)I2(qe)h ·  

Then 

K = (qr/V)(qHr/V) 
C (qH/V)(qI,/V) · 

Again, we group the translational functions together, the rotational functions together, 
and the vibrational and electronic functions together in Kc 

Each qt differs from the others only in the value of the mass, Eq. (29. 39). Therefore the 
constants and T drop out of the quotient and we have 

Ftrans = (mlmHl) 3/2 = (mHI ) 3/2 = ( 127.9124) 3/2 = 505.47. mHml2 2mH 2(1 .0079) 
Since qr = T/(J8" from Table 29. 1 we obtain 8r = 9.0 K for HI and 8, = 0.054 K 

for 12 . Also (J = 1 for HI and (J = 2 for 12 . Then 

T /9.0 K = 0.012. Frot = T/2(0.054 K) 
For I, qe = ge = 2m + 1 = 4 ; for H, qe = ge = 2(!) + 1 = 2 ; then Fel = ! = 2. 
Also from Table 29. 1 , for HI we have Bv = 3200 K and for 12 , ()v = 3 10 K. For 

both HI and 12 , ge = 1. Then, in view of Eq. (29.67) , we have 

For HI 

For 12 

Do 4.8917 X 10- 1 9 J = 70. 860. kT (1 . 3807 x 10 2 3 J/K) (500 K) 

Do 2.4736 X 10 - 1 9 J = 35 .832. kT (1 . 3807 x 10- 2 3 J/K) (500 K) 
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1 x e70 . 8 60 (1 _ e- 3 1 0/ 5 00) 
Fvib-el = 1 x e3 5 . 8 3 2 ( l _ e - 3 200/ 500) = 0.4621e3 5 .o2 8 = 7.5373 x 1014. 

The final expression for Kc is 

Kc = 505.47(0.012) (2) (7. 5373 X 1014) = 9. 1 X 10 1 5 . 

29 . 1 4  C O N C L U S I O N  

We have explored some of the simpler aspects of statistical thermodynamics, a very 
powerful theoretical tool. If the energy levels of the molecules composing the system can be 
obtained by solution of the Schrodinger equation, the partition function can be calculated ; 
then any thermodynamic property can be evaluated. One of the great virtues of statistical 
thermodynamics is its ability to reveal general laws. For example, we reached the con
clusion that all monatomic solids should have the same heat capacity at high temperatures. 
Restrictions on the laws are made apparent ; for example, the heat capacity of a monatomic 
solid at low temperatures depends on what is assumed about the frequencies in the solid. 

A number of objections may be raised at this point : difficulties in solving the Schro
dinger equation, approximations that must be made in many of the mathematical steps, 
and so on. These are legitimate objections, but we have concentrated here in presenting the 
more theoretical side of the statistical thermodynamics. The actual values of the energies 
may be known from experiment ! Analysis of the spectrum of a molecule will give us all the 
information about energy levels that we need. We simply insert the experimental values of 
the energies into the exponentials of the partition function, add all the exponentials 
together, and by brute force evaluate any thermodynamic quantity that happens to be of 
interest. This is somewhat laborious but very practical. The most difficult part is obtaining 
and analyzing the spectral data in terms of energy levels. To obtain the heat capacity of 
hydrogen at 2000 K by a calorimetric method would be a nasty job ; to study the spectrum 
and calculate the heat capacity from the spectral data using partition functions is very 
much easier and yields a much more accurate result. In this connection, it should be said 
that a large proportion of the tabulated thermodynamic data is obtained from spectral data. 

A final word should be said about the entropy. Although we can consider that the 
energy of a system is the sum of the energies of the individual molecules, th.e entropy of a 
system is not the sum of the entropies of individual molecules. The entropy is defined in 
terms of the complexions of a very large number of systems in an ensemble. The entropy of 
a molecule has no real meaning. We can divide the entropy of a system by the number of 
molecules and talk about an entropy per molecule, but in the final analysis this is a fiction. 
Entropy and temperature have meaning only for matter in bulk, which is composed of a 
very large number of individual particles . Systems containing only a few molecules need not 
obey the second law of thermodynamics. The number of molecules must be very large 
before probabilities become actualities with a negligible chance of observing a deviation. 

Q U ESTI O N S  

29.1 Why can a system in contact with a thermal reservoir have various possible values of its energy? 
29.2 What is an ensemble ? What is identical about members of the ensemble ? What might be examples 

of things that are different about members of the ensemble ? 
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29.3 Sketch Pi versus Ei for low, intermediate, and high temperature T. 
29.4 Use the answer to Question 29.3 and Eq. (29 . 1 9) to discuss qualitatively the variation of the 

entropy with temperature. 
29.5 What is the importance of the partition function of a system? What simplifications occur if the 

molecules of the system interact only weakly ? 
29.6 Qualitatively sketch the heat capacity of an ideal gas of diatomic molecules as a function of tem

perature. Indicate the characteristic temperatures (in terms of vibrational frequency, moment of 
inertia, and so on) where various degrees of freedom begin to contribute. 

29.7 Identify the features that tend to favor the products in the chemical equilibrium of Example 29.2. 

P R O B LE M S  

29. 1  Using the partition function, show that for a monatomic gas, U = tNkT and that p = NkTIV. 

29.2 Using the partition function, derive expressions for S, A, and G for a monatomic gas in terms of 
M, T, and V. Evaluate these functions for one mole of argon at 1 atm and 298 . 1 5  K and at 
1 atm and 1000 K. 

29.3 For Nz calculate the contributions to the thermodynamic functions U, H, S, A, and G from 
translation, rotation, and vibration at 1 atm and 298 . 1 5  K. Use the values of B, and Bv from 
Table 29. 1 .  Compare with the values at 1000 K. 

29.4 a) Using the complete expression for the vibrational partition function, Eq. (29.42), derive 
the expression for Cv as a function of BIT. 

b) Using the expression in Eq. (29.44), compute Cve CIJ), the heat capacity at infinite temperature. 
c) Calculate the values of CvlCve CIJ) for BIT = 0, 0.5, 1 .0, 1 .5, 2.0, 3 .0, 4.0, 5.0, 6.0. Plot these 

values against BIT. 

29.5 The bending vibration in COz has a frequency of 2.00 1 x 1 0 1 3 Hz. 
a) Calculate the characteristic temperature B for this vibration. 
b) What contribution does this vibration make to the heat capacity of CO z at 300 K?  
c )  This vibration i s  doubly degenerate ; that is, the COz molecule has two vibrations o f  this 

frequency. How does this affect the heat capacity ? 
d) The stretching vibrations have much higher frequencies. What contribution does the fre

quency, the asymmetrical stretch, at 7.0430 x 10 1 3 Hz make to the heat capacity at 300 K?  
29.6 Calculate the contributions for translation, rotation, and vibration ofCOz to  the thermodynamic 

functions U, H, S, A, and G at 1 atm and 298 . 1 5  K. The values of Bv are Bl = 3380. 1 K, B2 = 
1997.5 K, B3 = B4 = 960. 1 K. The CO distance in COz is 1 1 6.2 pm. 

29.7 Calculate the populations of the lowest three rotational levels of p-hydrogen at 1 0  K, 50 K, and 
1 00 K. For Hz , B, = 85.4 K. 

29.8 For hydrogen, B, = 85.4 K. (a) Calculate the entropy and the heat capacity due to rotation 
for a-Hz at 1 00 K, 1 50 K, and 200 K. (b) Repeat the calculation in (a) for p-Hz . (c) Calculate the 
equilibrium constant for p-Hz � a-Hz  at 1 00 K, 150 K, and 200 K. 

29.9 Consider the reaction 
Hz(g) + Clig) 

at 25 °C. Using the data from Table 29. 1 ,  

2 HCl(g) 

a) Calculate the rotational partition function for Cl2 and HCl ; assume q, = 1 .9206 for Hz . 
b) Calculate the equilibrium constant for the reaction. 

29.10 Calculate the equilibrium constant for the reaction 
Hz(g) + COz(g) � HzO(g) + CO(g) 



P rob lems 743 

at 800 K, 1000 K, and 1200 K. For CO2 the vibrational temperatures are 81 = 3380. 1 K, 82 = 
1997.5 K. and 83 = 84 = 960. 1 K ;  the CO distance in CO2 is 1 1 6 . 1  pm ; Do(C02) = 2.6534 x 
10- 1 8 1. For H20 the vibrational frequencies are 3650 cm - \ 1 590 cm - \ and 3760 cm - 1 ; the 
moments of inertia are I/I0- 47 kg m2 = 1 .024, 1 .92 1 ,  and 2.947 ; Do(H20) = 1 . 5239 x 10- 1 8 1. 
For CO 8v = 3070 K and 8r = 2.77 K ;  Do(CO) = 1 .7798 x 10- 1 8 1. For Hz , see Table 29. 1 .  

29.1 1  Given the data from Table 29. 1 ,  from Problem 29. 10, and keeping in mind that gel = 3 for 02 , 
calculate equilibrium constants for the reactions : 
a) H2(g) + I2(g) ¢ 2 HI(g) 
b) 2 Hzeg) + 0z(g) ¢ 2 H20(g) 
c) 4 HCl(g) + Ozeg) ¢ 2 H20(g) + 2 Clz(g) 
d) 2 CO(g) + Ozeg) ¢ 2 C02(g) 

at 600 K ;  
at 2000 K ;  
at 800 K ;  
at 900 K. 

29.12 Calculate the equilibrium constant at 1000 K for the reaction 
N2(g) + 02(g) � 2 NO(g). 

The data are in Table 29. 1 .  Also, for 0z , gel = 3 ; for NO, ge l = ge2 = 2 ; and teZ = tel + 
2.46 X 10- 2 1 1. 

29.13  For any ideal gas, f.1 = - kTln (q/N). How does the possession of rotational and vibrational 
degrees of freedom in addition to translational degrees of freedom affect the value of the chemical 
potential ? 

29.14 The chemical potentials of an ideal monatomic gas and a monatomic solid are given by 

f.1gas = - kTln (q,/N) 

I1solid = - kTIn (q�e-W/NkT), 
if we assume that the frequencies in the solid are all the same. 
a) Derive an expression for the equilibrium vapor pressure of a monatomic solid. Use the 

high-temperature value for qv ; qv = (Tj8)exp( - &/2T). 
b) By differentiating and comparing with the Gibbs-Helmholtz equation, compute the value 

of the enthalpy of vaporization. 
c) Other things being equal ( !), which crystal will have the higher vapor pressure at a specified 

temperature ; a crystal of a monatomic substance or a crystal of a diatomic substance ? 
Assume that the diatomic molecules do not rotate in the solid. 
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30. 1  I NT R O D U CT O R Y  R E M A R KS 

We tum our attention at this point to the changes in the properties of a system with time. 
Thermodynamics describes the change in properties of a system in a change in state, but 
provides no information about the time required to effect the change. On a practical level, 
the time interval required for any particular change in state is of utmost importance. There 
is little consolation in knowing that a certain reaction can occur naturally if a million years 
is required for the transformation. Hydrogen and oxygen if left to themselves do not form 
water within any practical length of time. If a trace of platinum is added to the vessel, the 
conversion to water is complete within a few microseconds. 

Much of the importance of thermodynamics lies in the fact that thermodynamic 
predictions do not depend on the detailed way in which a system is transformed from an 
initial to a final state. The time interval required for the transformation depends very much 
on these details. A certain Gibbs-energy difference exists between the initial state, H 2 + to 2 , 
and the final state, H20. This Gibbs energy difference has nothing to do with the presence 
or absence of a bit of platinum, the presence of which changes the time interval required by 
an enormous factor. The discussion of the rates of transformations requires us in every 
case to postulate some model of the structure of the system, while thermodynamics needs 
no model. By testing the rate predicted by a certain model against the experimental data, 
we can judge the adequacy of the mode1. 

First we look at the purely empirical laws that are observed to govern the rates of 
various processes. Later, by application of knowledge from thermodynamics and (mainly) 
structure, we attempt to interpret these laws in terms of the constitution of the system and 
the fundamental properties of the atoms and molecules that compose it. 
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30 . 2  T R A N S P O RT P R O P E RT I E S  

There i s  a particularly simple group o f  processes, transport processes, in which some 
physical quantity such as mass or energy or momentum or electrical charge is transported 
from one region of a system to another. Consider a metal bar connecting two heat reservoirs 
at different temperatures. Heat flows through the bar from the high-temperature reservoir 
to the low-temperature reservoir ; the heat flow is the manifestation of the transport of 
energy through the bar. The energy flow is easily measurable. Another example is the 
transport of electrical charge through a conductor by the application of an electrical 
potential difference between the ends of the conductor. Mass is transported in the flow of a 
fluid through a pipe as the result of a pressure difference between the ends of the pipe. 
Diffusion is the mass transport that occurs in a mixture if a concentration gradient is 
present. The viscosity of a fluid, its resistance to flow, is determined by the transport of 
momentum in a direction perpendicular to the direction of flow. 

In all cases the flow, the amount of the physical quantity transported in unit time 
through a unit of area perpendicular to the direction of flow, is proportional to the negative 
gradient of some other physical property such as temperature, pressure, or electrical 
potential. Choosing the z-axis as the direction of flow, the general law for transport is 

Jz = L( - ��). (30. 1)  

where Jz is the flow, the amount of the quantity transported per square metre per second, L 
is the proportionality constant, and ( - ay/az) is the negative gradient of Y in the direction 
of flow ; Y may be any of the quantities temperature, electrical potential, pressure, and so 
forth ; L is called the phenomenological coefficient. Since flow occurs in a particular direc
tion, it is a vector quantity ; Eq. (30. 1)  describes the z component of the vector. We will 
not need the more general three-dimensional equations. For the examples mentioned 
above we have the individual equations for flow in the z direction : 

Heat flow 

Electrical current 

Fluid flow 

Diffusion 

aT Jz = - KT Tz 
a¢ J = - K -z az 

J = - C  
ap z az 

J = -D aN z az 

(Fourier's law) ; (30.2) 

(Ohm's law) ; (30.3) 

(Poiseuille's law) ; (30.4) 

(Fick's law). (30.5) 

In these equations, KT is the thermal conductivity coefficient, K is the electrical conductivity, 
C is a frictional coefficient related to the viscosity, and D is the diffusion coefficient. 

Consider the flow of heat from one end of a metal bar to the other. If the hot end is at 
z = 0 and the cold end is at Z, then in the steady state the temperature as a function of z 
appears as shown in Fig. 30. 1 .  The value of aT/az is negative, so that ( - aT/az) is positive. 
The heat flow is in the positive direction (from the hot to the cold end). If we define 

aT (XT)z = - , az (30.6) 



T 

o z 
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F i g u re 30.1 Temperatu re as a 
Z funct ion of z. 

as the " force " that is driving the heat flow, we can write Eq. (30.2) as 

(Fourier's Law), (30.7) 

and can say that the flow has the same sign as the force. Thus any of the transport laws, 
Eqs. (30.2), (30.3), (30.4), and (30. 5), can be written in the general form 

J = LX, (30.8) 

which says that the flow of any quantity is proportional to the force that drives the flow. 
This proportionality between the flux (the flow) and the force is called a linear law. The 
force is always the negative gradient of an intensive quantity. 

These laws are well established experimentally. They were proposed initially as 
empirical laws, generalizations from experiment. It is our aim now to give these laws an 
interpretation in terms of the structure of the substance. 

30 . 3  T H E G E N E RA L  E Q U ATI O N  F O R  T R A N S P O RT 

If any physical quantity is transported, the amount transported through unit area in unit 
time is the number of molecules passing through the unit area in unit time multiplied by the 
amount of the physical quantity carried by each molecule. For any transport 

j =  N'q, (30.9) 

where j is the flow per m2 sec, N' is the number of carriers passing through one square metre 
in one second, and q is the amount of the physical quantity possessed by each carrier. By 
calculating N' and q, we obtain the value ofj. We begin with N'. 

How many molecules pass the base, 1 m2, of the parallelepiped in Fig. 30.2 in unit 
time? If all the molecules were moving downward with an average velocity (c), then each 
travels a distance (c) dt in the time interval dt. Therefore all the molecules in the paral
lelepiped of height (c) dt will pass the bottom face in the interval dt. The volume of the 
parallelepiped is (c) dt m3 ; if N is the number of molecules per cubic metre, then the 
number crossing the base in dt is N(c) dt. In unit time the number crossing 1 m2 area is 

n' = N(c). (30. 10) 

The expression for the flow, Eq. (30.9), becomes 

j = N(c)q, (30. 1 1) 
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< c>dt 

F i g u re 30.2  

which i s  applicable to any transport process ; the flow is  equal to the product of  the number 
of carriers per unit volume, the average velocity in the direction of the flow, and the 
amount of the physical quantity carried by each. 

If not all, but only a fraction, IX, of the molecules are moving downward, then the 
expression on the right side of Eq. (30. 1 1) must be multiplied by that fraction !  

j = IXN(c)q .  (30. 1 1a) 

30.4  T H E R M A L  C O N D U CTIVITY I N  A GAS 

Suppose that two large metal plates parallel to  the xy-plane and separated by a distance Z 
are at temperatures Tl and T2 , the hotter plate (T2) being the upper one. After some time a 
steady state will be established in which there is a downward flow of heat at a constant rate. 
This flow of heat results from the fact that the molecules at the upper levels have a greater 
thermal energy than those at the lower levels ; the molecules moving downward carry more 
energy than do those moving upward. 

To calculate the net energy flow in unit time through 1 m2 parallel to the xy-plane, 
we imagine a large number of horizontal layers in the gas, each successive layer being at a 
slightly higher temperature than the one below it. The change in temperature with height is 

oT !1T T2 - Tl 
oz !1z Z - 0 ' (30. 12) 

if the lower plate lies at the position z = 0, the upper one at z = Z. The gradient, oT /oz, is 
constant, so at any height z the temperature is 

T = Tl + (�:)z. (30. 1 3) 

If the gas is monatomic with an average thermal energy (f) = !kT, then the average energy 
of the molecules at the height z is 

(f) = !kT= !k[ Tl + (�:)z l (30. 14) 

To calculate the heat flow, we consider an area 1 m2 in a horizontal plane at the height z (Fig. 30.3) . The energy carried by a molecule as it passes through the plane depends on the 
temperature of the layer of gas at which the molecule had its last opportunity to adjust its 
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z 

F i g u re 30.3 

energy. This last adjustment occurred during the last collision with another molecule. 
Suppose that, on the average, the molecules have traveled a distance A since their last 
collision. If the surface of interest lies at a height z, the molecules going down made their 
last collision at a height z + A, while those going up made their last collision at a height 
z - A (Fig. 30.3). The molecules carry an amount of energy appropriate to the height 
where the last collision occurred. The downward flow of energy is, by Eqs. (30. 1 1 )  and 
(30. 14) 

1 - 3 [ (aT) ] d = 7;(N<c»)z + ).zk Tl + 7h (z + A) , 

while the upward flow is given by 

1 - 3 [ (aT) ] 
101 = 6(N<c»)z - ).zk Tl + 7h (z - A) . 

The factor i appears since, on the average, only i of the molecules are going down and only 
i are going up. The net flow upward is denoted by J. and is 

(30. 1 5) 

Before writing out the equation in detail, we should note that if the gas is not to have net 
motion through the surface we require that the number of molecules going up in unit time 
must equal the number going down, so that 

(30. 1 6) 

which means that N < c) has the same value at every height. * Introducing the expressions 
for 101 and d into Eq. (30. 1 5) and using Eq. (30. 1 6), we obtain 

J. = iN<C)ik(�:) [z - A - (z + A)] = -!N<C)kA(�:) . 
Comparing this result with the empirical law, Eq. (30.2), for thermal conductivity, J. = - KT(aTjaz), we obtain 

(30. 1 7) 

* This is not quite correct, but to do the derivation without this assumption complicates matters considerably. 
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where Cv = �kN A has been used. The factor eN / N A) is the concentration in moles per cubic 
metre. From Eq. (4.58) the average velocity is 

(c) = J8kT
. (30. 1 8) 

nm 
It is therefore possible to calculate KT , the coefficient of thermal conductivity, if we can 
calculate Il, the average distance traveled by a molecule since its last collision. Or, looking at 
matters from the bright side, we can evaluate Il if the value of KT has been measured. 

Unfortunately, there are several things about the above derivation that can be criticized. 
Both (c) and N contain the temperature T, yet the temperature is different at different 
positions. Since the simple law of heat conduction is correct only if Tz - T1 is small 
compared with either of the two temperatures, it is sufficient to use the average temperature 
in computing N and (c) . A more serious objection is that we use quantities such as N and 
(c) derived from the equilibrium distribution function and apply them to a nonequilibrium 
situation. The fact of the matter is that if a non equilibrium distribution is used, the 
mathematical complication introduced is enormous. Happily, the result of the more 
accurate treatment is not substantially different but only changes the numerical constant 
t in Eq. (30. 1 7), assuming the absence of attractive forces. Finally, the distance Il has been 
introduced in a somewhat arbitrary way. To understand Eq. (30. 17) we must have a more 
definite idea about Il. 

30 . 5  CO LL IS I O N S  I N  A GAS ; T H E M EA N  F R E E  PAT H 

The meanfree path Il of the molecule by definition is the average distance traveled between 
collisions. In one second, a molecule travels ( c) x I s) metres and makes Z collisions. 
Dividing the distance traveled by the number of collisions, we obtain the distance traveled 
between collisions : 

(30. 19) 

To calculate Il we calculate Z l ' 
Let (J be the diameter of the molecule and consider a cylinder (Fig. 30.4) of radius (J and 

height (c) .  In one second, the molecule travels a distance (c) and sweeps out the cylinder ; 
it collides with all the molecules within the cylinder. (Because of collisions, the molecule 
follows a zig-zag path ; this does not matter since the volume swept out is the same.) The 
number of molecules in the cylinder is n(Jz (c) N;  this is the number of collisions made by 
one molecule in one second. The formula Z 1 = n(Jz (c) N must be multiplied by the factor 
fi to account for the fact that it is the average velocity along the line of centers of two 
molecules that matters and not the average velocity of a molecule. Consider two molecules 
that have their velocity vectors in the orientations shown in Fig. 30.5 .  For molecules 
moving in the same direction with the same velocity, the relative velocity of approach is 
zero. In the second case, where they approach head-on, the relative velocity of approach is 
2(c). If they approach at 90°, the relative velocity of approach is the sum of the velocity 
components along the line joining the centers ; this is !fi<c) + !fi(c) = fi<c). 
The third situation represents the average situation, so we write more exactly 

Zl = fin(JZ(c)N. (30.20) 
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< c >  

< c > < C > �� )' " 
1f2.J2 < C > 

llz.J2< c > 
I < C > rel = 0 < C > rel = 2< c> < C > rei = .J2< c >  

( (') 
\ \ , 

(a) (b) 

F i g u re 30.4  Vol u me swept 
out by a molecu le  in 1 sec. 

F i g u re 30.5 Relative veloc ity cre l a long the 
l ine of centers. 

By combining Eqs. (30. 19) and (30.20), the mean free path is 

A = 1 
j2n0"2N ·  

(30.21) 

The mean free path depends on l/N and is proportional to l/p by the gas law l/N = 
RT/N AP. The lower the pressure, the fewer collisions in unit time and the longer will be the 
mean free path. 

Since there are N molecules/m 3 and each makes Z 1 collisions per second, the total 
number of collisions per cubic metre in one second is 

1 - 1 M 2 -Z Zl l  = ZZlN = ZV 2 nO" <c)N . (30.22) 

The factor·t is introduced because a simple multiplication of Zl by N would count every 
collision twice. Without giving a detailed proof, the number of collisions in one cubic 
metre per second between unlike molecules in a mixture is 

Z J8kT - -Z1 2  = nO"1 2 --N1Nz , np, 
(30.23) 

where N 1 and N z are the numbers of molecules per cubic metre of kind 1 and kind 2, 0" 1 Z is 
the average of the diameters of the two kinds of molecules, and p, is the reduced mass, 1/p, = 
1/m 1 + 1/m2 . These values for collision numbers will be useful later in the calculation of 
the rates of chemical reactions. A chemical reaction between two molecules can occur only 
when the molecules collide. 

III EXAMPLE 30.1 Estimate the number of collisions one molecule will make in a gas at 
1 atm pressure and 25 °C. At 1 atm = 105 Pa and 25 °C, 

N = pNA = 105 Pa (6 x 102 3 mol- 1) 
� 2 5 x 102 5/m3 

RT (8 . 3  J/K mol) (298 K) · , 

Also we have 0" � 3 X 10- 1 0 m ;  <c) � 400 m/s. Then 

Z1 = j2n0"2<c)N = 1 .4 1 (3 . 14)(3 x 10- 1 0 m)Z(400 m/s)(2. 5  x 102 5/m3) 
� 4 x 109/s. 

The molecule makes about 4 billion collisions per second. 
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III EXAMPLE 30.2 Estimate the value of A in a gas at 1 atm and 25 °C. From Example 
30. 1 ,  fir = 2.5 X lOz 5/m3 ; (J :::::: 3 x 10- 1 0 m. Then 

1 = 
1 

= 
1 7 0 I\, Fi 1 0 Z x 10Z 5/m3) :::::: 10- m = . 1  pm. 

y 2 n(J2f1r (1 .41)(3 . 14)(3 x 10 m) (2.5  

30. 6  F l l\J A l  EXP R ES S I O N  FOR T H E  T H E R M A L  C O I\J D U CTIVITY 

Having obtained an expression for the mean free path A, we write the formula for the 
coefficient of thermal conductivity by combining Eqs. (30.21) and (30. 1 7) ;  

KT = 
<c)Cv • (30.24) 

3J2nNA (Jz 

This equation leads to the interesting conclusion that the thermal conductivity is inde
pend en t of the pressure. This lack of dependence on pressure is a result of two compensating 
effects. By Eq. (30. 1 7), KT is proportional to fir and to A ;  but A is inversely proportional to fir 
so that the product fir A is independent of pressure. At lower pressures fewer molecules 
cross the surface in one second, but they come from a larger distance (A is larger at lower p) 
and so carry a proportionately greater excess energy. Experiment confirms that KT is 
independent of pressure. 

If Cv is independent of temperature, then everything on the right of Eq. (30.24) is 
constant except <c), which is proportional to T 1/2 . Therefore, KT should increase as T1 /Z . 
This is also confirmed experimentally. 

In this derivation of the expression for KT , we have assumed that the pressure is high 
enough so that A is much smaller than the distance separating the two plates. At very low 
pressures where A is much larger than the distance between the plates, the molecule 
bounces back and forth between the plates and only rarely collides with another gas 
molecule. In this case the mean free path does not enter the calculation, and the value of KT 
depends on the separation of the plates. At these low pressures the thermal conductivity is 
proportional to the pressure, since it must be proportional to fir, and A does not appear in 
the formula to compensate for the pressure dependence of fir. 

30. 7  V I S C O S ITY 

The formula for the viscosity coefficient of a gas can be derived in a way similar to that used 
for heat conduction. We imagine two very large parallel flat plates, one lying in the x y-plane, 
the other at a distance Z above the xy-plane. We keep the lower plate stationary and pull 
the upper plate in the + x direction with a velocity U. The viscosity of the gas exerts a drag 
on the moving plate. To keep the plate in uniform motion, a force must be applied to 
balance the viscous drag. Looking at the situation in another way, if the upper plate moves 
with a velocity U, the viscous force will tend to set the lower plate in motion. A force must be 
applied to the lower plate to keep it in place. 

Again we suppose that the gas between the plates is made up of a series of horizontal 
layers. The layer next to the lower plate is immobile ; as we move upward, each successive 
layer has a slightly larger component of velocity in the x direction, the topmost layer at the 
height Z having the velocity U. This type of flow, in which there is a regular gradation of 
velocity in passing from one layer to the next, is called laminar flow. The layer at the 



height z has a velocity in the x direction given by Uz : 
au 

At z = Z, u = U, so that 

Uz = az z. 

au U 
az Z 
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(30.25) 

(30.26) 

If we observe a layer at the height z, we see that molecules enter this layer from the 
neighboring layers. The molecules from the upper layers will bring extra x momentum to 
this layer, while those which come from below are deficient in x momentum. There is 
therefore a net downward flow of x momentum through the layer. Now we compute the 
rate of this flow through one square metre of the layer at the height z (Fig. 30.6) . 

The number of molecules passing downwards through one square metre per second is, 
by Eq. (30. 10), iN (c), and as many come upward as come downward. The molecules that 
pass downward through the layer at z carry x momentum appropriate to the layer in which 
they made their last collision, the layer at height z + A. This x momentum is 

mUzH = m(:�) (z + A). 

So the momentum coming down through one square metre in one second is 

(muH = iN(c)m(:�) (z + A). 

Similarly, the momentum coming up is 

(mu)j = iN(c)m(:�) (z - A), . 

since the molecules coming up adjusted their momentum in the layer at z - A. The net 
downward flow of x momentum is 

1 - au (muH - (mu)j = 3N (c )mA az ' 

Since this quantity is independent of z, it must also be equal to the net x momentum trans
ferred in one second to one square metre of the lower plate. Since the momentum transfer in 

z 
au 

.41l F----- Uz+ A  = az (Z + A,) 
..4ffi ••••••••••••••••• jlliZ---- Uz = �: · z 

.4i11 ;;:;:Z::--- U U _ A = :: (z - A,) 

/ / / � y  �--------------------� x  

F i g u re 30.6 Veloc ity of l ayers i n  a f lowing gas.  
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unit time is the force, the force acting in the x direction on one square metre of the lower 
plate is 

(30.27) 

To hold this plate stationary, we must apply an equal and opposite force I
- x , such that 

Ix + I
- x = O. The viscosity coefficient, 1], is defined by 

ou 
I

- x = - 1] OZ · (30.28) 

The viscosity coefficient is the force that must be applied to hold the lower plate stationary 
if the velocity gradient ou/oz is unity and the plate has unit area. Comparing Eqs. (30.27) 
and (30.28), we see that 

1] = !N<c)mA. (30.29) 
If the density of the gas is p, then p = Nm, and 

1] = !P<C)A. (30.30) 
Again, the numerical factor ! is not quite correct, since the flow of gas produces a non
equilibrium situation. For elastic spheres, the factor should be !. The unit of the viscosity 
coefficient is 1 newton second per square metre (N s m - 2) = 1 pascal second (Pa s) = 

1 kg m - 1 S - 1 . (The cgs unit is 1 poise = 1 g cm - 1 S - 1 = 10 - 1 kg m - 1 S - 1 .) 
The coefficient of viscosity depends on the product N A and so is independent of pressure, 

Eq. (30.29). This rather surprising result, along with the similar result for thermal con
ductivity, was one of the great initial triumphs of the kinetic theory of gases. It seems as 
though the viscosity of a gas, which is a measure of its resistance to flow, ought to be 
greater at high pressures than at low. This contrary prediction of kinetic theory and the 
subsequent experimental verification gave great impetus to the further development of the 
theory. 

Comparison of Eqs. (30.29) and (30. 1 7) shows that since M = NA m, 
KT CV 
1] M (30. 3 1) 

This ratio is the heat capacity per unit mass. More accurate theory, as well as experiment, 
shows that for monatomic gases 

is more nearly correct. 

KT = 2 5  Cv 
1] 

. M ' 

30 . 8  M O LE C U LA R  D I A M ET E R S  

Using <c) = J8kT/nm and A from Eq. (30.21) in Eq. (30.29), we obtain 

2JmkT 2JMRT 
1] = = -�------;c 3n3/2o.2 3n3/2 N A (J2 , 

(30.32) 

(30.33) 

which expresses 1] in terms of M, T, and the quantity N A (J2. If we know NA , the value of the 
molecular diameter can be calculated from the measured values of 1]. 
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Tab le  30 . 1  

Gas ttc '1/fJ.Pa s a/pm 

NH3 20 9.82 361 
CO2 20 14.80 373 
Ar 20 22. 1 7  297 
C2H4 20 10.08 404 
CH4 20 10.87 338 

Alternatively, if another expression involving NA and (j is available, values of both N A 
and (j can be determined. In Section 26.8, we related N A and (j to the van der Waals b. From 
Eq. (26.40), we have 

b = �nNA (j3 . 

Eliminating N A between Eqs. (30.33) and (30.34) and solving for (j, we have 

(j = *17bJM�T ' 

Using this result in Eq. (30.33), we obtain 

NA = (24��b2) (�:2T
r

/2
. 

(30.34) 

(30.3 5) 

(30.36) 

It was from Eqs. (30.35) and (30.36) that the first concrete estimates of N A and (j were 
obtained. In Table 30. 1 we list values of (j, calculated from 17 and the currently accepted 
value of NA using Eq. (30.33) . 

• EXAMPLE 30.3 If the viscosity coefficient of CO2 is 14.80 ,uPa s at 20 °C, what is the 
molecular diameter ? By Eq. (30 . 33), we have 

2 2JMRT 2[(0.04401 kgjmol)(8. 3 14  JjK mol)(293. 1 5  K)] 1 /2 
(j = = ��������������--��=-� 3n3/2NA 17 3(3. 1416)3/2(6.022 x 102 3jmol) (14.80 x 10 6 Pa s) 

= 1 3 .91  x 1Q - 20 m2 ; 

(j = 3.730 X 10- 1 0 m = 373.0 pm. 

30. 9  D I F F U S I O N  

If the concentration is not uniform in a mixture of two gases, the gases diffuse into one 
another until the composition is uniform. The derivation of the diffusion coefficient in such 
a situation is lengthy and somewhat complicated, since each gas has a different value for 
(c> and for A. To simplify matters we treat the case of a single gas so that there is only one 
value of (c> and of A. The result obtained is very nearly correct for the diffusion of one 
isotope into another. To define the problem suppose that some of the molecules of the gas 
are painted red ; the gas is confined in a vertical tube and the number Nr of red molecules 
per cubic metre is greater at one end than at the other ; then the number N of unpainted 
molecules per cubic metre must also vary from one end to the other if the total pressure is to 
be uniform throughout the tube. For each species we write for the number per m3 at the 
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height z :  

where No and Nro are the numbers per cubic metre at z = O. 
Consider a horizontal area of I m2 at the height z. The number of red molecules passing 

downward through this area per second is 

since the molecules originate in the layer at z + A. Similarly the number coming up from 
below is 

The net flow upward is 
- - I oNr Nri - Nr! = -3<C)A --;;;- . 

By the law for diffusion, Eq. (30.5), the upward flow is - D r( oN rio z), where Dr is the diffusion 
coefficient of the red molecules. Thus we have Dr = i<C)A ;  but the red molecules differ 
from the others only by a coat of paint, so that 

D = i<c)A. (30.37) 
(The numerical factor i is wrong as usual !) Since <c) is inversely proportional to M1/2 , we 
can understand Graham's law which states that the rate of diffusion of a gas is inversely 
proportional to the square root of the molecular weight. 

Since the mean free path is inversely proportional to the pressure, the diffusion coef
ficient decreases with increase in pressure. The molecules have to fight their way through 
the swarm of other molecules by making many collisions. At high pressures they make many 
more collisions, and their progress in any given direction is slowed. This refutes an 
early objection to the kinetic theory, which was that the high molecular velocities pre
dicted by kinetic theory were obviously ridiculous since, if the molecules moved that 
quickly, the smell of a gas such as NH3 or H2S released in one corner of a room should be 
noticed instantly everywhere in the room, while in fact it takes some time before the odor is 
detected in another part of the room. In answer it was pointed out that at ordinary pressures 
the gas molecule makes many collisions and the path of a molecule is a fantastic zig-zag 
with little net motion in any particular direction in spite of the high velocity. 

An important application of the concept of the mean free path and its relation to 
diffusion was made by Irving Langmuir. In the ordinary incandescent lamp, the passage of 
the current heats a tungsten filament white hot. To prevent oxidation of the filament and 
immediate burnout, the bulb must be evacuated. However, if the pressure is reduced too 
far, the mean free path of the tungsten atom becomes large compared with the size of the 
bulb. Tungsten atoms that are boiled off the filament can go directly to the glass wall with
out an intervening collision with a gas molecule. The atoms condense on the glass wall, 
blacken the bulb, and weaken the filament, which soon breaks. Langmuir introduced 
argon under a few centimetres pressure. This reduces the mean free path to something less 
than the diameter of the filament. In this situation, a tungsten atom that has been boiled off 



The N onsteady State 157 

travels only a short distance before it hits a gas molecule. A likely result of this collision is 
that the tungsten atom is reflected back onto the filament. In any event the tungsten atoms 
must leave the region of the filament by diffusion through the argon, which is slow. The 
presence of argon in the bulb lengthens bulb life enormously. 

30. 1 0 S U M M A RY O F  T R A N S P O RT P R O P E RTI ES I N  A GAS 

Kinetic theory interprets the phenomenological laws of  transport in  gases on the basis of  a 
single mechanism, and expresses the values of KT , 11, and D in terms of the mean free path, 
the density, and the average velocity of the molecules. The equations are 

KT = tN<c)(Cv/NA )A, 11 = tN<c)mA, D = t<C)A. 
Since all of these depend on A, they are sometimes called free path phenomena. 

* 30. 1 1 T H E  N O N STEADY STATE 

In the preceding sections we assumed that the flow was in a steady state, where the amount 
of a quantity flowing into any volume element is balanced by an equal amount of the 
quantity flowing out in the same time interval. For diffusion this means that the concentra
tion in any volume element is independent of time, aN/at = O. For thermal conductivity it 
means that energy does not accumulate in any volume element, or that aT/at = O. 

To treat diffusion in the non steady state, we consider the situation shown in Fig. 30.7. 
Molecules diffuse in the + x direction through two elements of area, each being 1 m2, 
perpendicular to the x-axis and located at x and x + L'lx. The flow through the element at x 
is J x , that through the element at x + L'lx is J x+!lx ' The element enclosed by the parallele
piped has a volume equal to 1 m2 . L'lx m = L'lx m3. 

In the time dt, the number of molecules entering the volume element from the left is 
J x dt, while the number leaving at x + L'lx is J x+!lx dt. If the increase in the number of 
molecules in the volume element in the interval dt is L'lN, the excess of what flows in at x 
over what flows out at x + L'lx, then L'lN = J x dt - J x+  Ax dt. But J x+ Ax = J x + 
CoJx/ox) L'lx, so that 

oJx L'lN = - a;; L'lx dt. 

The increase in concentration in the volume element is dN = L'lN / L'lx, so that 

- oJx dN = - - dt ax ' or 

: I 'm lx + tJ.x 
I t 

I 

I I I 

� - - - - - - - - - - - - -

F i g u re 30.7 The nonsteady state of  f low. 

(30.38) 
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By Eq. (30. 5), Jx = - D(iJN/iJx). Using this in Eq. (30.38), we obtain 

iJN _ iJ (D 
iJN) 

at - iJx a; '  
or, if D is independent of x, 

(30.39) 

in which we have replaced N by c to emphasize that this equation does not depend on the 
concentration unit used. 

The solution ofEq. (30.39), Fick's second law of diffusion, under a specified set of con
ditions, yields the concentration as a function of x and t. From Eq. (30.39) we discover that 
the condition for the steady state, iJc/iJt = 0, implies that iJ2C/iJx2 = 0 or iJc/iJx = constant. 
Therefore in the steady state the concentration varies linearly with the coordinate. 

By a similar argument using the equation for heat conduction, we obtain 

iJT  KT iJ2T 
iJt (30.40) 

where the factor pCv appears when the energy increment in the volume element is converted 
to a temperature increment ; Cv is the heat capacity per unit mass and p is the density. 
Equations (30.39) and (30.40) are formally the same. Solving a problem in diffusion solves 
an analogous problem in heat conduction. 

* 30. 1 2 T H E P O I S E U l lLE  F O R M U LA 

The rate at which a fluid flows through a tube depends on the dimensions (radius and 
length) of the tube, the viscosity of the fluid, and the pressure drop between the ends of the 
tube. To discover the relation between these quantities, we first calculate the volume pass
ing any point in a circular tube in unit time. 

In narrow circular tubes the flow is laminar so that the cylindrical sheath at the 
boundary of the tube is stationary ; as we move to the center each successive cylindrical 
sheath moves with a slightly larger velocity. Suppose the tube lies with its length along the 
x-axis. Then consider the sheath shown in Fig. 30.8, having an inner radius r and an outer 
radius r + dr. If the velocity of this sheath in the x direction is v mis, then in one second the 
sheath moves v m and carries all the fluid in it past a given point. The volume passing any 
point in unit time is 2nrv dr. The total volume passing any point in unit time is Y, and is the 

I "  

av v + ar dr 

" I  

F i g u re 30.8 F low i n  a cyl i n d rica l  layer. 
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sum of the contribution of every sheath in the tube. Therefore 

V = I: 2nrv dr, (30.41) 

where a is the radius of the tube. To obtain V, the volume delivered by the tube in unit time, 
v must be known as a function of r. 

The 'relation between v and r is obtained by balancing the forces due to the pressure 
difference and the viscosity. Let the pressure on the left end of the tube be Pi and that on 
the right end be P2 ' The force acting on the left end of the sheath is P12nr dr, that on the 
right end is P2 2nr dr. The net force in the + x  direction, jx , due to the pressure difference is 

Ix = (Pi - P2)2nr dr. (30.42) 
Each square meter of the inner surface of the sheath is subject to a viscous force in the 

+ x  direction equal to - Yf(ov/or). If the area of the inner surface is S = 2nrl, then the total 
force acting on the inner surface is - YfS(ov/or). This inner surface is being pulled along by 
the faster moving interior cylinder. The outer surface of the sheath is retarded by the slower 
moving fluid outside the sheath, the force in the x direction on the outer surface being 

The net viscous force is the sum of the forces on the inner and outer surfaces, I� : 

I� = d( YfS ��) . (30.43) 

For balance, the sum of the forces in the + x direction due to pressure difference and 
viscous forces must be zero : Ix + I� = O. Using Eqs. (30.42) and (30.43) and rearranging, 
we obtain 

d(YfS ��) = -2nr(pi - P2) dr, 

which integrates immediately to 

ov 2 YfS or = -n(Pi - P2)r + A, 

where A is the integration constant. When we use the value of S = 2nrl, this becomes 

Integrating again, we obtain 

ov (Pi - P2)r A - = - + -- . or 2Yfl 2nYflr 

(Pi - P2)r2 A v = - 4Yfl + 2nYf l ln r + B, (30.44) 

where B is another integration constant. Now the velocity must be finite at r = 0, and this 
is not possible if the logarithmic term appears in Eq. (30.44) ; therefore it must be that 
A = O. Then 
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At the radius of the tube, r = a, the velocity of the fluid is zero, so we have 

o = 
_ (P I - P2)a2 + B 411 1 . 

Using this value of B, we can write the velocity as 

(PI - P2) (a2 - r2) 
v = -=--='--------=--:'":-:--�---'-

411 1 (30.45) 

which expresses the velocity as a function of r, a relation which is required to evaluate the 
volume delivered in unit time. Using this value of v in the integral ofEq. (30.41), we obtain 

V = 
nCPI - P2) la( 2 _ 2) d 

= 
na4(PI - P2) (30.46) 2111 0 a r r r 811l ' 

which is Poiseuille's formula ; it has been verified quite accurately for fluid flow through 
tubes for which a � l. Knowing the radius and length of the tube, and the pressure differ
ence, we can calculate the value of 11 from the measured volume of liquid discharged in unit 
time. Conversely, if 11 is known the radius of the tube can be calculated from the volume 
discharged ; this is useful for measuring the average cross section of a fine capillary tube. 

Since the pressure gradient op/ox = (P2 - pd/l, Eq. (30.46) can be written in the form 

. na4 0p 
v = - - -

811 ox ' 

which is again Poiseuille's law ; compare this with Eq. (30.4). 

30. 1 3 T H E V I S C OS I M ET E R  

(30.47) 

The viscosimeter is an instrument for determining viscosity by measuring the time required 
for a fixed volume of a liquid to flow through a capillary tube, the efflux time. A simple 
viscosimeter is shown in Fig. 30.9. Two bulbs are connected by a length of capillary tubing. 

Capillary 
tube 

- - b 

F i g u re 30.9 S imp le  viscos imeter. 
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The liquid is forced into the left-hand limb until it rises above the mark at a. It is then 
allowed to flow into the lower bulb. The time required for the liquid level to drop from a to b 
is measured. This is the time required for a fixed volume of liquid to flow through the 
capillary. The pressure difference varies with time during efflux but is proportional to the 
density P of the liquid. So if two different liquids are compared in the same viscosimeter, we 
have 

172 P2 t2 
(30.48) 

This is a convenient method for measuring the viscosity of one liquid relative to that of 
another. 

The temperature dependence of the viscosity is quite different for liquids and gases. 
The simple derivation for gases predicts a proportionality of 17 to ft, and this is observed 
experimentally. In contrast, the viscosity of liquids decreases with increase in temperature. 
An equation, first proposed empirically and later given a theoretical foundation, represents 
the data reasonably well : 

where a and E are constants. We may write this in the alternative form 

17 = AeE/RT ; (30.49) 

E is called the activation energy for flow. We will appreciate more fully the significance of 
Eq. (30.49) after studying the rates of chemical reactions. 

QU ESTI O N S  

30.1 Describe the common features of the transport laws, Eqs. (30.2) through (30.5). 
30.2 Why is the mean free path inversely proportional to (J2 and to iii ? 
30.3 What inequality between A. and the size of the container is required for the validity of the transport 

laws ? Why? 
30.4 The damping rate of a pendulum in a gas is predicted to be proportional to the viscosity '1 when 

A. is much smaller than the radius of the pendulum bob. How will the damping rate depend on 
the density ? 

30.5 The mechanism of momentum transfer in liquids involves the continual action of intermolecular 
forces rather than the free flight mechanism in gases. Qualitatively explain the different behavior 
of '1 with T on this basis. 

30.6 Which of the gas transport coefficients will show an isotope effect, that is, depend on the molecular 
mass ? 

P R O BLE M S  

30. 1  If the molecular diameter of H2 is 0.292nm, calculate the number of collisions made by a 
hydrogen molecule in 1 second 
a) if T = 300 K and p = 1 atm, 
b) if T = 500 K and p = 1 atm, 
c) if T = 300 K and p = 10- 4 atm. 
d) Calculate the total number of collisions per second occurring in 1 cm 3 for each of the cases 

in (a), (b), (c). 
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30.2 The molecular diameter of N2 is 0.368 nm. 
a) Compute the mean free path of N2 at 300 K and 1 atm, 0 . 1  atm, 0.01 atm. 
b) A reasonably good vacuum system achieves a pressure of about 10- 9 atm. What is the 

mean free path at this pressure ? 
c) If the diameter of the evacuated tube (p = 10- 9 atm) is 5 cm, how many times does the 

molecule strike the walls between two successive collisions with other gas molecules ? 
30.3 The collision diameters of hydrogen and nitrogen are 292 pm and 368 pm respectively. At 

20 DC and 1 atm pressure, 
a) calculate the mean free path of the hydrogen molecule. 
b) How much larger is the mean free path of the hydrogen molecule compared to that of the 

nitrogen molecule ? 
30.4 Consider a gas at constant temperature. If the pressure is doubled, what effect does this have' on : 

a) the number of collisions per second made by any one molecule ; 
b) the total number of collisions per second occurring in 1 m 3 of gas ; 
c) the mean free path of a gas molecule ; 
d) the viscosity of the gas? 

30.S Suppose that there are 20 couples on a dance floor which is 50 ft x 50 ft. If the diameter of 
each couple is 2 ft and their velocity is 2 ft/s, derive formulas for, and then calculate the mean 
free path, the number of collisions per minute made by each couple and the total number of 
collisions per minute. (Assume the motion is chaotic.) 

30.6 Compare the thermal conductivities of O2 and H2 ; ignore the difference in molecular diameter. 
Both have CD = �R. 

30.7 Two parallel plates 0.50 cm apart are maintained at 298 K and 301 K. The space between 
the two plates is filled with H2 , (J = 0.292 nm, CD = �R. Calculate the heat flow between the 
two plates in W/cm2 • 

30.8 Ethane has a molar mass of 30 g/mol, compared with 28 g/mol for N 2 and 32 g/mol for O2 , The 
molecular diameter is not greatly different from that of oxygen or nitrogen. The thermal con
ductivity of ethane is significantly larger than that of O2 or N2 . Explain. 

30.9 Since argon and neon are both monoatomic gases, they have the same heat capacity, CD = �R. 
The thermal conductivities at 20 DC are : neon, 1 1 .07 mW/m K ;  argon, 5.236 mW/m K. (a) Calcu
late the ratio of the molecular diameter of argon to that of neon. (b) Calculate the molecular 
diameter of neon. (Use the t factor rather than the exact one.) 

30.10  The viscosity coefficient of methane at 280 K is 10.53 X 10- 6 Pa s. Calculate the molecular 
diameter. 

30.1 1 The thermal conductivity of silver is 43 1 W/m K. Calculate the heat flow per second through 
a silver disc 0. 1 cm in thickness and having 2 cm2 area if the temperature difference between 
the two sides of the disc is 10 K. 

30.12 Fiberglass batts have a thermal conductivity of 4.6 x 10- 2 W/m K. Calculate the heat flow 
per square meter through a batt 15 cm thick, if the temperature difference between the two sides 
is 10 DC. 

30.13  One wall of a house has an area of 25 m 2 . Moving from the inside to the outside, the wall consists 
of a i in layer of plaster, a 3t in fiberglass batt, and a 4 in brick facing. The thermal conductivities 
are : fiberglass, 4.6 x 10- 2 W/m K, brick :::::; plaster :::::; 0.60 W/m K. If the interior temperature 
is 20 DC and the exterior temperature is 0 DC, calculate 
a) the total rate of heat loss through the wall in watts. 
b) the temperatures at the plaster-fiberglass and the fiberglass-brick interfaces. 
(Nate : The contributions of the stagnant air layers at the various interfaces, the wooden studs, 
and the exterior sheathing to the thermal resistance have been neglected in this idealized 
calculation.) 
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30.14 One end of a capillary tube 10 cm long is connected horizontally through the side of a bottle. 
The bottle is filled with water, (density = 1 .00 g/cm3 ; 1] = 1 .00 X 10- 3 Pa s) to a depth of 
25 cm above the capillary tube. The water drains by gravity through the tube. To collect 200 cm3 
of water requires 40.8 s. What is the diameter of the capillary tube ? Assume the depth ofthe water 
in the bottle does not change appreciably. 

30.15  A barrel is filled with olive oil (1] = 0.0840 Pa s ; density = 0.9 1 8  g/cm3) to a depth of 1 meter. 
The oil flows by gravity into a bottle through a pipe attached through the side of the barrel 
at the bottom. The inner diameter of the pipe is 13 mm ; its length is 20 cm. What time is required 
to collect one litre of oil in the bottle ? 

30.16 Oil flows from a storage tank through a 1 . 3  cm (inner diameter) pipe, 1 5  m long. The pressure 
difference between the two ends of the pipe is 4 atm. For the oil, 1] = 0.40 Pa s. 
a) What is the flow rate through the pipe ? 
b) What would the flow rate be if the pipe had a 1 .6  cm inner diameter ? 
c) If the pipe had a 1 . 3  cm inner diameter and was 30 m long, what would the flow rate be ? 

30.17  Two copper pipes, each 3 m long, the first having 2.6 cm and the second having 1 . 3  cm inner 
diameter, are connected in series. A pressure of 5 atm is supplied at the opening of the wider 
pipe and oil exits from the narrow end at a pressure of 1 atm. For the oil, 1] = 0. 1 14 Pa s at 
1 5 °C. 
a) Calculate the pressure at the point where the two pipes are joined. 
b) How many litres per minute of oil can be delivered by this combination ? 

30.18 For the flow of a compressible fluid such as a gas, instead of Poiseuille's law we have n = 
na4(pi - pD/161]R TI, where Ii is the number of moles per second of gas passing through the 
capillary tube. What time is required to pass 200 mL of hydrogen (at 20 °C and 1 .05 atm) 
through a capillary tube 10 cm long and 0.30 mm in diameter against an outlet pressure of 
1 .00 atm? (1] = 8 .8 X 10- 6 Pa s). 

30.19  Consider the flow through a cylindrical sheath of inner radius a and outer radius b. The flow 
per second is given by Eq. (30.41), where the limits of integration are a and b. The velocity is 
given by Eq. (30.44), but in this case A =1= O. The constants A and B are determined by the 
conditions that v = 0 at r = a and v = 0 at r = b. Derive the formula corresponding to 
Poiseuille's equation for this case. 

30.20 The densities of acetone and water at 20 °C are 0.792 g/cm3 and 0.9982 g/cm3, respectively. 
The viscosity of water is 1 .002 x 10 - 3 Pa s at 20 °C. If water requires 120.5 s to run between 
the marks on a viscosimeter and acetone requires 49.5 s, what is the viscosity of acetone ? 

30.21 The viscosities of acetone are 

t;oC - 60 - 30 0 30 

1]/10- 3 Pa s 0.932 0.575 0.399 0.295 

By plotting In 1] versus 1fT, determine the value of E in Eq. (30.49). 
30.22 The diffusion coefficient for urea through a membrane is 0.97 cm2/day. If the thickness of the 

membrane is 0.025 cm and the concentration of the urea solution is 0.040 mol/L on one side 
of the membrane while the concentration on the other side is kept at zero, what is the rate in 
mol/cm2 day at which urea passes through the membrane ? 

30.23 Hydrogen gas diffuses through a palladium foil, 0.0050 cm thick. On the left side of the foil, the 
hydrogen is maintained at 25.0 °C and a pressure of 750 mm, while on the right side a good 
vacuum is maintained. After 24 hours the volume of hydrogen in the left compartment decreased 
by 14. 1 cm3 . If the area of the foil through which the diffusion occurs is 0.743 cm2, what is the 
diffusion coefficient of hydrogen in palladium? 
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31 . 1  E LE CT R I CA L  T R A N S P O RT 

The quantity of electrical charge that passes any point in a conductor in unit time is the 
current. The current passing through unit area perpendicular to the direction of flow is the 
current density j. By the general law of transport, the current density in the x direction is 
proportional to the potential gradient, Eq. (30.3), 

. o¢ 
] = - K 

ox ' 
(3 1 . 1) 

The constant of proportionality K is the conductivity of the substance. The electric field E is 
defined by E = - o¢!ox, so Eq. (3 1 . 1) can be written in the form 

j = KE. (3 1 .2) 

Equations (3 1 . 1) and (3 1 .2) are expressions of Ohm's law. 
To transform Ohm's law into a more familiar form, we consider a conductor of length 1 

and cross-sectional area A. If the electric potential difference across the ends is /1¢ = 
¢2 - ¢l ' then E = (¢2 - ¢ l)!l = /1¢/l. The current I carried by the conductor is related 
to the current density by I = jA. Using these expressions for E andj in Eq. (3 1 .2), we obtain 

1 = 
KA/1¢ 

1 . (3 1 .3) 

We define the conductance L = KA/l. Then 

1 = L 11¢. (3 1 .4) 

The resistance R of the conductor is defined by R = I/L = l/KA = pl/A, where the 
resistivity p = 1/K. This definition brings Ohm's law, Eq. (3 1 .4), into its familiar form 

11¢ = IR. (3 1 . 5) 
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Ta b le  31 . 1  

N ames. symbols.  and u n its f o r  e lectr ica l quant it ies 

Name Symbol SI unit 

Current 1 ampere 
Current density j ampere per square metre 
Electric potential 4> volt 
Electric potential difference 114> volt 
Electric field E volt per metre 
Resistance R = 114>11 ohm = volt per ampere 
Conductance L = R - 1  siemens = ohm - 1 
Resistivity p = RAil ohm metre 
Conductivity K = p- 1 ohm- 1 metre- 1 = 

siemens per metre 
Molar conductivity A = Kle siemens square metre per mole 
Faraday constant F = 96 484.56 coulomb per mole 

Clmol 
Velocity v metre per second 
Mobility u = viE (metre per second) 

per (volt per metre) 
Mobility (generalized) ft (metre per second) per newton 
Magnetic flux density B volt second per square 

metre = tesla 
Viscosity coefficient '1 pascal second = kilogram per 

metre second = 

newton second per 
square metre 

Abbreviation for SI 
unit 

A 
A/m2 

V 
V 

Vim 
0 =  VIA 

S = 0- 1 
O m  
S/m 

S m2/mol 
Clmol 

mls 
m2/s V 

mls N 
T = V s/m2 

Pa s = kglm s 

= N s/m2 

By putting the definition of the resistivity into Eq. (3 1 .2), we obtain an analogue of Eq. 
(3 1 . 5) :  

E = jp . (3 1 .6) 
Ordinarily we will use Ohm's law in the form of Eq. (3 1 .2) or Eq. (3 1 .6). This is convenient 
since K and p are properties of the material composing the conductor and do not depend on 
its geometry. The resistance depends on the geometry of the conductor through the 
relation 

(3 1 .7) 

Lengthening the conductor increases its resistance, while thickening it decreases its 
resistance. The symbols and units for these electrical quantities are summarized in 
Table 3 1 . 1 .  

31 . 2  CO N D U CTI O N  I N  M ETA LS 

The current in metals is carried entirely by the electrons, each of which carries a negative 
charge e. Using Eq. (30. 1 1) for the flow, the product of the number of electrons per cubic 
metre, their average velocity in the direction of the flow, and their charge, we obtain 

j = Nve. (3 1 .8) 
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Combining this result with Eq. (3 1 .2), the expression for the conductivity becomes 

Nve 
(3 1 .9) K = --

E ' 

Ohm's law requires that K be a constant ; it must be independent of the field E. Therefore 
one of the quantities in the numerator of Eq. (3 1 .9) must be proportional to E to com
pensate for the presence of E in the denominator. Obviously the charge e on the electron 
does not depend on the field. The number of electrons per cubic metre could conceivably 
depend on the field, but it can be shown that such a dependence would not be a simple 
proportionality. It must be that the velocity of the carrier is proportional to the field and 
that the number of carriers is independent of the field. This is the condition that must be 
satisfied if any conductor is to obey Ohm's law. Therefore we write 

v = uE. (3 1 . 10) 

The constant of proportionality u is called the mobility, which is the velocity acquired 
by a carrier in a field of unit strength ; u = viE. 

From the requirement that the velocity must be proportional to the field, we conclude 
that the main force of retardation of the carrier is due to friction. If the charge on the carrier 
is q, then the force due to the electrical field is qE, which must be balanced by the inertial 
force ma = m(dvldt), and the frictional force Iv, which is proportional to the velocity. Thus 

dv 
qE = m dt + Iv, 

where I is a constant, called the frictional coefficient. From this equation it is clear that if 
the velocity is to be proportional to E, the first term, the inertial force, must be negligibly 
small in comparison with the second, the frictional retardation, so that we have 

qE = Iv. (3 1 . 1 1) 

In a metal the frictional force arises from the scattering of the electrons by collisions with 
the metal ions in the lattice. 

In terms of the mobility, the expression in Eq. (3 1 .9) for the conductivity becomes 

K = Nue. (3 1 . 12) 

From a measurement of the resistance of a metal, the resistivity and the conductivity can 
be determined. Since we know the value of e, the measurement yields a value of the product 
Nu. To determine N and u individually requires an independent measurement of some 
other quantity that depends on one or both of these quantities. 

* 31 . 3  TH E H A l l  E F FE CT 

Consider the following experiment : A current having a current density j is passed through 
a metal strip in the x direction ;  simultaneously a magnetic field B is applied in the z direc
tion. Two probes A and A' are placed on opposite sides of the strip (Fig. 3 1 . 1). The magnetic 
field, indicated by the dashed circle in Fig. 3 1 . 1 ,  deflects the electron stream in the metal with 
the result that an electrical field Ey develops across the width of the strip and produces a 
potential difference ¢H ' the Hall potential, between the two probes A and A'. 

If v is the velocity of the electrons in the x direction, the force acting in the y direction 
due to the magnetic field is Bev ;  this force is balanced by the force from the electrical field 
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in the y direction, which is eEy . Thus we have 

eEy = Bev or Ey = Bv, 

When we insert the value of v from Eq. (3 1 . 8), this becomes 

Bj Ey = -=-. Ne 
The Hall potential is rPH = Ey w, where w is the width of the strip ; thus 

wBj . rPH = ---=- = RHwB}, Ne (3 1 . 1 3) 

where RH = liNe is the Hall coefficient. Measurement of w, j, B, and rPH suffices to deter
mine the value of RH . This determines N, since from the definition, 

_ 1 N = - . eRH 
Combining Eq. (3 1 . 14) with Eq. (3 1 . 12), we obtain the mobility of the electrons : 

(3 1 . 14) 

(3 1 . 1 5) 

By measuring the conductivity and the Hall coefficient, it is possible to obtain values of the 
mobility and the number of carriers per cubic metre. Table 3 1 .2 lists values of u, N, and the 
number of carriers per atom that contribute to the conductivity for several metals. 

The values of the mobility are interesting because they are so small. This emphasizes 
that it is the frictional resistance that retards the motion. An electron moving in free space 

Tab le  31 . 2  

Cu Ag Au Li Na Zn* Cd* 

K/(W S/m) 6.33 6.70 4. 1 3  1 . 1 2  1 .92 1 .76 1 .32 
RaI( lO- 1 1  m3/C) - 5.5 - 8.4 - 7.2 - 17.0 - 25.0 3.3 6.0 
U/(l0- 4 m2 V- I S - I) 34.8 56.3 29.7 19 . 1  48.0 5 .8 7.9 
N/(102 8 m- 3) 1 1 .3 7.43 8.67 3 .67 2.50 1 8 .9 10.4 
Electrons/atom 1 . 3  1 . 3  1 . 5  0.79 0.98 2.9 2.2 

* The sign of RH indicates the carrier is positively charged in these metals. 
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subject only to inertial retardation would have a mobility about one million times larger 
than the mobilities in metals. 

Another point of interest is that not all but only about one electron per atom is free to 
carry the current. Only the electrons in levels near the top of the filled part of the partially 
filled band are free to move under the application of a field. As we saw in Section 28.4, to 
carry a currerit the electrons must be able to shift from one set of levels to another set ; 
vacant levels that are not very much different in energy must be available. Vacant levels are 
available only near the top of the filled part of a partially filled band and so only these 
electrons contribute to the conductivity. 

Finally, there is the curious result that if the electrons that carry the current are in 
levels near the top of a band, then the field pushes the electrons in the wrong direction ;  
wrong in the sense that they are accelerated in the direction opposite to the usual one. These 
electrons behave as if they were positively charged. This happens with zinc and cadmium as 
well as a number of other metals. The effect is detected in the Hall experiment ; the Hall 
potential for these metals has the opposite sign when compared with a metal such as 
copper. 

Measurement of the magnitude and sign of the Hall potential in semiconductors 
enables us to distinguish experimentally between p- and n-type semiconductors, and to 
determine, knowing K, the number and mobility of the carriers. 

31 .4  T H E E LE CT R I CA L  C U R R E N T  I N  I O N I C  S O L U TI O N S  

The passage of an electrical current in an ionic solution is a more complex event than the 
passage of a current through a metal. In the metal, the nearly weightless electrons carry all 
the current. In the ionic solution, the current is carried by the motion of massive positive 
and negative ions. Consequently, the passage of a current is accompanied by a transport of 
matter. The positive and negative ions do not carry equal portions of the current, so that a 
concentration gradient develops in the solution. Furthermore, transfer of the electrical 
charge through the solution-electrode interface is accompanied by a chemical reaction 
(electrolysis) at each electrode. For clarity we must keep the phenomena in the body of the 
solution separate from the phenomena at the electrodes. We begin by dealing briefly with 
the phenomena at the electrodes (electrolysis) and then describe the occurrences in the 
body of the solution, which are our main cohcern in this chapter. 

If a direct current is passed between two electrodes in an electrolytic solution, a 
chemical reaction, electrolysis, occurs at the electrodes. After a study of various types of 
electrolytic reactions, Faraday ( 1834) discovered two simple and fundamental rules of 
behavior, now called Faraday's laws of electrolysis. Faraday's first law states that the 
amount of chemical reaction that occurs at any electrode is proportional to the quantity Q 
of electricity passed ; Q is the product of the current and the time, Q = It. The second law 
states that the passage of a fixed quantity of electricity produces amounts of two different 
substances in proportion to their chemical equivalent weights. Faraday's experiments 
showed that these rules were followed with great accuracy. So far as we know these laws 
are exact. 

Any electrolytic reaction can be written in the form, 

0 = L ViAi + ( ±  l)e- , i 
in which the Ai are the formulas of the substances taking part in the reaction and the Vi are 
the stoichiometric coefficients ; the Vi are positive for products and negative for reactants. 
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The equation has been balanced so that one mole of electrons is either consumed at the 
cathode (Ve = - 1) or produced at the anode (ve = + 1). This equation states that for each 
mole of electrons that passes, I Vi I moles of Ai are produced or consumed. If a quantity of 
electricity, Q = It, is passed, then the number of moles of Ai produced or consumed is 

I Vi l Q I Vi l It ni = ----p- = ----p-
where F = 96 484.56 C/mol. If mi is the mass of Ai produced or consumed and Mi is the 
molar mass, then 

(3 1 . 16) 

The quantity, I Vi I Mi ' defines the " equivalent weight " of Ai ' Thus, if one " equivalent " 
(96 485 coulombs) of electricity is passed, one " equivalent " of each substance in the reac
tion is either produced or consumed. Equation (3 1 . 1 6) expresses both of Faraday's laws. 
The use of " equivalent weights " is becoming obsolete (the SI does not recognize them) ; a 
formulation such as that in Eq. (3 1 . 1 6) is preferable. 

31 . 5  T H E M EA S U R E M E N T  O F  C O N D U CTIVITY I N  
E LE CT R O LYTI C  S O LUTI O N S  

A simple conductivity cell is shown in Fig. 3 1 .2. Two platinum electrodes are sealed in the 
ends of the cell. These are usually coated with a deposit of finely divided platinum, platinum 
black, to eliminate some of the effects of electrolysis. The cell is filled with the solution, and 
the resistance is measured by placing the cell in one arm of the alternating current version of 
a Wheatstone bridge. The frequency ordinarily used is about 1000 Hz. 

From Eq. (3 1 .7) the resistance is 

since p = 11K . For K we obtain 

R = pI = _1 
A KA ' 

I K = - . RA (3 1 . 1 7) 

The cell constant K == II A depends on the geometry of the cell ; it can be determined for cells 
of special design by measuring the distance I between the electrodes and the area A of the 
electrodes. In routine measurements the cell constant is determined indirectly by measuring 
the resistance of the cell containing a standard solution of known conductivity. Solutions 
of potassium chloride are commonly used for this purpose. Some values of K for KCI 
solutions are given in Table 3 1 .3 .  

F i g u re 31 . 2  A s imp le  conduct ivity cel l .  
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g KCljkg sIn 

7 1 . 1 352 
7.419 1 3  
0.745263 

Tab le  31 .3  
Conductivity of KCI  so lut ions 

Concentration K/(S/m) K/(S/m) 
(moljdm3)0 °c O °C 1 8 °C 

1 6 .5176 9 .7838 
0. 1 0.71 379 1 . 1 1 667 0.01 0.077364 0. 122052 

G. Jones and B. C. Bradshaw, J. Amer. Chern. Soc. 55, 1780 ( 1933). 

K/(S/m) 
25 °C 

1 1 . 1 342 
1 .28560 
0. 140877 

If R. is the resistance of the celi containing a solution of known conductivity K. , then 

(3 1 . 1 8) 

so that by Eq. (3 1 . 1 7) 

(3 1 . 19) 

In precision work great care must be taken to eliminate effects due to electrolysis and 
those due to variation in temperature. Controlling the temperature is a particularly 
difficult problem because of the heating effect of the current. Water of extreme purity 
(conductivity water) must be used, since stray impurities in the water can produce sensible 
variations in the value of the conductivity of the solution. The contribution of water itself 
to the conductivity must be subtracted from the measured value for the solution. 

31 . 6  T H E M I G RATI O N  O F  I O N S  

Kohlrausch establiShed that electrolytic solutions obeyed Ohm's law accurately once the 
effect of the electrolysis products was eliminated by using high-frequency alternating 
current. Kohlrausch also showed from the experimental data that the conductivity of a 
solution �mposed of separate contributions from each ion ; this is known as 
Kohlrausch's law of the independent migration of ions. 

Consider an electrolyte with the formula, Av + Bv _ ,  which is completely dissociated 
into v + positive ions and v _ negative ions; 

Av + Bv _ � v + Az + + v _ Bz - . 
Let N + and N _ be the number of positive and negative ions per cubic metre, respectively. 
Let their velocities be v + and v _ ,  and their charges be z + e and L e. Then by the funda
mental law of transport, Eq. (30. 1 1), the current density is 

(3 1 .20) 

(Note that both the velocity and the charge of the negative ion are ol"Posite in sign to those 
of the positive ion. However, the product v _ L e has the same sign as that product for the 
positive ion, so the terms add together in Eq. (3 1 .20). For convenience we will take all the 
quantities positively, since this will not affect the final result.) Physically, Eq. (3 1 .20) states 
that the effects of positive ions inoving in one direction and negative ions moving in the 
other add up to produce the total flow of charge. 
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If c moles of the compound are present per cubic metre, then the composition of the 
compound requires 

and 

Since N A e = F, the expression for j becomes 

j = cF(v+ z+ v + + V_ L V_ ). 
Introducing the mobilities defined in Eq. (3 1 . 10), we can write 

j = cF(v + z+ u+ + v_ L u_ )E 
Comparing this with Ohm's law, Eq. (3 1 .2), we have for the conductivity 

K = cF(v + z+ u+ + V _ L U_ )  

(3 1 .21) 

(3 1 .22) 

(3 1 .23) 

We observe that in the first approximation, K is proportional to the concentration of the 
solution, C. The other quantities are all constants except the mobilities, u+ and u _ , which 
have a slight dependence on concentration, reaching limiting values as the concentration 
goes to zero. 

We define the molar conductivity of the electrolyte by 
K A = - .  c (3 1 .24) 

The molar conductivity is the conductivity the solution would have if there were one mole 
of the substance in one cubic metre of the solution. Combining this definition with Eq. 
(3 1 .23), we obtain 

A = v+ (z+ Fu+ ) + v_ CL Fu_ ). (3 1 .25) 

The molar conductivities of the ions are defined by 

and (3 1 .26) 

Then we can write 
(3 1 .27) 

Equation (3 1 .27) expresses the molar conductivity as the sum of independent con
tributions from each kind of ion present ; this is Kohlrausch's law ; it is strictly correct only 
if the electrolytic solution is infinitely dilute, c = O. This is not surprising, since the elec
trically charged ions should exert a mutual influence on each other, especially if they are 
present in appreciable concentration. Thus, if A 00 is the molar conductivity at infinite 
dilution, then the expression for Kohlrausch's law is 

(3 1 .28) 

In a mixture of several electrolytes, we can generalize Eq. (3 1 .23) to 

(3 1 .29) 

in which ci is the concentration (mol/m3) of the ith ion, and Ai = ZiFui , is its molar con
ductivity. The summation is over all the ions present. An important application of Eq. 
(3 1 .29) is in taking account of the ionization of the solvent as a contribution to the con
ductivity of the solution. For example, in any aqueous salt solution, the conductivity is given 
by 
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If the concentration of the salt is not high enough to affect the dissociation of water, then 
the first two terms are simply the conductivity of pure water, Kw ' 

(3 1 . 30) 
Then 

(3 1 . 3 1) 
or 

(3 1 . 32) 

31 . 7  T H E D ETE R M I N ATI O N  O F  ADO 
Kohlrausch found that the molar conductivity depends on the concentration of the 
electrolyte, and that in dilute solutions of strong electrolytes this dependence could be 
expressed by the equation 

(3 1 . 33) 

where A 00 and b are constants. Plotting the value of A against the square root of the con
centration yields a straight line at low concentrations. The line can be extrapolated to 
c = 0 to yield A 00, the value of A at infinite dilution. 

The molar conductivity of weak electrolytes falls off much more rapidly with increasing 
concentration than Eq. (3 1 .33) predicts. The comparative behavior of KCI and acetic acid 
is shown schematically in Fig. 3 1 .3 . ,Arrhenius suggested that the degree of dissociation of 
an electrolyte was related to the molar conductivity by 

A 
0( = 

Aoo ' (3 1 . 34) 

Ostwald used this relation in conjunction with the law of mass action to explain the 
variation of the molar conductivity of weak electrolytes with concentration. Consider the 
dissociation of acetic acid : 

;g 
.§ 

200 

150 

S 100 (fJ 
... I o ,..... 
� 

HAc � H + + Ac- ; 

KCl 

° oL----l-�����-0 . 1  0 .2 0 . 3  
F i g u re 31 .3 Mola r  conduct ivity 
of strong and weak e lectrolytes 

,fC/(mol'h/dm3h) (c i n  mol/dm 3) .  
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if a is the degree of dissociation, then Cw = CAe - = ac,  and CHAc = (1 - a)c. The equilib
rium constant is 

Using a = AjA co, we obtain 

(3 1 . 3 5) 

as the relation between A and c ;  the Ostwald dilution law. Using the values of A at various 
concentrations and the value of A co, it is found that the right-hand side of Eq. (3 1 . 3 5) is very 
nearly constant, and in fact, this is a reasonable way to determine the value of the dissocia
tion constant of a weak electrolyte. 

To use Eq. (3 1 . 3 5) in the way described above, we must know the value of A co .  The 
extrapolation used for strong electrolytes is useless for a weak electrolyte. Because of the 
steepness of the curve near c = 0, any extrapolated value would be subject to gross errors. 
To obtain A co for a weak electrolyte we use Kohlrausch's law. Using acetic acid as an 
example, we have at infinite dilution, 

To each side of this equation we add the A co of the salt of a strong acid and strong base, such 
as NaCl, 

which can be written in the form 

hence 
AHAc = AHC! + ANaAc - ANaC\ ' (3 1 . 36) 

The molar conductivities on the right-hand side can all be obtained by the extrapolation of 
a A versus C1 /2 plot, since the substances involved are all strong electrolytes. 

An alternative method of obtaining K and A co for a weak electrolyte utilizes a re
arrangement ofEq. (3 1 . 35). Clearing Eq. (3 1 . 35) of fractions and removing the parenthesis, 

KAco2 - KAAoo = CA2 

Dividing every term by KA 002 A and transposing the second term to the right-hand side of 
the equation, we get 

1 1 cA 

A = 
ACO + KAco2 (3 1 .37) 

If IjA is plotted against cA, a straight line is obtained, which has an intercept equal to IjA 00 
and a slope equal to IjKA co2 . From the values of the slope and intercept, the individual 
values of K and A 00 can be obtained. This method requires only data on the conductivity of 
the weak electrolyte itself. 

After the Arrhenius theory was first proposed, an attempt was made to fit all con
ductance data to the Ostwald dilution law. It soon became apparent that many substances 
did not conform to this law. These substances are the strong electrolytes, which are com
pletely dissociated into ions. The discussion of the dependence of the molar conductivity of 
strong electrolytes on concentration is based on the ideas contained in the Debye� 
Hiickel theory. 
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31 . S  T R A N S F E R E N C E  N U M B E R S  

The measurement of the conductivity yields the sum of the positive and negative ion con
ductivities. To obtain the individual ion conductivities, an additional independent measure
ment is necessary. Even before Kohlrausch demonstrated the law of independent migration 
of ions, it was commonly supposed that each ion contributed to the flow of current. In 1 853 
Hittorf devised a method to measure the contribution of the individual ions. 

The transference number of an ion is defined as the fraction of the current carried by 
that ion. By Eq. (3 1 .29) the conductivity of a solution containing any number of electrolytes 
is K = Li C;A' i ; then by definition the transference number of the kth ion is 

(3 1 . 38) 

The tr/msference number of an ion is not a simple property of the ion itself; it depends on 
which other ions are present and on their relative concentrations. It is apparent that the 
sum of the transference numbers of all the ions in the solution must equal unity. 

In a solution containing only one electrolyte, it follows from Eq. (3 1 . 38) that the 
transference numbers, t + and L , are defined by 

v + ..1.+ v + ..1.+ L A.  v _  ..1._ t+ , =  -- = . t = - = (3 1 . 39) A v + A.+ + L A._ ' 
- A v+ A.+ + V _ A._ 

Obviously, t + + L = 1 .  If we replace ..1.+ and ..1._ by the values given in Eq. (3 1 .26), we 
obtain 

and t _  = --------v + z+ u + + v _ z_ u _  
But electrical neutrality in the compound requires that v + z + = v _ z _ ; thus we see that 

and 
u _  t_ = --

u+ + u _  
Since the mobilities are proportional t o  the velocities, u = viE, we  can also write 

and t_ = --

v + + v_ 

(3 1 .40) 

(3 1 .41) 

If one mole of electrical charge is passed in the solution, then through every plane 
perpendicular to the current path, t + moles of charge are carried by the positive ions and t_  
moles of  charge are carried by the negative ions. Since each mole of  positive ions carries z + 
moles of charge, to pass t + moles of chazoge requires the passage of t +Iz + moles of positive 
ions. Similarly, to pass L moles of charge requires the passage Of L/L moles of negative 
ions. 

31 . S . 1  H ittorf M et h od 

To illustrate the Hittorf method for measuring the contribution of the individual ions to the 
current, we consider the electrolysis cell shown in Fig. 3 1 .4. Suppose that the solution 
contains copper sulfate and that the anode is copper. We examine the changes that occur 
in each compartment if one mole of electricity passes. These changes are supunarized in 
Table 3 1 .4. If a quantity of electricity Q passes, this is QIF moles, so all of the changes are 
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Copper 
cathode Middle Copper 

anode 
+ 

F i g u r.e 31 .4 Tra nsference i n  Cu S O  4 so lut ion us ing copper e lectrodes. 

Tab le  31 .4  

Cathode compartment Middle compartment Anode compartment 

( l/z + )  mol Cu2 + (t + lz + ) mol of Cu2 + ( l/z+ ) mol Cu2 + 
plate out on cathode migrate out at A dissolve from anode 

(t +lz + ) mol Cu2 + (t + lz + )  mol of Cu2 + (t + lz+ ) mol Cu2 + 
migrate in migrate in at B migrate out 

(t - Iz - ) mol SO�- (LIz- )  mol of sOi- (LIz - )  mol SO�-
migrate out migrate in at A migrate in 

(LIz- ) mol of SO� -
migrate out at B 

Net change Net change Net change 

(�ncu2 + )c = (t + lz+ ) - (l/z + ) mol �nCu2 + = 0 (�nCu2 + )a = ( 11.:: + ) - (t + lz+ ) mol 
= - (L /z + ) mol = (L/z+ ) mol 

(�nso� - )c = - (t- Iz- )  mol �nso� - = 0 (�nso�- )a = (L Iz - ) mol 

multiplied by Q/F. In this experiment, the amount of CUS04 in the cathode compartment 
decreases by (L/z+ )(Q/F) moles, while in the anode compartment the number of moles 
increases by (t _ / z + )( Q/ F). The concentration in the middle part of the cell is unchanged by 
the passage of the current. By arranging the apparatus properly, the boundaries indicated 
at A and B in Fig. 3 1 .4 can be replaced by stopcocks (Fig. 3 1 .5), so that the three portions of 
the solution can be drawn offseparately after the experiment. The weight and concentration 
of electrolyte in each portion is measured after the experiment. Knowing the original con
centration, we can calculate the changes in number of moles of electrolyte in each com
partment. Analysis of the middle compartment is used as a check to determine if any 
interfering effects have occurred. The changes in numbers of moles of electrolyte in the 
compartments can be related to the transference numbers of the ions by a procedure such 
as the one given above. It is not possible to write a general formula relating the changes to 
the transference numbers, since what happens in every case depends on the chemical effect 



Transference N u m bers 777 

F i g u re 31 . 5  The. H ittorf cel l .  

produced by the electrode reactions . The changes must be  figured out using the above 
method for each combination of electrodes. 

The Hittorf experiment is subject to many difficulties in practice. The development of a 
concentration gradient by the flow of current results in diffusion of the electrolyte from 
the more concentrated to the less concentrated regions. This tends to undo the effect to be 
measured ; to minimize diffusion the experiment must not extend over too long a time. 
On the other hand, if the time is short, the concentration changes are small because a small 
current must be used. If large currents are used, heating effects occur unevenly and produce 
convection in the solution ; this mixes the solution up again. In addition to all this, density 
differences that develop with the concentration differences between the parts of the solution 
may also produce convection. In spite of all these difficulties, reasonably good measure
ments of the transference numbers can be made using the Hittorf method. A difficulty in 
interpretation arises because the ions are solvated, and in their motion they carry solvent 
from one compartment to another. We will return to this problem in Section 3 1 . 1 1 . 

31 .8 .2  The M ovi n g - B o u nd a ry M ethod 

The moving-boundary method for the measurement of  transference numbers has been 
brought to a high state of perfection. A schematic diagram of the apparatus is shown in 
Fig. 3 1 .6. A tube has two electrodes fixed at the ends and contains two solutions having an 

M'A 

MA 

b ' -t 
I 

b -� 

F i g u re 31 .6  The  movi n g - boundary method . 
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ion in common, one of a compound M' A and another of a compound MA. The system is 
arranged so that the boundary between the solutions is reasonably sharp ; the position of 
the boundary is visible because of a difference in refractive index of the solutions, or in some 
cases a difference in color. To avoid mixing and destruction of the boundary, the denser 
solution is placed beneath the less dense. Suppose that the boundary between the two 
solutions is initially at b, and that Q/F moles of charge are passed. The MZ+ ion carries 
(t+/z+ ) (Q/F) moles of charge past the plane at b. The boundary must move up far enough 
(to b') so that (t+/z+ ) (Q/F) moles of electrolyte may be accommodated in the volume 
between b and b'. If I is the length between b and b', and a is the cross-sectional area of the 
tube, then the volume displaced is lao If C is the concentration ofMA in moljm 3 , the number 
of moles that can be contained in la is cIa ; but this is simply the number of moles passing the 
plane at b. Thus Cia = (t +/z+ ) (Q/F), so that 

t + ClaF 
z+ Q ' (3 1 .42) 

which assumes that the volume displaced, la, is small compared with the total volume of the 
solution of MA ; in precise work a correction must be applied. 

The moving-boundary method yields more accurate data on transference numbers 
than does the Hittorf method. Experimentally it is easier to handle. The difficulties lie in the 
establishment of a sharp boundary, the necessity of avoiding convection currents, and 
excessive heating by the current. However, once the boundary is established, the flow of 
current sharpens the boundary, making this a minor difficulty. The relative concentrations 
of the two solutes are important in maintaining a sharp boundary. The faster moving ion, 
M' in this example, does not lead by more than a few atomic diameters, since a potential 
difference develops in such a sense as to slow it down ; in the steady state the two ions move 
with the same velocity, but M' is always a little bit ahead of M. 

The measurements of the transference number are made over a range of concentration 
of electrolyte ; the plot of t versus C 1/2 is linear in dilute solution and can be extrapolated to 
C = 0 to obtain the value of the transference number at infinite dilution, tOO .  

31 . 9  M O LA R  I O N  C O N D U CTIVITI ES 

Once we have measured transference numbers, we can calculate the values of  the molar 
ionic conductivities using Eq. (3 1 .39) 

and LIl� = ( 1 - t�)Aoo .  
Values o f  Il� and Il� for a number o f  ions are given in Table 3 1 .5 .  

31 . 1 0 A P P LI CATI O N S  O F  C O N D U CTA N C E  M EAS U R E M E NTS 

31 . 1 0 . 1  D ete r m i nat i o n  of the  I o n  P rod u ct of Water 

The ion product of water is Kw = aH + aOH - . Since in pure water the concentrations of the 
ions are exceedingly small, we may set the activities equal to the concentrations of thc 
species present ; so Kw = (CH +/CO)(COH -/CO). In pure water, CH+ = cow = cOK;P .  

The conductivity of  pure water Kw i s  related to the concentrations by the equation 
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Tab le  31 . S  
L im i t i ng  molar  conductivit ies of ions  at 25 °C : A 00!1 0 - 4  S m2/mo l  

..100 ..100 
Ion ..100 - Ion ..100 -

Z2 ZZ 

H+  349 .81  349 .81  OH- 198 .3 198 .3 
Li + 38.68 38 .68 F- 55.4 55.4 
Na+ 50. 10 50. 10 Cl- 76.35 76.35 
K+ 73 .50 73.50 Br- 78 . 14 78 . 14 
Rb+ 77. 8 1  77.8 1  1 - 76.84 76.84 
Cs+ 77.26 77.26 NO';- 71 .46 7 1 .46 
Ag+ 61 .90 6 1 .90 CIO';- 64.6 64.6 
NH.t 73.55 73 .55 BrO';- 55.74 55.74 
(CH3)4N+ 44.92 44.92 IO';- 40.54 40.54 
(CZHS)4N+ 32.66 32.66 CI04' 67.36 67.36 
(C3H7)4N+  23.42 23.42 104' 54.55 54.55 
Bez + 90 22.5 HCO';- 44.50 44.50 
Mgz + 106. 10 26.52 HCOO - 54.59 54.59 
Caz + 1 1 9.00 29.75 CH3COO - 40 .90 40.90 
Srz + 1 1 8.90 29.72 CHzBrCOO - 39.22 39 .22 
Baz + 127.26 3 1 .82 (N02)3C6HZO- 30.39 30.39 
Cuz + 107.2 26.80 SO�- 160.04 40.01 
Znz + 105.6 26.40 CzO�- 148.30 37.08 
Coz + 1 10 27.5 CO� - 138 .6 34.65 
Pbz + 139.0 34.75 Fe(CN)� - 302.7 33 .63 
La3 + 209 . 1  23.23 P30� - 250.8 27.87 
Ce3 + 209.4 23.26 Fe(CN)� - 442.0 27.63 
[Co(NH3)6J 3 + 305.7 33 .97 P40iz 374.8 23.43 
[Niz tri-en3J4 + 2 1 0.0 1 3 . 1 3  PzO�- 383 .6 23.98 
[Coztri-en3J 6 + 412.2 1 1 .45 P3Oio 545 21 . 8  

By permission from R. A.  Robinson and R.  H .  Stokes, Electrolyte Solutions. 2d  ed. (rev.) London : Butterworths, 
1 959. 

which becomes 

Kw = cDK;P(AH + + Aow)· 
The concentrations are so low that the values of the ion conductivities at infinite dilution 
may be used (Table 3 1 . 5). Then AH+ + AOW = 548 . 1  X 10- 4 S m2/mo!. The value of Kw at 
25 DC obtained by Kohlrausch and Heydweiller (1894) is 5 .5 x 10- 6 S/m. Using this value, 
we obtain for Kw 

_ 'l Kw J 2 

[ 5 .5  X 10- 6 Sim J 2 1 01 1 - 14 Kw - C(AW + AOH- )  = (1000 moljm3) (548 . 1  x 10 - 4 S m2/mol) = . x 0 . 

The best values of Kw are obtained from measurements of electrochemical cell 
potentials, and these agree well with the best values from conductivity measurements. At 
25 DC the most reliable value of Kw is 1 .008 X 10- 14. Values of Kw at several temperatures 
are given in Table 3 1 .6 . The variation with temperature should be noted. 
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tlOC 0 10 

Kw/1O- 1 4  0. 1 1 39 0.2920 

Tab le  31 .6 
The ion  p rod uct of water 

20 25 30 40 50 60 

0.6809 1 .008 1 .469 2.9 19  5 .474 9 .614 

By permission from H.  S. Harned and B. B. Owen, The Physical Chemistry of Electrolyte Solutions. 3d ed .  New 
York : Reinhold, 1958 .  

31 . 1 0 . 2  D ete r m i nat i o n  of S o l u b i l ity P rod u cts 

Another application of conductance measurements is in the determination of the solubility 
of a slightly soluble salt. For example, a saturated solution of silver chloride in water has a 
conductivity which is given by 

K = CAg + AAg + + CC1 - AC1 - + CH+ AH + + COH - Aow . 

If the salt dissolves to only a small extent, then the ionization of water will be unaffected by 
the presence of the salt, and the last two terms in the equation are simply the conductivity 
of the water. Therefore 

K - Kw = CAg + AAg + + CCI - ACI - ' 

If s is the solubility in moles per cubic metre, then S = cAg + = CCi - ' Then 

K - Kw = S(AA
g
+ + AC1 - )' 

If the solution is very dilute, the values of A <Xl may be used from Table 3 1 . 5 ; then 

_ K - Kw s - ----
AA

g
Cl 

. 

The solubility product constant is given by Ksp = aAg + aCI - ' If the solution is dilute 
enough to regard the activity coefficients as unity, then Ksp = (slcO)2 . In the case of silver 
chloride K - Kw = 1 .802 X 10- 4 Slm, so that 

[ 1 . 802 x 10- 4 Sim J 2 
Ksp = 

(1000 moljm3)(1 38 .27 x 10 4 S m2/mol) 
= 1 . 698 x 10- 1 ° . 

This value is in excellent agreement with that obtained from cell potential measurements. 

31 . 1 0 .3  C o n d u ctomet r i c  T itrat ions  

The variation of  the conductance of  a solution during a titration can serve a s  a useful 
method of following the course of the reaction. Consider a solution of a strong acid, HA; 
to which a solution of a strong base, MOH, is added. The reaction 

H+ + OH- � H20 

occurs . For each equivalent of MOH added, one equivalent of hydrogen ion is removed. 
Effectively, the faster-moving H + ion is replaced by the slower-moving M+ ion, and the 
conductance of the solution falls . This continues until the equivalence point is reached, at 
which we have a solution of the salt MA. If more base is added, the conductance of the 
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F i g u re 31 .7 Conductometric titrat ion 
of  a strong ac id with a strong base. 

solution increases, since more ions are being added and the reaction no longer removes an 
appreciable number of them. Consequently, in the titration of a strong acid with a strong 
base, the conductance has a minimum at the equivalence point. This minimum can be used 
instead of an indicator dye to determine the endpoint of the titration. A schematic plot of 
the conductance of the solution against the number of milliliters of base added is shown in 
Fig. 3 1 .7 .  This technique is applicable to any titration that involves a sharp change in 
conductivity at the equivalence point. 

Consider the titration of a silver nitrate solution with sodium chloride. In the pre
cipitation reaction Ag+ + CI - -* AgCl, the sodium ion replaces the silver ion in solution. 
This in itself produces little change in conductance, so that the plot of conductance versus 
number of milliliters of titrant is nearly horizontal. However, after the equivalence point is 
passed, the conductance increases sharply because of the additional ions. The endpoint can 
be determined easily. 

The equation for the conductance is simple and is given in the case of the acid-base 
titration by 

K = CH + IlH + + CA- IlA- + CM + IlM + + cOH - 1l0H- , 
where the concentrations are in moles per cubic metre. Using this equation and knowing 
the concentrations of the acid (HA) and base (MOH) solutions, we can easily calculate the 
conductance of the solution as a function of the volume of base added. 

31 . 1 1 STO K ES ' S  lAW 

The simplest interpretation of the values of the ion conductivities is 0 btained if we imagine a 
single ion immersed in a fluid and subjected to an electrical field. The only retardation the 
ion experiences is that due to the viscosity of the fluid. If the ion is a sphere of radius r i , the 
frictional force opposing its motion is given by Stokes's law : 

(3 1 .43) 

where '1 is the viscosity coefficient of the medium, and Vi is the yelocity of the ion. We 
balance this by the electrical force acting on the ion, Zi eE : 
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From this equation we obtain the mobility, 

Vi Zi e 
U · = - = --

, E 6nWi ' 
(3 1 .44) 

Combining this result with the definition of the ion conductivity, Ai = ZiFui , we obtain 

A . = 
Fezr 

, 6nlJr; ' 
(3 1 .45) 

which is the value predicted by Stokes's law for the molar ion conductivity. The molar 
conductivity of an electrolyte is given by A = v + ,.1,+ + v _ L ,  so that 

A = 
Fe (v + z� + L Z� ) 
6nIJ r + r _  (3 1 .46) 

It is informative to compare the predictions ofEq. (3 1 .45) with the values of Ai in Table 
3 1 .5 .  First we note the proportionality of Ai to zf , If we divide each of the values of Ai for the 
polyvalent ions by zr, we obtain numbers that are comparable to the values for the large, 
monovalent ions . For example, A oo(Mg+ +)/(2)Z = 26.52 x 10- 4 S mZ /mol, a value that 
lies between ,.1,00/(1)2 = 32.66 X 10 - 4 S m2/mol for (CZH5)4N+ and Aoo/(1)z = 23 .42 x 
10- 4 S m2/mol for (C3H7)4N+ . Both of these quaternary ammonium ions are quite large. 
Since the viscosity of water is the same in all cases, the only remaining factor is the radius 
of the ion. We are left to conclude that the radius of the magnesium ion is comparable to that 
of large quaternary ammonium ions. 

Similarly, if we compare the conductivity of the alkali metal ions (Table 3 1 . 5), in the 
light of Eq. (3 1 .45) we would be forced to conclude that the radius of the lithium ion is 
larger than that of the cesium ion. Since the crystallographic radius of lithium ion is much 
smaller than that of cesium ion, this indicates a difficulty with the Stokes's law interpreta
tion of Ai ' 

The only quantity on the right-hand side of Eq. (3 1 .46) that depends on the medium is 
IJ, so that for a given ion in different solvents we should have the relation, AilJ = constant, 
which is Walden's rule. In particular, at infinite dilution, 

AT'lJo = constant, (3 1 .47) 

where 1J0 is the viscosity coefficient for the pure solvent. If we compare the AT'lJo product for 
a specified ion in several different solvents, we find that the product is constant only for 
rather large ions such as the tetramethyhlmmonium ion, (CH3)4N+ , and the picrate ion, 
C6Hz(NOz)30 - . For these the constancy of the AT'lJo product is very good. If we exclude 
water, the constancy of AT'lJo for smaller ions is only fair, being perhaps within 20 percent of 
an average value. 

The difficulty with the small ions arises from the fact that the ions are solvated. An ion 
is attached to molecules of solvent that are carried along with the ion as it moves. The 
effective radius of the ion is therefore larger than its crystallographic radius and is different 
in each solvent. The amount of solvent held to the ion is less with larger ions (since the 
electrical field due to the ion itself is smaller), so that the effective radius is more nearly the 
same in various solvents ; consequently, Walden's rule is more accurate for large ions. If 
water is included in the solvents under comparison, the AIJ product in water is usually quite 
different than for the others, indicating more marked solvation in water. If conductivities 
in HzO and DzO are compared, the AIJ products are very nearly equal. 
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The transport of water by the ions was first measured by Washburn. Using the Hittorf 
method, a reference substance such as sugar or urea is added to the solution. Presumably 
the reference substance does not move in the field, and the transport of the solvent can be 
calculated from the analysis of the solution in the three compartments. If a value is assumed 
for the number of water molecules attached to one ion, a value for the number attached to 
the other ion can be calculated. Presently other methods for evaluation of hydration 
numbers are preferred-from measurements of the partial molar volume of the salt in the 
solution, for example. The different methods are internally consistent but often do not 
agree well with each other. It is generally assumed that the negative ions are not hydrated. 
Then the hydration numbers are, approximately : Li + , 6 ;  Na+ , 4; K+ , 2 ;  Rb+ , 1 .  

31 . 1 2 C O N D U CTIVITI ES OF  T H E  H Y D R O G E N  A N D H Y D R OXY L I O N S  

The data in Table 3 1 . 5  also show that the molar conductivities of the hydrogen ion and the 
hydroxyl ion are much larger than those of other ions. While the other ions move like a 
sphere pushing through a viscous medium, the very large values of the molar ionic con
ductivity observed for H+ and OH- have been explained on the basis of a proton jump 
from one species to another. For conduction by H + ion, we have the scheme shown in 
Fig. 3 1 . 8 .  A proton is transferred from the H30 + ion to an adjacent water molecule, thereby 
converting the water molecule to an H30 + ion. The process is repeated, the newly formed 
H30 + ion handing on a proton to the next water molecule, and so on. The occurrence of 
this process leaves the water molecules in an unfavorable orientation ; for the process to 
happen again, they must rotate through 90°. The initial stage is shown in Fig. 3 1 .8(a), an 
intermediate stage in Fig. 3 1 . 8(b), and the final stage in Fig. 3 1 . 8( c). The analogous process 
for the hydroxyl ion is shown in Fig. 3 1 .9 . 

The process of proton transfer results in a more rapid transfer of positive charge from 
one region of the solution to another than would be possible if the ion H30 + has to push its 
way through the solution as other ions must. For this reason also the conductivities of H+ 
and OH- ions are not related to the viscosity of the solution. 

+ H H H 
I I I 

H - O -H O-H O-H +
I
H + H � 1 -(a) 6-H I 

O-H 0 -+ H H H (a) 
I I I +

I
H H H 

1 -H-O H -O - H  O-H + 6-H I I 
(b) 0 - H-O 

( b) + H H H +
I �-

I I I H H 
1 -

H-O H-O H-O-H I H-6 + H-O 
(c )  (c )  

F i g u re 31 .8  Mechan ism of  conduct ion F i g u re 31 .9  Mecha n ism of  conduct ion 
for hydrogen ion .  for  hyd roxyl ion .  
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* 31 . 1 3 T E M P E RATU R E  D E P E N D E N C E  O F  T H E  
I O N  C O N D U CTIVITI ES 

The ion conductivities increase markedly with increase in the temperature. For ions other 
than H+ and OH- this increase is principally the consequence of the decrease in the vis
cosity of the medium. In water solutions in the range from 0 to 100 °C the change in molar 
conductivities for ions other than H+ and OH- averages about 2% per degree. The 
conductivities of H + and OH- have larger temperature coefficients (about 14% and 16  %, 
respectively) because of the difference in the conduction mechanism. The decrease in ion 
conductivities with increase in pressure is also mainly a result of the increase in viscosity 
with pressure. 

* 31 . 1 4  T H E O N SAG E R  EQUATI O N  

If the solution of electrolyte is not infinitely dilute, the ion is retarded in its motion because 
of the electrical attraction between ions of opposite sign (asymmetry effect), and because 
the positive and negative ions are moving in opposite directions each carrying some solvent 
(electrophoretic effect). Both of these effects are intensified as the concentration of the 
electrolyte increases so that the retarding forces increase and the conductivity decreases. 

The Debye-Huckel theory of ionic solutions provides the concept of an ionic atmos
phere surrounding each ion. In the absence of an applied field, this atmosphere can be 
imagined as a sphere of opposite charge with radius ra = 1/u, the Debye length. In the 
absence of a field (Fig. 3 1 . 10a), the atmosphere is symmetrically disposed about the ion, 
so that it exerts no net force on the ion. In the presence of a field (Fig. 3 1 . 10b), as the ion 
moves in one direction the atmosphere does not have tim� adjust itself to remain 
spherically disposed about the ion, and it lags behind. As a result, the ion is retarded in its 
motion by the atmosphere, which cannot keep up. The effect of the ionic atmosphere is less 
when 1/u is large, that is, when the atmosphere is far away ; less in solvents of high dielectric 
constant, because the force between ions is reduced by high dielectric constant ; and less 
when kT is large, since increase in temperature yields a less coherent atmosphere. The 
asymmetry effect reduces A by a term of the form (for uni-univalent electrolytes), BA ooC 1 /2 • 
The constant B = 8 .20 X 105/(fr T?/2, where fr is the dielectric constant of the solvent. 

The electrophoretic effect arises from the motion of the atmosphere in the direction 
opp0site to that of the ion. Both the atmosphere and the ion pull solvent with them and each 
is, in effect, swimming upstream against the solvent pulled along by the motion of the other. 
This retardation is less in very viscous solvents because the motion of both the atmosphere 
and the ion is slowed down. The expression for the electrophoretic retardation has the 
form, for uni-univalent electrolytes, AC 1/2 where A = 8 .249 X 1O- 4/(frT)1 /2ry, where ry is the 
viscosity coefficient of the solvent. When written out in detail the electrophoretic retarda-

+ 

(a) (b) 

+ -

F i g u re 31 . 1 0 Asymmetry effect. (a )  F ie ld  off. 
(b )  F ie ld  on .  
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tion resembles Eq. (3 1 .46) ; it has the form 

Fe (v + zt + v _ z:' ) = F e( v + zt + L Z:. )x , 

6n'1 r a r a 6n'1 

since the radius of the atmosphere is r a = 1/%. Ifwe subtract this term from A 00 to obtain A, 
and use Eq. (3 1 .46) for A 00, we get 

A = Fe (v + zt _ v + zt + v _ z:' _ v _ z:. ) . 
6n'1 r + ra r _  ra 

This equation implies that the effect of the motion of the atmosphere is to increase the 
effective radius of each ion to 

and 

As the radius of the atmosphere decreases, the effective radius of the ion increases, and the 
motion of the ion is slowed. 

The final expression for A, which includes both the asymmetry effect and the electro
phoretic effect, is (for uni-univalent electrolytes) 

A = A 00 _ [8.249 X 10 - 4 8.20 X 105 A ooJ r:. 
(tOr T)I /2'1 + (tOr T)3/2 V C, (3 1 .48) 

which is the Onsager equation ; it is usually abbreviated to 

A = Aoo - (A + BAOO)Jc, (3 1 .49) 

where c is the concentration in mol/L. The test ofEq. (3 1 .48) is whether the limiting slope of 
a plot of experimental values of A versus C I /2 has the value predicted by the equation. A 
comparison of the data with the values predicted by the Onsager equation is shown for 
several salts in water in Fig. 3 1 . 1 1 . The agreement is usually excellent in very dilute solu
tions up to about 0.02 molar. In more concentrated solutions the conductivity is usually 
higher than we would predict from the Onsager equation. 
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0 .3 F i g u re 31 . 1 1 Test of the Onsager equat ion .  

The l i nes are the l im i t ing  s lopes. 
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* 31 . 1 5 C O N D U CTA N C E  AT H I G H  F I E L D S  A N D H I G H F R E Q U E N C I ES 

The concept of the ion atmosphere is further substantiated by the Wien effect and the 
Debye-Falkenhagen effect. In very high fields, E > 107 Vim, an increase in conductivity is 
observed (Wien effect), resulting from the fact that a finite time (the relaxation time) 
is required for the atmosphere to form about an ion. In very high fields the ion moves so 
quickly that it effectively loses its atmosphere ; the atmosphere does not have time to 
form and so cannot slow the ion. The asymmetry effect disappears and the conductance 
Increases. 

For the same reason the conductivity increases at high frequencies, 3 x 106 Hz 
(Debye-Falkenhagen effect). The ion changes its direction of motion so quickly that the 
more sluggish atmosphere cannot adjust and follow the motion of the ion. The ion 
moves as if it had no atmosphere, and the conductivity increases. At high frequencies 
both the asymmetry and electrophoretic effects are absent. 

* 31 . 1 6 C O N D U CTA N C E  I N  N O NAQU EO U S  S O LVE NTS 

The principles governing conductivity in nonaqueous solvents are the same as those for 
aqueous solutions, of course. The dependence of the conductivity on the viscosity of the 
solvent was discussed in Section 3 1 . 1 1 .  However, in solvents having low dielectric constants, 
there is a lessening of the degree of ionization of many substances. Electrolytes that are 
completely dissociated in water may be only partially dissociated in a low dielectric 
constant solvent. Hydrochloric acid is completely dissociated in water ; HCI is a " strong " 
acid. In ethyl alcohol, however, HCI is a " half-strong " acid, with a dissociation constant of 
about 1 . 5  x 10- 2 • 

Suppose we compare the energy of interaction of two ions having charges + ze and 
- ze at a distance r in a medium of dielectric constant Er • This energy is 

z2e2 V = - . 4nEO Er r (3 1 . 50) 

If Er is large (in H20, Er � 80), the ions must come rather close together before the energy of 
interaction becomes appreciable. If we choose ethyl alcohol (Er � 24), then at the same 
distance of approach, the interaction energy will be �� = 3 .3 times greater ; or, put in 
another way, the energy of interaction becomes appreciable at a distance 3 .3  times greater 
than in water. As a result, since most solvents have much lower dielectric constants than 
water, the effects due to ionic interaction are much larger than in water. 

The large ionic interaction often renders the Onsager equation useless (it is still 
presumably correct) for the extrapolation to obtain A 00 .  The solutions for which the Onsager 
relation is valid are so dilute that it is not possible to obtain reliable measurements of their 
conductivity. In these cases, special methDds of obtaining A 00 are used. If the electrolyte 
is weakly dissociated, then the A 00 can be obtained by application of the Ostwald dilution 
law, modifying it in precise work to correct for the interionic forces. 

In solvents of low dielectric constant, ion association occurs. The appearance of ion 
pairs A +B- and ion triplets A +B -A + and B-A +B - results in a very rapid variation of 
conductivity with concentration. 

* 31 . 1 7 D I F F U S I O N  A N D C H A R G E  T R A N S P O RT 

There is an intimate connection between the mobility of an ion in an electrical field and the 
rate at which the ion diffuses under the influence of a concentration gradient. On general 
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thermodynamic grounds, we expect a particle to move spontaneously from a region of high 
chemical potential to one of low chemical potential. The driving force for this motion is the 
negative gradient of the chemical potential ; the velocity of the particle is proportional to 
this driving force. Considering the one-dimensional case for which the gradient is along the 
x-axis, we write for the velocity of the particle, V; , 

Vi = iii(-
O(flJNA») ox T, p 

(3 1 . 5 1 )  

Since the ion i s  electrically charged, we use the electrochemical potential, fl; ,  in  this equa
tion. We divide by NA to obtain the force acting on a single particle. The proportionality 
factor, iii , is a generalized mobility ; it is the velocity attained by the ion under a unit value 
of the generalized driving force, - [O(fli/N .J/OXJT, p . 

Using the electrochemical potential given by Eq. (17.7) and dividing by N A ,  we obtain 

fli {li ( F )'" {lP(T, p) 
kT I '" - = - + Zi -.- 0/ =  + n ai + zi eo/. 

NA NA NA NA 

The second equality is obtained because F/NA = e and {li/NA = {lP(T, p)/NA + kT In a; . 
Differentiating with respect to x at constant T and p, then changing signs throughout, we 
have 

First, we note that - o<p!ox = Ex , the electric field in the x direction ; then we use this 
expression for the driving force in Eq. (3 1 . 5 1) . The result is 

_ o ln ai _ 
Vi = - ui kT a;:- + ui zi eEx · 

We can convert the activity gradient into a concentration gradient by writing 

a In ai a In ai a In Ci 
ox a In Ci a;:-' 

(3 1 . 52) 

(3 1 . 53) 

where ai = ')Ii Ci ; the Ci is the concentration in moles of ions per litre, and ')Ii is the corre
sponding activity coefficient. Then 

o ln ai = 1 + 
o ln ')li . 

a In Ci a In Ci 

Since Ni = (1000 L/m3)N A Ci ' where Ni is the concentration in ions/m3, we have 

_ dN· 
d In Ci = d In Ni = N

.' . 
, 

When we use these two expressions in Eq. (3 1 .53), it becomes 

a In ai = (1 + 
a In ')Ii) . : dN;

. 
ox a In C; N; dx 

(3 1 . 54) 

For the moment we will assume that the solution is dilute enough that ')Ii = 1 .  (The 
results we obtain will be valid only at infinite dilution.) Then the second term in parentheses 
in Eq. (3 1 . 54) vanishes. Putting the resulting value for a In a;/ox into Eq. (3 1 . 52), we have 
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for the velocity, 

(3 1 .55) 

Thus the velocity is a sum of two contributions : a chemical one, which is proportional to the 
concentration gradient, JNJJx : and an electrical one, which is proportional to the electric 
field strength, Ex . We now examine the meaning of Eq. (3 1 . 5 5) in various circumstances. 

If the concentration is uniform, JNJJx = 0, and we have only the effect of the electric 
field on the velocity. This relation is 

(3 1 .56) 

Comparing this with Eq. (3 1 . 10) yields the relation between the velocity under unit force, 
iii , and the velocity under unit electric field, Ui : 

or _ Ui Ui = - · Zi e 
(3 1 . 57) 

The ion flow is given by the general law of transport, ji = N i vi ' Eq. (30. 1 1). Inserting 
Vi from Eq. (3 1 .55) we obtain 

(3 1 . 58) 

The first term on the right is the diffusion flow ; comparing this term with Fick's law, Eq. 
(30.5), we find that the diffusion coefficient is given by 

Dr = iirkT 
or, if we use Eq. (3 1 .57), by 

u:OkT DOO = -'-, Zi e or 

(3 1 . 59) 

(3 1 .60) 

Equation (3 1 .60) is the Einstein relation between the mobility in unit electrical field and the 
diffusion coefficient. If we replace Ui in the Einstein equation by the Stokes's law value, 
Eq. (3 1 .44), we obtain a relation between the diffusion coefficient, the ion radius, and the 
viscosity of the medium. 

kT DOC) = -_ 

, 6n170 ri 
(3 1 .61 )  

This i s  the Stokes-Einstein equation. Since this equation does not involve the charge of the 
particle, it applies to neutral particles as well. Einstein's original derivation, done in a differ
ent way, was for neutral particles, not ions . 

l!il EXAMPLE 3 1 . 1  It is informative to calculate the magnitude of Di using Eq. (3 1 . 6 1) . 
If we let T = 300 K, then for water 170 � 9 X 10 - 4 kg/m s. If we choose ri � 10- 1 0 m, 
we have 

00 ( 1 . 38  X 10- 2 3 J/K)(300 K) 
10- 9 2/ D · = � 2 x m s. 

, 6(3 . 14)(9 x 1O- 4 kg/m s)1O- 1 0 m 

This is the correct order of magnitude for the diffusion coefficient of an atom-sized 
particle in water. 
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By replacing Ui in the Einstein equation by its value from Eq. (3 1 .26), Ui = ).,JziF, we 
obtain the relation between the molar conductivity and the diffusion coefficient. 

or (3 1 . 62) 

Combining this expression with that in Eq. (3 1 .27) for the molar conductivity, we obtain 

F2 
ND = 

RT (v + z� D�  + v _ z� D':':). (3 1 .63) 

This is the Nernst-Einstein equation, which relates the conductivity to the diffusion coef
ficients of the ions. The form of the expression in Eq. (3 1 .63) raises the question of how the 
diffusion coefficients of the ions combine to yield a diffusion coefficient for the electrolyte. 
It is to this question that we now turn our attention. 

* 31 . 1 7 . 1  D i ffus i o n  of a n  E lectro lyte 

Consider the simple diffusion of an electrolyte in the absence of an external electric field. 
The diffusion occurs because of a concentration gradient. The situation shown in Fig. 
3 1 . 12(a) illustrates the initial condition of an electrolytic solution over which there 
is a layer of pure water. We assume that initially the boundary between the two layers is 
sharp. Suppose that the AZ + ion moves more rapidly than the W - ion. Then we soon have 
the situation illustrated in Fig. 3 1 . 1 2(b). In the first few moments of the process the positive 
ions outdistance the negative ions. An electrical double layer forms, with an associated 
electric field. The effect of this electric field is to speed up the slower ion and to slow down 
the faster ion. The system quickly adjusts so that both ions move ,in the same direction with 
the same velocity. If this adjustment did not occur, large departures from electrical neutrality 
would occur because of the difference in velocity between the positive and negative ions. 
Correspondingly enormous electric potential differences would develop in the direction of 
diffusion. In fact, the potential difference that develops and that equalizes the velocities of 
the ions is rather small ( < � 100 m V) ; it is the diffusion potential and is responsible for the 
liquid junction potential that was described in Section 17 . 1 8 .  

F i g u re 31 . 1 2 D iffus ion of an e lectrolyte. 
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To deal with this situation algebraically, we write Eq. (3 1 . 52) for each ion, requiring 
that v + = v _ = v :  

and 
_ k 0 In a_  _ v _  = v = -u_  T ox + u_ z_ eEx · 

(3 1 .64) 

(3 1 .65) 

We have suppressed the subscripts T, p on this partial derivative ; T and p are constant, 
nonetheless. These two equations determine v and Ex . We first eliminate Ex and solve for v. 
This is most easily done through the use of the electroneutrality condition. Since the 
formula of the electrolyte is A�: B� =: ,  the electroneutrality condition is 

If we multiply Eq. (3 1 .64) by v +/u+ and Eq. (3 1 .65) by v _ /u_ , we have 

and 

Addition of these two equations yields 

(v+ + 
v_ )v = -kT 0 In a�+a�-

= - vkT 0 In a± 
u+ u_ ox ox 

(3 1 .66) 

The term in eEx vanishes because of Eq. (3 1 .66). To obtain the second equality we have 
used the definition of the mean ionic activity and v = v + + v _ .  Following reasoning 
similar to that used in developing Eq. (3 1 . 54), and setting 'l' ± = 1, we find that we can 
replace 0 In a± by 0 In N = oN/N. Then, solving for v, we have 

vkT 1 oN 
V = - -""- . v + L N ox 

- 00 + - 00 u+  u _  
For the flow, j = vN, we obtain for the infinitely dilute solution, 

vkT oN 
j = � -

v + v _  ox ' 
-oo + � u + u _  

(3 1 .67) 

which is the equation for the diffusion of a simple electrolyte first obtained by Nernst. 
Comparing this equation with Fick's law, we see that 

or (3 1 . 68) 

where DOO is the diffusion coefficient of the electrolyte. Since by Eq. (3 1 .59), D'{' = u'{'kT, 
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Eq. (3 1 .68) reduces to 
v v + v _  

DOO 
= 

D� + 
D� ' (3 1 . 69) 

This is the rule by which the individual ionic diffusion coefficients combine to yield the 
diffusion coefficient of the electrolyte. The 00 superscript emphasizes that the relation is 
correct only at infinite dilution. 

The form ofEq. (3 1 . 69) shows that the diffusion coefficient of the electrolyte is closer to 
the diffusion coefficient of the slower moving ion. 

III EXAMPLE 3 1 .2 Using Eq. (3 1 .62) to calculate the H + and Cl- ion diffusion 
coefficients from their molar conductivities, we find 

DOO(H +) _ (8. 3 1 4  J/K mol)(298. 1 5  K) - 4 2 _ - 9 2 - (96 485 C/mol)2( + 1 )2 (349.8 x 10 S m Imol) - 9 .3 15  x 10 m Is 

and 

(CI -) (8 .3 14 J/K mol)(298 . 1 5  K)(76.35 x 10- 4 S m2/mol) 
- 9 21 DOO = = 2.033 x 10 m s. 

(96 485 C/mol)2( _ 1)2 

Then 
2 1 1 1 1 

DOO(HCI) 
= 

DOO(H+ ) 
+ DOO(CI- ) = 9.3 1 5  x· 10  9 m2/s + 2.033 x 10 9 m2/s ' 

DOO(HCl) = 3 .338 x 1O- 9 m2/s . 

The diffusion coefficient for HCI is slightly larger than that of CI- because the faster 
moving H + ion pulls the slower CI - ion along. 

It is interesting to compare the combinations, D�  and D� , in Eqs. (3 1 .69) and (31 .63). 
The difference between them is a consequence of the positive and negative ions moving in 
opposite directions in conduction, while in diffusion they both move in the same direction. 

Ifwe use Eq. (3 1 .62) for the values of D + and D _ and substitute in Equation (3 1 .69), we 
obtain 

- - -- + --
v _ F2 (v + z� v_  z=- ) 

D OO - RT A.� A.� ' (3 1 .70) 

This relation, first obtained by Nernst, expresses the diffusion coefficient in terms of the ion 
conductivities. Some values of the diffusion coefficients for several electrolytes are given in 
Table 3 1 .7 . 

Tab le  31 .1 
li mit ing  d i ffus ion coeff ic ients, D oo ,  for e lectro lytes at 25 "C 

Compound Doo/(1O- 9 m2/s) Compound Doo/( 1O- 9 m2/s) 

HCI 3 .336 CaCI2 1 .335 
LiCI 1 .367 SrCI2 1 . 335 
NaCI 1 .61 1 BaCI2 1 .386 
KCI 1 .994 Na2S04 1 .229 
KN03 1 .929 LaC13 1 .293 
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* 31 . 1 7 . 2  The D i ffus i o n  Potent i a l 

Consider two solutions of the same electrolyte with different concentrations that are in 
contact through a liquid junction. We can calculate the potential difference across this 
simple diffusion boundary by eliminating v between Eqs. (3 1 . 64) and (3 1 .65) . If we multiply 
Eq. (3 1 . 64) by V + z+ and Eq. (3 1 .65) by v_ L , then add them, we obtain 

( _ a In a + _ a In a_ ) ? _ ? _ 0 =  - kT v+ z+ u+ � + V_ L U_ oX + (v + z+ u+ + v_ z� u_ )eEx ' 

The left-hand side vanishes because of the electro neutrality condition, Eq. (3 1 .66). 
Eliminating Di between Eqs. (3 1 . 59) and (3 1 .62) yields Ui = A;/ZreF. Using this value of ui 
everywhere in the equation brings it, after rearrangement, to the form 

( 
1 A )  _ RT (V + A+ o ln a+ V_ A_ o ln a_ ) V +  /1,+ + v _ _  Ex - ;) + ;) ' F z + ux z_ ux 

Next we introduce Ex = - o¢jox, A = V+ A+ + v_ A _ , V + A+ = t + A, and v_ L = L A. 
The equation becomes 

_ o¢ = RT (� a In a+ + � a In a_ ) . ox F z + ox z+ ox 
If we assume that a+ = a_ = a± , this becomes 

_ o¢ = RT (� + �) a In a± . ox F z+ L ox (3 1 .71 )  

This result relates the diffusion potential gradient to the gradient of the mean ionic activity. 
In symmetrical electrolytes, AB, z _ = - z + and the equation becomes 

_ o¢ = RT (t + _ L ) o ln a± 
ox z + F ox 

This formula shows clearly that if we choose an electrolyte in which t + :::;:0 L (such as KCl) 
the diffusion potential will be very small. It is for this reason that KCl is used in salt bridges 
that are intended to minimize the liquid junction potentials. The equation also indicates 
that more highly charged ions will produce a lower diffusion potential gradient. 

Calculation of the diffusion potential requires the integration of Eq. (3 1 .71 )  over the 
diffusion region : 

If we have an ordinary concentration cell in which the activity varies from (a± ) l to (a ±h
and if we assume for simplicity that the expression in parentheses on the right-hand side of 
the equation is independent of concentration-we have 

l1¢diff = - RT (� + �) 
In (a ± )2 , F z+ L (a ± )l 

an equation equivalent to Eq. (17.63) for the junction potential. 

(3 1 . 72) 
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A final remark is needed concerning Eq. (3 1 .55). We can imagine a situation in which the 
imposed external electric field is in such a direction and of such a magnitude that it exactly 
counterbalances the effect of the concentration gradient on the motion of the ion. Then 
Vi = 0 and Eq. (3 1 . 55) becomes, after dividing by iii >  

0 = k! aNi + Zi e(- o<P) . 
Ni ax ax 

Rearranging, and multiplying by dx, we have 

dNi Zi e d<p 
Ni - kT 

When we integrate between a position where the potential i s  zero and one where the 
potential is <p, this becomes 

or 

N. In =-'- = NiO 

N-" - N-
e- ziF<I>!RT i - iO • (3 1 .73) 

This is the Boltzmann distribution. This derivation shows that in the nonequilibrium 
region, in which the linear laws hold, the equilibrium distribution can still describe the 
system to a first approximation. It is fortunate that this is so ; if it were not so, the mathe
matical complications would be enormous. 

Q U ESTI O N S  

31 . 1  Identify the charge carriers in metals and in ionic solutions. 
31.2 Why should Faraday's laws of electrolysis be exact ? 
31.3 Why is alternating current used in the measurement of conG:.lctivities of ions in solution ? 
31.4 Why should ions of a strong electrolyte migrate independently at low concentration ? 
31.5 The equivalent conductivity of a weak electrolyte varies approximately with C - 1 /2 (Fig. 3 1 .3) . 

Explain this in terms of the equilibrium constant for small degree of dissociation. 
31 .6 Identify the two effects that lead to a decrease in A with concentration for strong electrolytes. 
31 .7 What aspect of Eq. (3 1 .7 1 )  shows that the diffusion potential is a steady state-and not an equi" 

librium-potential ? 

P R O B LE M S  

31 . 1  A potential difference of 100 V is applied across a wire 2.0 m long and 0.050 cm in diameter. If 
the current is 25 A, calculate 
a) the resistance and conductance of the wire ; 
b) the field strength ; 
c) the current density ; 
d) the resistivity and conductivity of the wire. 
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31.2 A metal wire carries a current of 1 A. How many electrons pass a point in the wire in 1 second ? 
31.3 The resistivity of copper is 1 .72 x 10- 8 n m. Calculate the current if 20.0 V is impressed on a 

wire 6.0 m long and 2.0 x 1 0  - 5 m in diameter. 
31.4 A silver foil, 0.00254 cm thick and 0.50 mm wide, connects two points that are 4.2 cm apart. If 

the current passing in the foil is 1 . 5  rnA, what is the potential drop between the two points ? For 
silver, K = 6.30 X 107 S/m. 

31.5 If a potential difference of 10.0 m V is imposed between the ends of a piece of iron wire 0 . 1024 cm 
in diameter and 58.4 cm long, a current of 145 rnA flows. Calculate the resistivity of the iron wire. 

31.6 For platinum, the Hall coefficient is - 2.00 X 10- 1 1  m3/C, the resistivity is 10.6 x 10- 8 n m, 
and the density is 21 .45 g/cm3 . Calculate 
a) the mobility of the electrons ; 
b) the number of electrons per atom. 
c) If a current of 122 rnA is passed in a foil that is 0.00508 cm thick and 2 . 12 cm wide, what 

is the value of the Hall potential in a magnetic field of 0.500 tesla ? 
31 .  7 In a measurement of the Hall effect, a current of 2.00 A was passed through a strip of silver 1 . 50 

cm wide and 0.0127 cm thick. A transverse potential of 1 .32 j-lV was produced using a magnetic 
field of 0.750 tesla. Calculate the Hall coefficient for silver. 

31.8 A solution of sulfuric acid is electrolyzed using a current of 0 .10 A for three hours. How many 
cm3 (at STP) of hydrogen and oxygen are produced ? 

31.9 Potassium chlorate is prepared by the electrolysis of KCI in basic solution : 
6 0H- + Cl - --> CIO; + 3 H20 + 6e-

If only 60 % of the current is utilized in this reaction, what time will be required to produce 10 9 
of KCI03 using a current of 2 A ?  

31 . 10  What mass o f  AgCI i s  produced at a silver anode electrolyzed in HCI solution by a current of 
0.50 A passing for 2.5 hours ? 

31 . 1 1  If 0.4793 g of silver is deposited at the cathode during the electrolysis of a silver nitrate solution 
lasting 4 hours, 27 minutes and 35 seconds, what was the average current passing during the 
experiment ? 

31 .12 A current is passed for 3 hours, 10 minutes and 18 seconds through a solution of KI ; 34.62 mL 
of 0. 1046 moljL NazS203 solution are required to titrate the liberated iodine according to the 
reaction 

12 + 2 S20� - --> 2 I - + S40�
What i s  the average current passed during the experiment ? 

31 .13 Nitrobenzene, C6HsN02 , can be reduced to aniline, C6HsNH2 , at a mercury cathode. If the 
current efficiency is 80 %, how long must a current of 3.0 A flow in the cell to produce 1 .0 kg of 
aniline ? . 

31 .14 A solution of KCI has a conductivity of 0 . 14088 S/m at 25 DC. A cell filled with this solution has 
a resistance of 4.2 156 n. 
a) What is the cell constant ? 
b) The same cell filled with a solution of HCI has a resistance of 1 .0326 n. What is the con

ductivity of the HCI solution ? 
31 .15 For mercury at 0 DC, K = 1 .062963 X 106 S/m. 

a) If the resistance of a cell containing mercury is 0.243 166 n, what is the cell constant of the cell ? 
b) If the same cell is filled with potassium chloride solution at 0 cC, the resistance of the cell is 

3.966 x 104 n. What is the conductivity of the KCI solution ? 
c) If the average cross-sectional area of the cell is 0.9643 mm2, what is the effective distance 

between the electrodes ? 



P rob lems 795 

31 .16 Using the values of A."" from Table 3 1 . 5  for H + ,  Na+ ,  Ca2 + ,  La3 + ,  OH- ,  Br- ,  SOt- ,  and P20j- ,  
calculate 
a) the mobilities of the ions ; 
b) the velocities of these ions in a cell that has electrodes 5.00 cm apart to which a potential 

difference of 2.00 V is applied. 
31 .17  The mobility of the NHt ion is 7 .623 x 10- 8 m2/V s. Calculate 

a) the molar conductivity of the NHt ion ; 
b) the velocity of the ion if 1 5.0 volts are applied across electrodes 25 cm apart ; 
c) the transport number of the ion in NH4C2H302 solution if the mobility of the C2H302 ion 

is 4.239 x 10- 8 m2/V s. 
31 .18 Use the molar conductivities in Table 3 1 .5, assuming that they do not vary with concentration, to 

a) estimate the conductivity of 0.0100 mol/L solutions of AgN03 ; HCI ; CaCI2 ; MgS04 ; 
La2(S04)3 ; 

b) estimate the resistance for each case in (a) in a cell where the distance between the electrodes 
is 8.0 cm and the effective area of the conducting path is 1 .6 cm2 . 

31 .19 a) Relate the changes in concentration in the Hittorf cell to the transference number of the 
positive ion and the quantity of electricity passed if the cell is filled with hydrochloric acid 
and both electrodes are silver-silver chloride electrodes. 

b) What relation is obtained if the cathode is replaced by a platinum electrode so that H2 is 
evolved ? 

c) What relation is obtained if the anode is replaced by a platinum electrode and oxygen is 
evolved? (Note: Using an electrode that allows gas evolution would be a very bad way to do a 
Hittorf experiment ! Why?) 

31 .20 A Hittorf cell fitted with silver-silver chloride electrodes is filled with HCl solution that contains 
0.3856 x 10- 3 g HCl/g water. A current of 2.00 rnA is passed for exactly 3 hours. The solutions 
are withdrawn, weighed, and analyzed. The total weight of the cathode solution is 5 1 .7436 g ; 
it contains 0.0267 g of HCI. The anode solution weighs 52.0461 g and contains 0.0 133  g of HCI. 
What is the transference number of the hydrogen ion ? 

31.21 In a. Hittorf experiment to determine the transference numbers in KCl solution, the following 
data were obtained. (D. A. MacInnes and M. Dole. l.A.C.S. 53, 357 [193 1] .) Mass of the anode 
solution, 1 17 .79 g ; mass of the cathode solution, 120.99 g. Percent KCl in anode portion, 
0 . 10336 % ; percent KCl in cathode portion, 0 . 19398 %. The percent KCI in the middle portion 
was 0. 14948 %. Calculate t+ from the amounts of KCl transferred from the anode compartment 
and to the cathode compartment and the average value of t+ . (Note : 0. 16034 g of silver was 
deposited in a silver coulometer in series with the cell. The concentration of KCl was 0.2 mol/L.) 
Silver-silver chloride electrodes were used. 

31 .22 A moving-boundary experiment is done to measure the transference number ofLi + in 0.01 mol/L 
LiCI. In a tube having a cross-sectional area of 0. 125 cm2, the boundary moves 7 .3 cm in 1490 s 
using a current of 1 . 80 x 10- 3 A. Calculate t + . 

31 .23 In a moving-boundary experiment to determine the transference number of chloride ion in 
0.010 mol/L sodium chloride solution, the chloride ion moved a distance of 3 .0 cm in 976 s. The 
cross section of the tube was 0.427 cm2 and the current 2.08 x 10- 3 A. Calculate L .  

31 .24 From the data in Table 3 1 . 5  calculate the transference number of the chloride ion in each of the 
infinitely dilute solutions, HCl, NaCl, KCI, CaCI2 , and LaCI3 • 

31.25 The conductivity of any solution is given by Eq. (3 1 .29). Calculate the transference number of 
each ion in a solution that contains 0. 10 mol/L CaCl2 and 0.010 mol/L ECI. Use values of A."" in 
Table 3 1 .5 .  

31 .26 What is the ratio of concentrations of HCI and NaCI in a solution if the transference number of 
the hydrogen ion is 0.5 ?  (Use the data in Table 3 1 .5 .) 



796 E l ectr ica l Cond uct ion 

31 .27 The equivalent conductivity of LiCI at  infinite dilution is 1 1 5 .03 x 10- 4 S m2/mo!. The trans
ference number of the cation is 0 .336. 
a) Calculate the mobility of the cation. 
b) Calculate the velocity of the cation if 6.0 volts are applied across electrodes 4.0 cm apart. 

31 .28 At 1 8 °C, the data for KN03 solutions are 

C/( l0- 3 mol/L) 0.20 0.50 1 .0 2.0 5.0 

A/(1O- 4 S m2/mol) 125.2 124.5 123 .7 122.6 120.5 

Using an appropriate plot, find A 00 .  

31.29 The data for HCI solutions at 25 °C are 

c/(1O- 3 mOI/L) 2.8408 

A/(1O- 4 S m2/mol) 425. 1 3  

Using an appropriate plot, find A 00 .  

8 . 1 1 8 1  17 .743 3 1 .863 

424.87 423 .94 42'3 .55 

31 .30 At 25 DC, for water, I) = 8.949 X 10- 4 Fa s and Er = 78 .54. Using the Onsager equation and 
the data in Table 3 1 .5, calculate the molar conductivity of HCI, KCI, and LiCI solutions having 
c/(mol/L) = 0.0001 , 0.001 , 0.0 1 .  

31 .31  The crystallographic radii ofNa + and Cl- are 95 pm and 1 8 1  pm. Estimate the ion conductivities 
using Stokes's law and compare with the values in Table 3 1 .5  (11 = 0.89 x 10- 3 Fa s). 

31 .32 At 25 DC the values of Aoo/1O- 4 S m2/mol are : sodium benzoate, 82.48 ; hydrochloric acid, 
426. 1 6 ;  and sodium chloride, 126.45. Calculate A 00 for benzoic acid. 

31 .33 The molar conductivity of acetic acid is 

A/(1O- 4 S m2/mol) 49. 50 35.67 25.60 

c/(moljL) 9 .88 x 10- 4 19 .76 X 10- 4 39.52 X 10-4 

Using an appropriate plot, find 
a) A 00 ; 
b) the dissociation constant ; 
c) the degree of dissociation at each concentration. 

31 .34 At 25 DC, a solution of KCI having a conductivity of 0 . 14088 S/m exhibits a resistance of 654 Q 
in a particular conductivity celL In this same cell, a 0 . 10 mol/L solution of NH40H has a 
resistance of2524 n. The limiting molar ionic conductivities are available in Table 3 1 .5. Calculate 
a) the cell constant ; 
b) the molar conductivity of the NH40H solution ; 
c) the degree of dissociation of the 0 .10 mol/L NH40H;  
d )  the dissociation constant o f  NH40H. 
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31 .35 The conductivity of a saturated solution of BaS04 is 3.48 x 10- 4 S/m. The conductivity 
of pure water is 0.50 x 10- 4 S/m. Calculate the solubility product of BaS04 ' (Use Table 3 1 .5 . ) 

31 .36 A saturated solution of MgF 2 has K = 0.02538 S/m. Calculate the solubility product of MgF 2 ' 
(Use Kw from Problem 3 1 .35  and data from Table 3 1 .5 . )  

31.37 a) Suppose that a strong acid, HA, having a concentration ca (moljm3) is titrated with a strong 
base, MOH, having a concentration Cb (moljm3). If Vo is the volume of the acid, and v the 
volume of base added at any stage of the titration, show that the conductivity before the 
equivalence point is reached is given as a function of v by 

K = Co 
v� v) [Ka - Cb(;')(AH+ - AM+)] , 

where Ka is the conductivity of the acid solution before any base has been added. Assume 
that the values of A do not change with the volume of the solution. (Before the equivalence 
point is reached, the concentration of OH- is negligible compared with that of H + ; this 
situation is reversed after tpe equivalence point.) 

b) Show that after the equivalence point is passed 

K = (Vo + Ve)Ke + (v - Ve)Kb ,  Vo + V Vo + v 
where Kb is the conductivity of the basic solution, Ke that of the solution at the equivalence 
point, and Ve the volume of base added at the equivalence point. 

c) To 50 cm3 of 0. 100 moljL HCI solution, portions of a 0. 100 moljL NaOH solution are added. 
Calculate the conductivity for volumes of base, vlcm3 = 0, 1 0, 25. 40, 45, 50, 55, 60, 75, 90, 
and 1 00. Sketch K versus v. (Use data in Table 3 1 .5 . ) 

31 .38 Suppose that acetic acid, Ka = 1 .8  X 10- 5 , is titrated using a strong base. To 50 cm3 of the 
O. l O moljL acid, 0, 10, 40, 45, 50, 55, 60, 90, and 100 cm3 of 0 . 10 moljL sodium hydroxide are 
added. Calculate the conductivity after each addition of base and plot the conductivity versus v. 
(Use data in Table 31 .5 . ) 

31.39 a) Using values of Ai from Table 3 1 .5, calculate the diffusion coefficient for each of the ions 
H+ ,  OH- , Na+ ,  Ag+ , Ca2 + ,  Cu2 + ,  NO:! , SO�- , and Co(NH3)� + '  

. 

b) Calculate the mobility in unit force field, [ii ' and compare it with Ui for Ag+ and Cu2 + .  
31 .40 From the data in Table 3 1 .5 calculate the diffusion coefficients for HI, ZnCI2 , MgS04 , and 

Laz(S04)3 . 
31.41 Using the data in Tables 3 1 .5 and 16 . 1 ,  calculate the junction potential between two solutions 

having concentrations of 0.010 molal and 0 .10 molal for each of the electrolytes CuS04 , HCI, 
K2S04 , and La(N03h . 





C h e m i ca l  K i n et i cs 

I .  E m p i r i c a l Laws a n d 
M ec h a n i s m  

32 . 1  I NT R O D U CTI O N  

The rates of chemical reactions form the subject matter of chemical kinetics. Experimentally 
it is found that the rate of a chemical reaction is dependent on the temperature, pressure, 
and the concentrations of the species involved. The presence of a catalyst or inhibitor can 
change the rate by many powers of ten. From the study of the rate of a reaction and its 
dependence on all these factors, much can be learned about the detailed steps by which the 
reactants are transformed to products. 

32. 2  RATE M EAS U R E M E NTS 

In the course of a chemical reaction the concentrations of all the species present change with 
time, and so the properties of the system change. The rate of the reaction is measured by 
measuring the value of any convenient property that can be related to the composition of 
the system as a function of time. The property chosen should be reasonably easy to measure ; 
it should change sufficiently in the course of the reaction to permit an accurate distinction 
to be made between the various compositions of the system as time passes. The property 
chosen depends on the individual reaction. In one of the first quantitative studies of reac
tion rates, Wilhelmy ( 1850) measured the rate of inversion of sucrose by measuring the 
change with time of the angle of rotation of a beam of plane-polarized light passed through 
the sugar solution. 

There are many methods of following a reaction with time. Some of them are : changes 
in pressure, changes in pH, changes in refractive index, changes in absorbance at one or 
more wavelengths, changes in thermal conductivity, changes in volume, changes in electri
cal resistance. If physical methods such as these can be applied, they are usually more 
convenient than chemical methods. 
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c 

Product 

Reactant 

F i g u re 32.1 Var iat ion of concentration 
with t ime .  

Since the rate of the majority of chemical reactions is very sensitive to temperature, 
the reaction vessel must be kept in a thermostat so that a constant temperature can be 
accurately maintained. In some cases it is necessary also to control the pressure. 

No matter what property we choose to measure, the data can ultimately be translated 
into a variation of the concentration of a reactant or a product with time. Figure 32. 1 shows 
this variation schematically for a reactant and for a product. The concentration of any 
reactant decreases from its initial to the equilibrium value and the concentration of any 
product increases from its initial value (usually zero) to the equilibrium value. 

Our task now is to describe the curves in Fig. 32. 1 more accurately. We begin by 
describing the vario�s rate laws that have been found experimentally. Later we will 
interpret these laws in terms of the molecular processes involved. 

Consider a chemical equation written in the general form : 

(32. 1 )  

where A i i s  the chemical formula of  the ith species participating in the chemical reaction 
and Vi is the corresponding stoichiometric coefficient. For any. reactant, Vi is negative, for 
any product, Vi is positive. The number of moles of the ith species, n; , is given by 

ni = np + Vi �' (32.2) 

where � is the advancement of the reaction, np is the number of moles of the ith species 
initially, that is, when � = O. Then, differentiating with respect to time, we obtain 

dni d� 
at 

= Vi dt " (32.3) 

We define the rate of reaction as the rate of increase of the advancement with time : 

R f . 
d� ate 0 reactlon == dt ' (32.4) 

The rate of change of the number of moles of the ith species is given by Eq. (32.3). Inverting 
Eq. (32.3) we have 

(32.5) 

Consider the reaction 



Rate M easurements 801 

Using Eq. (32.5) we relate the rate of reaction to the changes in the mole numbers by 

Since 

d� 
dt 

_ � dnN205 
2 dt 

1 dnN02 ---4 dt 

- dnN205 = the rate of disappearance of N 2 0 S , dt 
dnN02 = the rate of formation of N02 , and dt 
dn02 = the rate of formation of 0 z , dt 

(32.6) 

we can say that the rate of reaction is equal to one-half the rate of disappearance of NzOs  
o r  one-fourth the rate o f  formation o f  NOz or  the rate o f  formation o f  Oz . Note that 
the relation of the rate of reaction to the rate of change of the mole numbers depends 
on the particular set of coefficients used in balancing the chemical equation. There is no 
unique way to choose this set of coefficients ; we simply decide on a convenient set at the 
beginning, and then use that set consistently throughout the problem. Keep in mind 
that the rate of reaction, d�/dt, is not defined until we have written a balanced chem
ical equation. 

Finally, we select some easily measurable property of the system, Z, with a known 
dependence on the mole numbers or concentrations of the various substances participating 
in the reaction ; that is, we know the functionality : 

Z = Zen! >  nz , n3 , . . .  ) . 
Then 

dZ OZ onl oZ onz - = - - + - - + . . . . dt onl ot onz ot 
Using the values given by Eq. (32.3) for dnJdt, this becomes 

or 

dZ = (Vl oZ 
+ Vz 

oZ 
+ . . .  ) d� , dt onl onz dt 

dZ 
d� dt 
dt OZ oZ Vl - + vz - + ' " onl onz 

(32.7a) 

(32.7b) 

This is the required relation between the rate of the reaction, d�/dt, and the rate of change 
of the measurable property with time, dZ/dt. If the volume of the system is constant, then 
ni = ci V, and we obtain 

dZ 1 d� dt 
V dt oZ az Vl -_- + V2 -_- + . . .  OCl oCz 

for the rate of the reaction per unit volume. 

(32.7c) 
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In Eq. (32.7c) we chose to write the volume in cubic metres and the concentration in 
moljm3 • In these equations we could equally well choose to use litres for the volume unit 
and moljL for the concentration unit. All that is required is that the two be in conformable 
units ; that is, the product of concentration times volume must equal the amount of sub
stance. For the remainder of this chapter we will use concentrations in moljL, which is the 
customary unit. 

• EXAMPLE 32.1  The rate of decomposition of acetaldehyde can be studied by 
measuring the pressure in a system at constant volume and temperature. Express the 
rate of reaction in terms of the rate of change of the pressure. The overall reaction is 

CH3CHO(g) - CH4(g) + CO(g) 

with mole numbers 

Then 

The initial pressure, pO = nOR T/V ; then p = po + (RT/V)� ; and we obtain 

dp RT  d� 
dt V dt or 

1 d� 1 dp 
V dt R T  dt .· 

Alternatively, we can use Eq. (32.7a). We see that : op/on i = RT/V for all i ;  then Eq. 
(32.7a) becomes 

dp _ ( R T  RT RT) d�  _ fl.vRT _ ( - 1 1 1) RT d� _ RT d� 
dt - Vi V + V2 V 

+ V3 V dt - V - + + 
V dt - V dt ' 

32 .3  RATE LAWS 

The rate of reaction will be a function of temperature, pressure, and the concentrations of 
the various species in the reaction, Ci ' and may depend on the concentrations, cx , of 
species such as catalysts or inhibitors that may not appear in the overall reaction. Further
more, if the reaction occurs homogeneously (that is, exclusively within a single phase), the 
rate is proportional to the volume of the phase, V. If the reaction occurs on an active sur
face the rate is proportional to the area of the active surface, A. Thus, in a very general way 
we can write the rate of reaction as the sum of the rates of the homogeneous and surface 
reaction : 

(32.8) 

wheref(T, p, Ci ' cJ andF(T, p, Cj ,  cJ are functions to be determined from the experimental 
data. Equation (32.8) is the rate law for the reaction. 

Reactions are classified kinetically as homogeneous or heterogeneous. A homo
geneous reaction occurs entirely in one phase ; a heterogeneous reaction occurs, at least in 
part, in more than one phase. A common type of heterogeneous reaction has a rate which 
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depends on the area of a surface that is exposed to the reaction mixture. This surface may 
be the interior wall of the reaction vessel or it may be the surface of a solid catalyst. At some 
stage in any kinetic study it is necessary to find out if the reaction is influenced by the walls 
of the vessel. If the vessel is made of glass, it is usually packed with glass wool or beads or 
many fine glass tubes so as to increase the exposed area. Any effect on the rate of the reac
tion is noted. If the reaction is strictly homogeneous, the rate will not be affected by packing 
the vessel in this way. In this chapter the discussion will be restricted almost entirely to 
homogeneous reactions. 

For homogeneous reactions, the second term on the right-hand side of Eq. (32.8) is 
negligible and we have 

d� 
dt = Vf(T, p, Ci , cx)· (32.9a) 

In this situation it is convenient to deal with the rate of the reaction per unit volume, 
(1/V) (d�/dt). In view of Eq. (32.8), the rate per unit volume becomes 

d(�/V) -----;[t = f(T, p, Ci , cx), (32.9b) 

which is the rate law for a homogeneous reaction. 
Dividing Eq. (32.5) by the volume, we obtain 

1 d� 1 dni 
- -

V dt v; V dt ' 

If the volume does not change with time, this equation takes the form 

d(�/V) 1 dCi 
dt Vi dt ' 

in which Ci is the conc'::ntration of the ith species ; Ci = n/V. 
In many cases, the rate law has the simple form 

d(�t
V) = kc'A C� Ct . .  · ,  

(32. 10) 

(32. 1 1) 

in which CA , CB , CC , . . .  , denote the concentrations of the participating species, and k, rx, j3 , 
and l' are constants. The constant k is the rate constant of the reaction, or the specific rate 
of the reaction, since k is the rate if all the concentrations are unity. In general the rate 
constant depends on temperature and pressure. The constant rx is the reaction order with 
respect to A, j3 is the reaction order with respect to B, and l' is the reaction order with 
respect to C. The overall reaction order is the sum : rx + j3 + 1'. 

The order of the reaction governs the mathematical form of the rate law and therefore 
the variation in concentration of all the species with time. The order of the reaction with 
respect to the various species must be discovered from experiment. The experimental 
determination of the order of the reaction with respect to the various substances taking 
part is one of the first objectives of a kinetic investigation. It cannot be emphasized too 
strongly that the order of the reaction with respect to a given substance has no relation 
whatsoever to the stoichiometric coefficient of that substance in the chemical equation. For 
example, in the chemical equation above, the coefficient ofN zO 5 is 2. We cannot infer from 
this that the reaction is second order with respect to Nz05 . (Elementary reactions
reactions that take place in a single act -are excepted from this statement.) 
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32 .4  F I R ST- O R D E R  R EACTI O N S  

Consider a simple decomposition reaction of the type 

A --------> Products. 

Since substance A is the only reactant, we choose to balance the equation with the coef
ficient of A equal to unity. Suppose that the reaction is first-order with respect to A and 
that the rate does not depend on the concentrations of any products ; then the rate law, 
Eq. (32. 1 1), becomes 

where c is the concentration of A. 

d(�/V) = kc dt (32. 12) 

To integrate this equation we must either express c as a function of �/V or �/V as a 
function of c. In either case, we obtain the relation by dividing Eq. (32.2) by V, 

� c = Co - V ' 

and then differentiate with respect to time : 

dc d(�/V) 
dt dt . 

Using this value for d(�/V)ldt in Eq. (32 . 12), we find that 

dc - dt 
= kc. 

By rearranging we can separate the variables, 

dc 
- = -k dt, c 

and integrate from t = 0 when c = Co to t ;  then 

or 

which can also be written 

Ic dc It - = -k dt, 
Co c 0 

c In - = - kt, Co 

(32. 1 3) 

(32. 14) 

(32. 1 5) 

(32. 16) 

(32. 1 7) 

Thus for a first-order decomposition, the concentration of A decreases exponentially 
with time. After measuring c as a function of time we can test whether the reaction is first 
order in A by plotting In (clco) versus t. According to Eq. (32 . 16) this plot should be a 
straight line if the reaction is first order in A. If we find that our experimental points lie on 
a straight line we conclude that the reaction is first order in A. The slope of this line is 
equal to - k. 

The half-life, T, of the reaction is the time required for the concentration of A to reach 
one-half of its initial value. Therefore, when t = T, C = !co . Putting these values into 
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Eq. (32. 1 6), we obtain In t = - h, so that 
1n 2 0.693 

1: = T= -k-· (32. 1 8) 

One way to evaluate the rate constant of a reaction is to determine the half-life for various 
initial concentrations of the reactant A. If the half-life is independent of the initial con
centration, then the reaction is first order, and the rate constant is calculated using Eq. 
(32. 1 8). It is only for first-order reactions that the half-life is independent of the initial 
concentration. 

The decomposition ofN 205 is an example of a first-order reaction. The stoichiometry 
is represented by 

and the rate law is 
dCN20S k - --a;- = CN20S · 

At 25 °C the rate constant is 3 . 38  x 10- 5 S - 1 . Note the absence of any relation between 
the order of the reaction and the stoichiometric coefficient of N205 in the chemical equa
tion . 

• EXAMPLE 32.2 Calculate the half-life for N205 at 25 °C and the fraction 
decomposed after 8 hours ; k = 3 .38 X 10- 5 S - 1 . 

0.693 0.693 
1: = -k-

= 
3 .38 x 10 5 S 1 

= 20 500 s. 

Mter 8 hours the fraction remaining is given by Eq. (32. 1 7) ;  since 
8 hr = 8 hr (60 min/hr) (60 s/min) = 28 800 s, we have 

-=-
= e - kt = e � 3 . 3 8 x 1 0 - S s - 1 (2 8 8 00 s) = e - O .9 7 3 = 0.378. 

Co 

Therefore the fraction decomposed is 1 .000 - 0.378 = 0.622 

32 .4 . 1  Rad i oact ive Decay 

The radioactive decay of an unstable nucleus is an important example of a process that 
follows a first-order rate law. Choosing CU64 as an example, we have the transformation 

1: 
= 12 .8 hr. 

The emission of a p-particle occurs with the formation of a stable isotope of zinc. The 
pro bability of this occurrence in the time interval dt is simply proportional to dt. Therefore 

dN - - = A dt N ' (32. 19) 

where - dN is the number of copper nuclei that disintegrate in the interval dt. Equation 
(32. 1 9) is a first-order law, and can be integrated to the form 

(32.20) 

No being the number of CU64 nuclei present at t = 0, N the number at any time t. The 
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F i g u re 32 .2 (a )  Rad ioactive decay. (b)  Bacter i a l  g rowth .  

constant A is the decay constant and is related to the half-life by 

A = In 2
. 

't" 
(32.21) 

In contrast to the rate constant of a chemical reaction, the decay constant A is completely 
independent of any external influence such as temperature or pressure. Using the value of 
A from Eq. (32.21) in Eq. (32.20), we obtain, since exp(ln 2) = 2, 

(32.22) 

From Eq. (32.22) it is clear that after the elapse of a period equal to two half-lives, 
(1)2 = t ofthe substance remains. After three half-lives have elapsed, t remains, after 4 half
lives, /6' and so on. The mathematics is the same as that of the barometric distribution 
(Section 2.9). The number, N, as a function of t is shown in Fig. 32.2(a). 

32 .4 .2  B a cte r i a l  G rowt h  

A bacterial colony grows most commonly by  cell division. I n  an actively growing colony 
the probability of cell division in a time interval dt is proportional to dt ; thus 

dN = A dt N g (32.23) 

where dN is the number of cells that divide in the time interval dt, and Ag is a constant. This 
growth law is very similar to the law of radioactive decay in Eq. (32. 1 9), except that the 
negative sign is missing. Upon integration we obtain 

(32.24) 

Figure 32.2(b) shows N IN 0 as a function of time. 
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F i g u re 32 .3 G rowth and decay of  bacter ia l  colony.  

The generation time, tg , is the time required for the population to double ; that is, when 
t = tg , No = 2N 0 ; thus Eq. (32.24) becomes 

2No = No eAgtg, 

or 

Using this value for Ilg in Eq. (32.24) we have 

since e1n 2 = 2. 

(32.25) 

(32.26) 

The growth law, Eq. (32.26), is not applicable during the entire history of a bacterial 
colony. A typical population curve, N versus t, is shown in Fig. 32.3 .  There is an initial 
induction period, followed by a period between t1 and t2 during which the exponential 
growth occurs, as described by Eq. (32.26). The population growth slows, then stops ; in the 
final phase the population drops as the bacteria die off more rapidly than they are produced. 
Equation (32.26) describes the growth only during the exponential phase in the interval 
from t1 to t2 . The leveling off occurs as the supply of nutrients is exhausted. Finally, if the 
environment becomes sufficiently hostile (due to lack of nutrients or increased concentra
tions of toxic substances), the colony dies. 

32 .4 .3  Compo u n d  I nterest 

The law of compound interest on investment is the same as the law of bacterial growth. If 
Po is the initial value of the principal amount, t I the interval at which compounding occurs, 
and r the interest rate for the interval t1 , expressed as a fraction, the principal at time t will 
be 

P = PoCl + rt1)tit l . 

If the compounding occurs instantaneously, then we have 

lim (1 + rt1)1 /t , = er, 
t, = 0 

(32.27) 

(32.28) 
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and thus 

which is the same growth law as for bacteria. . 

32 . 5  S E CO N D - O R D E R  R EACTI O N S  

We return to the decomposition reaction, 

A � Products, 

(32.29) 

but now assume that the reaction is second order. If c is the concentration of A at any time, 
the rate law is 

d( �t
V) 

= kc2, 

which, in view of Eq. (32. 14), becomes 

Separating variables, we have 
dc - 2 = k dt. c 

Integrating from (co , 0) to (c, t) we obtain fc dc It - 2 = k dt ; 
Co c 0 

1 1 
- = - + kt. c Co 

(32.30) 

(32.3 1 )  

(32.32) 

This is the integrated rate law for a second-order reaction. To discover whether the reac
tion is second order, we test the data by plotting l/c versus t. Equation (32.32) requires that 
this plot be linear. If the data fall on a straight line, this is evidence that the reaction is 
second order. The slope of the line is equal to the rate constant. 

The half-life is defined as before. When t = r, c = !co . Using these values in Eq. (32.32), 
we obtain 

1 
r = - . kco (32.33) 

For a second-order reaction, the half-life depends on the initial concentration of the 
reactant. If the initial concentration is doubled, the time required for half of A to react will 
be reduced by one-half. If the half-life for various initial concentrations is plotted against 
l/co , the rate constant is the reciprocal of the slope of the line . 

• EXAMPLE 32.3 Suppose that the decomposition of acetaldehyde is second-order. 
(See Example 32. 1 .) Formulate the rate law in terms of the total pressure of the system 
and integrate the result to express the pressure as a function of time. 

In Example 32. 1 ,  we showed that the rate of reaction, 

1 d� 1 dp 
V dt R T  dt ' 
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and that p = (nO + �) (R T IV) = pO + (R T /V)�, where pO = nOR T IV. If the reaction is 
second order, then 

where 

Since � = (V/RT) (P - pO), we find that C1 = (no/V) - (�/V) = (po/RT) - (p - pO)/RT 
= (2pO - p)/RT. Then the rate law becomes 

Integrating 

_1_ dp = k(2pO _ p) 2 
RT dt RT 

fp dp k 
I
I 

° 2 = - dt pO (2p - p) R T ° 

or 

yields 

dp = � dt 
(2pO - p? RT 

This last result can also be  written in terms o f  the final pressure, pco ; when t = 00 ,  we 
have pco = 2po ; thus, we get 1 2 kt --- = - + pco _ p pco RT 
The left-hand side o f  this equation can b e  plotted against t t o  obtain the rate constant. 

32 .5 . 1  Seco n d - O rd e r  R eact i o n s  with 
Two R ea cta nts 

Consider a reaction of the type 

( - v A)A + (- vB)B ---------'> Products. (32.34) 

Keep in mind that the stoichiometric coefficients, v A and VB , are negative ; thus - v A and 
- VB are positive numbers. If the instantaneous concentrations of A and B are C A and CB ' 
and assuming that the reaction is first order with respect to both A and B, the overall order 
is second and the rate law can be written 

(32.35) 

Note that 
d(�/V) 1 dCA 1 dCB 

dt VA dt VB dt ' (32.36) 

so that the rate law in Eq. (32.3 5) could be written in terms of the rate of disappearance of A 
or of B :  

or (32.37) 

Although these forms are physically meaningful, they are not suited to the integration of 
the rate law. 

To bring Eq. (32.35) into an integrable form we express CA and CB in terms of �/V by 
dividing Eq. (32.2) by V ;  this yields 

and (32.38) 
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in which c1 and c� are the initial concentrations of A and B. Putting these values of CA and 
CB in Eq. (32.3 5) yields 

d(�
t
V) = k(c1 + VA �) (c� + VB �) . 

We next factor out the product ( - VA) (  - VB) on  the right-hand side t o  obtain 

d(�/V) = ( - VA) (  - VB)k( c1 _ i) ( c� _ 
� ) . dt - VA V - VB V 

To simplify the notation, we define 

Then the rate law becomes 

� 
Y = -· V 

Separating variables, we obtain 

We distinguish two cases. 

dy ( 0 ) ( 0 ) = VA VB k dt. 
YA - Y YB - Y 

(32.39) 

Case 1 .  y1 = y� . In this case, the substances A and B are present in the required stoichio
metric ratio ; Eq. (32 . 39) becomes 

dy 
(yo )2 = VA vB k dt A - Y 

Integrating from (y = 0, t = 0) to (y, t) yields 

or 
Jy dy Jt ( 0 )2 = VA VB k dt, 
o YA - Y 0 

1 1 
-0-- - 0 = VA vB kt. 
YA - Y YA 

This can be written in terms of the concentration of either A or B :  

or 

(32.40) 

(32.41) 

(32.42) 

In this circumstance, the rate law is very similar to the second-order law with only one 
reactant. The reciprocal of either concentration is plotted against t to determine the rate 
constant. 

Case 2. y1 "# y� . In this case, the two reactants are present in an arbitrary ratio, not the 
required stoichiometric ratio . Using the method of partial fractions, * we can rewrite 

* The method of partial fractions is described in elementary calculus texts. 
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( 0 1 0 ) (�) '+ ( 0 1 O) (�) = - VAVB k dt. 
YB - YA Y A - Y Y A - YB YB - Y 

A minus sign has been introduced into every term for mathematical convenience. Multi
plying each side by y� - y� and integrating from (y = 0, t = 0) to (y, t) gives 

which becomes 

fy -dy fY -dy ft -0-- - -0-- = - V A vBk(y� - y�) dt, o Y A - Y 0 YB - Y 0 
y� - Y y� - Y In --- - In --- = - V A VB k(y� - y�)t. y� y� (32.43) 

When we replace the y's by their equivalents in concentrations, this equation becomes 

(32.44) 

This equation strongly resembles the first-order law in Eq. (32 . 16) and reduces to it in 
limiting circumstances. For example, suppose B is present in very great excess-so great 
that y� - y� � y� and CB/C� � 1 throughout the course of the reaction. Equation (32.44) 
then reduces to 

(32.45) 

which is the first-order law, Eq. (32. 1 6), with an effective first-order rate constant equal to 
- v A kc� . Similarly, if A is present in very great excess, Eq. (32.44) reduces to 

(32.46) 

with an effective first-order rate constant equal to - VB kc� . When the concentrations of the 
reactants have been adjusted so that the reaction follows a rate law such as Eq. (32.45) or 
Eq. (32.46), the rate law is sometimes called a " pseudo-first-order " law ; the quantities, 
- vAkc� and - VB kCt are called " pseudo-first-order " rate constants. 

If both A and B are present in comparable concentrations, we can plot the quantity on 
the left-hand side ofEq. (32.44) against t to determine the rate constant. This plot should be 
a straight line with a slope of -k( VB d - V A c�). All other quantities are known, so k can be 
obtained from the slope. 

32 .6  H I G H E R - O R D E R  R EACTI O N S  

Reactions of order higher than second are occasionally important. A third-order rate law 
may have any of the forms 

or 

and so on. We can integrate these equations either directly or after expressing all the con
centrations in terms of a single variable, as in the preceding example. The procedure is 
straightforward, but the results are not of sufficiently general interest to be included in 
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detail here. The most common third-order reactions are several which involve nitric oxide ; 
for example, 

2NO + Cl2 ----'> 2NOCl, 

32 .7  D ETE R M I N I N G  T H E  O R D E R  O F  A R EA CTi O N  

Since the rate of a reaction may be proportional to different powers of the concentrations 
of the several reactants, we need to determine the dependence of the rate on each of these 
concentrations. If, for example, the rate is kc'A c� Ct , then if B and C are present in great 
excess (while the concentration of A is very small), the concentrations of B and C will 
remain effectively constant throughout the reaction. The rate will then be proportional only 
to c'A .  By altering the initial concentration of A, we can determine the order IX. The pro
cedure is repeated by having A and C present in excess to determine [3, and so on. This is the 
isolation method for determining the order of a reaction. We used this idea in deriving Eqs. 
(32.45) and (32.46). 

Suppose that a reaction is IXth order with respect to the reactant A and that all the other 
reactants are present in great excess. Then the rate law is 

which can be written as 

d(�/V) = kc'Ac� ct , . . .  , dt 

where k' = (kc� ct . . .  ) is effectively a constant. We can replace d(�/V)/dt by ( l/v A) (dCA/dt), 
which brings the equation to 

Taking the logarithm of both sides of this equation, we obtain 

(32.47) 

which can be used in the following way. A plot of CA versus t is constructed from the data. 
The slope of the curve, dCA/dt, is measured at several different values of t ;  the corresponding 
value of CA is read from the plot. The logarithm of ( - dCA/dt) is then plotted against 
log! 0 CA ' The slope of the line is the order of the reaction. 

Equation (32.47) can be used in another way. The initial slope of the curve of CA versus 
t is measured for several different initial concentrations. Then the logarithm of the negative 
of the initial slope is plotted against the logarithm of the initial concentration. The slope of 
this plot, according to Eq. (32.47), is the order of the reaction. 

It should be mentioned that considering the uncertainties in the data it is sometimes 
quite difficult to decide whether a reaction is first or second order. 
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With very few exceptions the rate of reaction increases (often very sharply) with increase in 
temperature. The relation between the rate constant k and temperature was first proposed 
by Arrhenius : 

(32.48) 

The constant A is called the frequency factor, or pre-exponential factor ; E* is the activation 
energy. Converting Eq. (32.48) to logarithmic form, we have 

E* 
10gi O k = logl o  A - 2.303RT

; (32.49) 

it is apparent that by determining the value of k at several temperatures, the plot of log lO k 
versus IjT will yield the activation energy from the slope of the curve and the frequency 
factor from the intercept. Although the frequency factor may depend slightly on the 
temperature, unless the temperature range is very great, this effect can ordinarily be ignored. 
The determination of the activation energy is an important objective of any kinetic in
vestigation. 

The justification of the Arrhenius equation on theoretical grounds will be discussed in 
the next chapter. We can give a qualitative idea ofthe meaning ofthe equation for a reaction 
that occurs when two molecules collide. In such a case, the reaction rate should be pro
portional to Z, the number of collisions per second. Furthermore, if we assume that not all 
collisions, but only those collisions involving an energy greater than some critical value E*, 
are effective, then the rate of the reaction will have the form 

N d(�jV) 
_ Z - E*/RT A dt - e , (32. 50) 

since the fraction of collisions having energies greater than E* is exp ( - E* jRT) so long as 
E* � RT. The form of Eq. (32.50) is that required to yield the Arrhenius equation for the 
rate constant in this case. 

32 .9  M EC H A N I S M  

It was pointed out in Section 32. 3 that the exponents of the concentrations in the rate law 
in general do not bear any relation to the stoichiometric coefficients in the balanced 
chemical equation. This is so because the overall chemical equation yields no information 
about the mechanism of the reaction. By the mechanism of a reaction we mean the detailed 
way by which the reactants are converted into products . The rate at which equilibrium is 
attained in a system depends on the mechanism of the process while the equilibrium state 
itself is independent of the mechanism and depends only on the relative Gibbs energies. 
From a study of the position of equilibrium, values of changes of Gibbs energy, entropy, 
and enthalpy can be obtained. From a study of the rate of reaction under various condi
tions, information about the mechanism can be gained. The kinetic study is generally 
complicated and often requires a great deal of ingenuity in the interpretation of the data 
simply because it is as likely as not that the mechanism is complicated. Also, from kinetic 
data alone, it often is not possible to decide which of several reasonable mechanisms is 
the actual mechanism of the reaction. All too often it is not possible to distinguish on 
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any basis which of, let us say, two mechanisms is the actual one. We may be reduced to 
saying that one seems more plausible than the other. 

The attack on the problem of mechanism in a chemical reaction begins with the 
resolution ofthe reaction into a postulated sequence of elementary reactions. An elementary 
reaction is one that occurs in a single act. As an example, consider the reaction 

Hz + Iz -------+ HI + HI. 

As a hydrogen molecule and an iodine molecule collide, we may assume that they mo
mentarily have the configuration 

R · · I  
I I 

H · · · I  

and that this complex can then dissociate into two molecules of HI. The sequence of events 
is illustrated as follows : 

H 
I 

H 
+ 

approaching 

I 
I 
I 

H · · · I  
-------+ I I 

H · · · I  collision 

HI 
-------+ + 

HI separating 

Thus, in this single act of collision, the reactants disappear and the products are formed. 
The reverse of this reaction is also an elementary reaction, the collision of two molecules of 
HI to form Hz and Iz . 

An elementary reaction that involves two · molecules, such as the one above, is a 
bimolecular reaction. A unimolecular reaction is an elementary reaction that involves only 
one molecule ; for example, the dissociation of a molecule such as H02 : 

HOz -------+ H + Oz . 

In a single act the HOz molecule simply falls apart into two fragments. The reverse reaction, 

H + O2 -------+ HOz , 

is an elementary reaction and, since it involves two molecules, is a bimolecular reaction. 
Only elementary reactions can be characterized by their molecularity ; the adjectives 
" unimolecular " and " bimolecular " do not have meaning for complex reactions that 
involve a sequence of many elementary steps. 

The rate laws for elementary reactions can be written immediately. Under any 
prescribed set of conditions, the probability of a molecule A falling into fragments in unit 
time is a constant. So for the unimolecular elementary reaction 

the rate law is 
A -------+ fragments, 

d(�/V) _ k 
dt - CA ' (32. 5 1 )  

Since the probability of  falling apart in  unit time i s  constant, the greater the number of 
molecules present, the greater will be the rate of disappearance ; hence the rate law, 
Eq. (32.5 1). 

For a bimolecular reaction, the rate depends on the number of collisions in unit time ; 
in Section 30.5 it was shown that the number of collisions between like molecules is 



Opposi ng React ions : The Hyd rogen-Iod ine  R eact ion  81 5 

proportional to the square of the concentration ; therefore, for a bimolecular elementary 
reaction of the type 

the rate law is 
2 A --+ Products, 

d(�/V) _ k 2 dt - CA - (32.52) 

Similarly, the number of collisions per second between unlike molecules is proportional 
to the product of the concentrations of the two kinds of molecules ; hence for the bi
molecular elementary reaction of the type 

the rate law is 
A + B --+ Products, 

d(�/V) _ k dt - CACB ' (32.53) 

A termolecular reaction is an elementary reaction that involves the simultaneous 
collision of three molecules : 

A + B + C --+ Products ; 
the rate law is 

(32.54) 

The frequency of occurrence of three-body collisions is very much smaller than that of 
two-body collisions. Consequently, if a termolecular step is essential to the progress of the 
reaction, the reaction is very slow. 

Examination of Eqs. (32.5 1), (32.52), and (32.53) shows that for elementary reactions 
the order of the reaction can be inferred from the stoichiometric coefficients. This is true 
only for elementary reactions. 

32 . 1 0 O P P O S I N G  R EACTI O N S ; T H E H Y D R O G E N-I O D I N E  R EACTI O N  

The gas phase reaction of hydrogen with iodine, investigated extensively by Bodenstein in 
the 1890s, provides a classic example of opposing second-order reactions. Between 300 and 
500 °C the reaction proceeds at conveniently measurable rates. If we assume that the 
mechanism is simple, consisting of one elementary reaction and its reverse,* 

then the net rate of reaction is the rate of the forward reaction minus the rate of the reverse 
action. Since both are elementary reactions, we have 

* 

(32.55) 

It is customary to write the rate constant for the forward reaction over the arrow, and that for the reverse 
reaction under the arrow. 
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At equilibrium d(�/V)/dt = 0, and Eq. (32 .55) can be written in the form 

(CHI); k1 
(CH,)e( CI2)e k - 1 ' 

The left-hand side of this equation is the proper quotient of equilibrium concentrations, 
the equilibrium, constant ; therefore 

k1 K = -k . 
- 1 

(32.56) 

The equilibrium constant of an elementary reaction is equal to the ratio of the rate con
stants of the forward and reverse reactions. This relation is correct only for elementary 
reactions. 

If � is the advancement of the reaction at time t, we can write 

CHI = 2y, 

where a and b are the initial concentrations of H2 and 12 respectively, and y = �/V. (We 
assume that there is no HI present initially.) When we use this not? tion, the rate law 
becomes 

dy 2 
dt = k1(a - y) (b - y) - L 1(4y ). (32.57) 

Equation (32.56) yields L 1 = kdK ; then the rate law, after we clear the parentheses, 
becomes 

dy = k (1 _ i) [ 2 _ (a + b)y ab J . dt 1 K Y 1 - 4/K + 1 - 4/K (32.57a) 

We can write the expression inside the brackets as a product, (Yl - y) (h - y), where Yl and 
h are the roots of the expression. Then 

a + b + m 
Yl = 2(1 - 4/K) ' 

a + b - m h = 2(1 - 4/K) ' 
m = J(a - b)2 + 16ab/K. 

Note that m, Y1 , and Y2 are known quantities that are calculated from the initial concentra
tions a and b, and the equilibrium constant K. The roots, Y1 and h ,  are the possible 
equilibrium values of y ; Y1 is an extraneous root and h is the equilibrium value. 

The rate equation becomes 

-(y-l---y-�'--�y-2---y-) = k 1 (1 - ;) dt. 
Using the partial fraction method, we can write 

-- - -- = - kl 1 - - (h - Yl) dt. 
- dy - dy ( 4 ) 

Y1 - Y h - y K 

Integrating from (y = 0, t = 0) to (y, t) and using h - Yl = -m/(l - 4/K), we have fy - dy fY -dy ft --- - --- = k1m dt · 
o Y1 - Y 0 Yz - Y o ' 
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and finally, 

1 Y1 - Y 1 Yz - Y - k t n --- - n --- - 1m .  
Y1 Yz 

(32.58) 

Using the known parameters K, a, b, and the measured values of Y as a function of t, we can 
plot the left-hand side ofEq. (32.58) against t to obtain the value of the rate constant k1 from 
the slope. The value of K is measured independently. Using Eq. (32.58), Bodenstein obtained 
satisfactory values of the rate constant at several temperatures. 

Equation (32.58) should be compared to the second-order rate law without the reverse 
reaction, Eq. (32 .43), which with VA = VB = - 1  can be written as 

a - y  b - y  
In -a- - In -b-

= k(a - b)t. (32.59) 

The similarity between the two equations is apparent. In the limit, as K -4 00, Eq. (32. 58) 
reduces to Eq. (32.59). 

For many years the hydrogen�iodine reaction had been the traditional example of 
opposing second-order reactions. Recent work by J. H. Sullivan indicates that the mechan
ism is not as simple as we have assumed here ; in fact, the mechanism now seems to be 
unresolved. For a discussion and references see R. M. Noyes, J. Chern. Phys. 48, 323 (1968). 

32 . 1 1 C O N S EC UTIVE R EACTI O N S  

When it is necessary for a reaction to proceed through several successive elementary steps 
before the product is formed, the rate of the reaction is determined by the rates of all these 
steps. If one of these reactions is much slower than any of the others, then the rate will 
depend on the rate of this single slowest step. The slow step is the rate-determining step. The 
situation is analogous to water flowing through a series of pipes of different diameters. 
The rate of delivery of the water will depend on the rate at which it can pass through the 
narrowest pipe. An apt illustration of this feature of consecutive reactions is offered by the 
Lindemann mechanism of activation for unimolecular decompositions. 

32 . 1 2 U N I M O lE C U lA R  D EC O M POSIT IO N S ; 
L I N D E M A N N M EC H A N I S M  

Before 1922 the existence of unimolecular decompositions posed a severe problem in 
interpretation. The unimolecular elementary step consists of the breaking of a molecule 
into fragments : 

A --------> Fragments. 

If this occurs, it does so because the energy content of the molecule is too large. Too much 
energy somehow gets into a particular vibrational degree of freedom ; this vibration then 
produces dissociation of the molecule into fragments. 

The molecules that have this excess energy decompose. If the decomposition is to 
continue, other molecules must gain an excess energy. How do the molecules acquire this 
extra energy? In 19 19, Perrin suggested that this energy was supplied by radiation, that is, 
by the absorption of light. This radiation hypothesis implies that in the absence of light 
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the reaction will not occur. Immediate experimental tests of this hypothesis proved it 
wrong, and the puzzle remained. It appeared that the molecules could not gain the needed 
energy by collisions with other molecules, since the collision rate depends on the square of 
the concentration ; this would make the reaction second order, whereas it is observed to be 
first order. 

In 1 922, Lindemann proposed a mechanism by which the molecules could be activated 
by collision and yet the reaction could, nonetheless, be first order. The activation of the 
molecule is by collision 

A + A � A* + A, 

where A is a normal molecule, and A * an activated molecule. The collision between two 
normal A molecules produces an activated molecule A *, which has an excess energy in the 
various vibrational degrees of freedom ; the remaining molecule is deficient in energy. 

Once the activated molecule is formed, it may suffer either of two fates : it may be 
deactivated by collision, 

A* + A � A + A, 

or it may decompose into products, 

A * � Products. 

The rate of disappearance of A is the rate of the last reaction : 

dCA - ---;[t = k2 cA* · (32.60) 

With this equation we are faced with the problem of expressing the concentration of an 
active species in terms of the concentration of normal species. We assume that, shortly after 
the reaction starts, a steady state is reached in which the concentration of the activated 
molecules does not change very much, so that (dCA,/dt) = o. This is the steady-state 
approximation. Since A * is formed in the first reaction and removed in the others, we have 

Using this equation we can express CA* in terms of CA , the concentration of the normal 
molecules, 

kici. CA' = . k- I CA + k2 
This value of CA* brings the rate law, Eq. (32.60), to the form 

k2 kI ci. 
k- I CA + k2 ' 

There are two important limiting forms of Eq. (32.61) .  

(32.61)  

Case 1 .  k- I CA � k2 . Suppose that the rate of decomposition, k2cA* , i s  extremely 
fast-so fast that as soon as the activated molecule is formed it falls apart. Then there is 
no time for a deactivating collision to occur, and the rate of deactivation is very small 
compared with the rate of decomposition. Then k- 1 CACA* � k2cA* ,  or k- I CA � k2 . 
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Hence the denominator k- 1CA + k2 :::::: k2 ' and Eq. (32 . 6 1) becomes 

dCA 2 - dt = k1 cA · (32.62) 

The rate of the reaction is equal to the rate at which the activated molecules are formed, 
since the activated molecule decomposes immediately. The kinetics are second order, 
since the collision is a second-order process. 

Case 2. k - 1 CA � k2 • If after activation there is an appreciable time lag before the mole
cule falls apart, then there is opportunity for the activated molecule to make a number 
of collisions that may deactivate it. If the time lag is long, then the rate of deactivation, 
k- 1 CACA* , is much greater than the rate of decomposition, k2cA* . This means that 
k- 1 CA � k2 ' and k- 1 CA + k2 :::::: L 1 CA . This brings Eq. (32.6 1) to the form 

_ d;; = k2 (kk:1)CA , (32.63) 

and the rate law is first order. The usual fate of an activated molecule is deactivation by 
collision. A very small fraction of the activated molecules decompose to yield products. 

In a gas-phase reaction, high pressures increase the number of collisions so that k - 1 CA 
is large and the rate is first order. The supply of activated molecules is adequate, and the 
rate at which they fall apart limits the rate of the reaction. At lower pressures the number of 
collisions decreases, k- 1CA is small, and the rate is second order. The rate then depends on 
the rate at which activated molecules are produced by collisions. 

The apparent first-order rate " constant " decreases at low pressures. Physically the 
decrease in value of the rate constant at lower pressures is a result of the decrease in 
number of activating collisions. If the pressure is increased by addition of an inert gas, the 
rate constant increases again in value, showing that the molecules can be activated by 
collision with a molecule of an inert gas as well as by collision with one of their own kind. 
Several first-order reactions have been investigated over a sufficiently wide range of pressure 
to confirm the general form of Eq. (32.61) . The Lindemann mechanism is accepted as the 
mechanism of activation of the molecule. 

32 . 1 3 C O M P L EX R EACTI O N S : 
T H E H Y D R O G E N-B R O M I N E  R EACTI O N  

The kinetic law for the hydrogen-bromine reaction is considerably more complicated than 
that for the hydrogen-iodine reaction. The stoichiometry is the same, 

H2 + Br 2 -----> 2, HEr, 

but the rate law established by M. Bodenstein and S. C. Lind in 1906 is expressed by the 
equation 

d[HBr J k[H2J [Br 2J 1/2 

dt 1 
+ 

m[HBrJ ' 
[Br2J 

(32.64) 

where k and m are constants, and we have used brackets to indicate the concentration ofthe 
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species. The appearance of the term [HBr]/[Br2] in the denominator implies that the 
presence of the product decreases the rate of the reaction ; the product acts as an inhibitor. 
However, the inhibition is less if the concentration of bromine is high. 

The expression in Eq. (32.64) was not explained until 1 9 19, when J. A. Christiansen, 
K. F. Herzfeld, and M. Polanyi independently proposed the correct mechanism. The 
mechanism consists of five elementary reactions : 

1) Br2 
k , ---> 2Br, 

2) Br + H2 
k2 --. HBr + H, 

3) H + Br2 
k3 ----+ HBr + Br, 

4) H + HBr � H2 + Br, 

5) 2 Br � Br2 · 

The HBr is formed in reactions (2) and (3) and removed in reaction (4), so we have for the 
rate of formation of HBr 

(32.65) 

The difficulty with this expression is that it involves the concentrations of H atoms and Br 
atoms, which are not readily measurable ; thus the equation is useless unless we can express 
the concentrations of the atoms in terms of the concentrations of the molecules, H2 , Br 2 , 
and HBr. Since the atom concentrations are, in any case, very small, it is assumed that a 
steady state is reached in which the concentration of the atoms does not change with time ; 
the atoms are removed at the same rate as they are formed. From the elementary reactions, 
the rates of formation of bromine atoms and of hydrogen atoms are 

d[H] = k2 [Br] [H2] - k3 [H] [Br2] - k4[H] [HBr] .  dt 

The steady-state conditions are d[Br]/dt = 0 and d[H]/dt = 0, so these equations 
become 

0 =  2k1 [Br2] - k2 [Br] [H2] + k3 [H] [Br2] + k4[H] [HBr] - 2ks [Br] 2 ; 

0 =  k2 [Br] [H2] - k3 [H] [Br2] - k4[H] [HBr] . 

By adding these two equations, we obtain 0 = 2k1 [Br2] - 2ks [Br] 2, which yields 

From the second equation, 

[Br] = (�J 1 /2 [Br2r/2 . (32.66) 

(32.67) 
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By using these values for [Br] and [H] in Eq. (32.65), we obtain, after collecting terms and 
dividing numerator and denominator by k3(Br2), 

2k2 (kk1
S
) 1 /2 [H2] [Br2r/2 

d[HBr] 
dt 

1 + k4[HBrJ 
k3 [Br2] 

(32.68) 

This equation has the same form as Eq. (32.64), the empirical equation of Bodenstein and 
Lind. (The integrated form of this equation has no particular utility.) 

There are several points of interest in this mechanism. First of all, the reaction is 
initiated by the dissociation of a bromine molecule into atoms. Once bromine atoms are 
formed, a single bromine atom can produce a large number of molecules of HBr through 
the sequence of reactions (2) and (3). These reactions form a chain in which an active species 
such as a Br or H atom is consumed, product is formed, and the active species regenerated. 
These reactions are chain-propagating reactions. Reaction (4) propagates the chain in the 
sense that the active species, H, is replaced by another active species, Br, but the product, 
HBr, is removed by this reaction, thus decreasing the net rate of formation of HBr. 
Reaction (4) is an example of an inhibiting reaction. The final reaction, (5), removes active 
species and therefore is a chain-terminating reaction. 

If we compare reactions (3) and (4), it is apparent that Br 2 and HBr are competing for 
the H atoms ; the success of HBr in this competition, determined by the relative rates of 
reactions (4) and (3), will determine the extent of the inhibition : 

(rate)4 k4[H] [HBr] k4[HBr] 
(rate) 3 k3 [H] [Br2] k3 [Br2] 

. 

This accounts for the form of the second term in the denominator of Eq. (32.68). 
Since [HBr] = 0 at t = 0, the initial rate of formation of HBr is given by 

[d[��r]l = 2k2(�:) 1 /2 [H2] 0 [Br2J612 . 

By plotting [HBr] versus t, we obtain the limiting value of the slope (d[HBr]jdt)o at t = O. 
By doing this for several different values of the initial concentrations [H2]0 and [Br 2] 0 , 
we can determine the constant k = 2k2(kdks) 1 /2 . 

32 . 1 4 F R E E - R A D I CA L  M EC H A N I S M S  

In 1929, F .  Paneth and W. Hofeditz detected the presence of free methyl radicals from the 
thermal decomposition of lead tetramethyl. The apparatus they used is shown in Fig. 32.4. 
Lead tetramethyl is a volatile liquid. After evacuating the apparatus, a stream of H2 under 
about 100 Pa pressure is passed over the liquid where it entrains the vapor ofPb(CH3)4 and 
carries it through the tube. The gases are removed by a high-speed vacuum pump at the 
other end. The furnace is at position M. After a short period, a lead mirror deposits in the 
tube at M, formed by the decomposition ofthe Pb(CH3)4 . If the furnace is moved upstream 
to position M', a new mirror forms at M', while the original mirror at M slowly disappears. 

This phenomenon can be explained by the fact that Pb(CH3)4 decomposes on heating 
to form lead and free methyl radicals : 

Pb(CH3)4 ----> Pb + 4 CH3 . 
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F i g u re 32 .4  Detect ion of  free rad ica ls .  

The lead deposits as a mirror on the wall of the tube. The methyl radicals are swept down 
the tube mixed in the stream of carrier gas. If the radicals find a mirror downstream, as at M, 
they can remove it by the reaction 

Pb + 4CH3 ---+ Pb(CH3k 

Following the discovery by Paneth, the technique was extensively developed, especially 
by F. o. Rice and his co-workers. 

In 1934, F. O. Rice and K. F. Herzfeld were able to show that the kinetic laws observed 
for many organic reactions could be interpreted on the basis of mechanisms involving free 
radicals. They showed that, although the mechanism might be complex, the kinetic law 
could be quite simple. The mechanisms proposed were also capable of predicting the 
products formed in the reaction. 

32. 1 4 . 1  The Deco mpos i t i o n  of Ethane  

For illustration, the Rice-Herzfeld mechanism for the decomposition of  ethane is 

1) CZH6 
k l 

---+ 2 CH3 , 

2) CH3 + CZH6 � CH4 + C2Hs , 

3) C2HS � C2H4 + H, 

4) H + C2H6 � Hz + CzHs , 

5) H + CzHs � CZH6 · 
Reactions (1) and (2) are required for initiation, (3) and (4) constitute the chain, and (5) is 
the termination step. The principal products are those that are formed in the chain, so that 
the overall reaction can be written as 

CZH6 ---+ C2H4 + Hz · 
A very small amount of CH4 is produced. 

The rate of disappearance of CZH6 is 

d[CzH6J - dt 
= kl [CzH6J + kz [CH3J [CZH6J + k4[HJ [CZH6J - ks [H] [CzHsJ . 

(32.69) 
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The steady-state conditions are : 

for CH3 , 

for H, 

Solution of the first equation yields 

(2kl ) [CH3] = k; '  
Addition of the three equations yields 0 = 2k1 [CzH6] - 2ks [H] [CzHs] , or 

Using this result in the last steady-state equation yields 

Z (kl) (kl k4) Z [CzHs] - k3 [CZH6] [CzHs] - k3 ks [CZH6] = 0, 

which must be solved for [CzHs] : 

(32.70) 

(32.71) 

Since kb the rate constant for the initiation step, i s  very small, the higher powers of i t  are 
negligible ; thus we have 

(32.72) 

Then the value of [H] is 

(32.7}) 

Combining Eq. (32.7 1) with Eq. (32.69) yields 

- d[C;�6] = {kz [CH3] + k4[H] } [CZH6J . (32.74) 

Using the values of [CH3] and [H] from Eqs. (32.70) and (32.73) in Eq. (32.74) reduces it to 

_ d[CzH6] = [2k (klk3 k4) 1 /Z] [C H ] dt 1 + ks z 6 , 
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or, neglecting the higher power of kl > 

_ 
d[C2H6J = (klk3 k4)

1 /2 [C H J dt ks 2 6 · (32.75) 

Equation (32.75) is the rate law. In spite of the complexity of the mechanism, the reaction is 
a first-order reaction. The rate constant is a composite ofthe rate constants of the individual 
elementary steps. 

The Rice-Herzfeld mechanisms usually yield simple rate laws ; the reaction orders 
predicted for various reactions are !, 1 , �, and 2. 

The rate of decomposition of organic compounds can often be increased by the 
addition of compounds such as Pb(CH 3)4 or Hg(CH3h ,  which introduce free radicals into 
the system. These compounds are said to sensitize the decomposition of the organic 
compound. In contrary fashion a compound such as nitric oxide combines with free 
radicals to remove them from the system. This inhibits the reaction by breaking the chains. 

32 . 1 5 T H E TE M P E RATU R E  D E P E N D E N C E  O F  T H E RATE 
C O N STA N T  F O R  A C O M P LEX R EACTI O N  

The rate constant of any chemical reaction depends on temperature through the Arrhenius 
equation, Eq. (32.48). For a complex reaction such as the thermal decomposition of ethane, 
in which, by Eq. (32.75), 

k = (kl�:k4r/2, 

the rate constant for each elementary reaction can be replaced by its value from the 
Arrhenius equation ; kl = Ai exp ( - EUR T), and so on. Then 

k = (Al�:A4) 
1 /2 
e- ( 1 /2 )(Ef + E! +El-E;)/RT. 

This is equivalent to the Arrhenius equation for the complex reaction 

so that, by comparison, we have 

(32.76) 

and 
(32.77) 

Therefore if we know the values of A and E* for each elementary step, the values of A and E* 
can be calculated for the reaction. For the ethane decomposition, Et = 350 kJ/mol, 
E� = 1 70 kJ Imol, Ei = 30 kJ Imol, and E� = O. The activation energy for the reaction 
should be 

E* = !C350 + 1 70 + 30) = 275 kJ/mol. 

The experimental values found for the activation energy are about 290 kJ/mol. The 
agreement between the experimental value and that predicted by the mechanism is quite 
reasonable. 



B ranch i n g  Cha ins ; Explosions 825 

* 32 . 1 6 B RA N C H I N G  C H AI N S ; EX P LO S I O N S  

A highly exothermic reaction which goes at a rate that intrinsically is only moderate may, 
nonetheless, explode. If the heat liberated is not dissipated, the temperature rises rapidly 
and the rate increases very rapidly. The ultimate result is a thermal explosion. 

Another type of explosion is due to chain branching. In the treatment of chain reactions 
we employed the steady-state assumption, and balanced the rate of production of active 
species against their rate of destruction. In the cases described so far, this treatment yielded 
values for the concentration of radicals that were finite and small in all circumstances. Two 
things are clear about the steady-state assumption. First, it is obvious that it cannot be 
exactly correct, and second, it must be very nearly correct. If it were not very nearly correct, 
then the concentration of active species would change appreciably as time passed. If the 
concentration of active species decreased appreciably, the reaction would slow down and 
come to a halt before reaching the equilibrium position. On the other hand, if the con
centration of active species increased appreciably with time, the rate of the reaction would 
increase very rapidly. This in turn would further increase the concentration of active species. 
The reaction would go at an explosive rate. In fact, explosions do occur if active species 
such as atoms or radicals are produced more quickly than they can be removed. 

If in some elementary reaction an active species reacts to produce more than one active 
species, then the chain is said to branch. For example, 

H + Oz -----+ OH + O.  

In this reaction the H atom is  destroyed, but two active species, OH and 0,  which can 
propagate the chain, are generated. Since one active species produces two, there are 
circumstances in which the destruction cannot keep up with the production. The con
centration of radicals increases rapidly, thus producing an explosion. 

The mechanism of the hydrogen-oxygen reaction is probably not fully understood 
even today. Much of the modern work has been done by C. N. Hinschelwood and his co
workers. The steps in the chain reaction are 

1) 

2) 
3) 
4) 

Hz 

H + Oz 
0 +  Hz 

OH + Hz 

-----+ 

-----+ 

-----+ 

-----+ 

2 H  Initiation, 

OH + O} 
OH + H 

Branching, 

HzO + H Propagation, 

The reactions that multiply radicals or atoms must be balanced by processes that destroy 
them. At very low pressures the radicals diffuse quickly to the walls of the vesssel and are 
destroyed at the surface. The destruction reactions can be written 

H -----+ destruction at the surface, 

OH -----+ destruction at the surface, 

o -----+ destruction at the surface. 

If the pressure is low, the radicals reach the surface quickly and are destroyed. The pro
duction rate and destruction rate can balance and the reaction goes smoothly. The rate of 
these destruction reactions depends very much on the size and shape of the reaction vessel, 
of course. 

As the pressure is increased, the branching rate and propagation rate increase, but the 
higher pressure slows the rate of diffusion of the radicals to the surface so the destruction 
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F i g u re 32.5 Explosion l i m its. 

rate falls .  Above a certain critical pressure, the lower explosion limit, it is not possible to 
maintain a steady concentration of atoms and radicals ; the concentration of active species 
increases rapidly with time, which increases the rate of the reaction enormously. The system 
explodes ; the lower explosion limit depends on the size and shape of the containing vessel. 

At higher pressures, three-body collisions that can remove the radicals become more 
frequent. The reaction, 

H + O2 + M -----* H02 , 

where M is O2 or H2 or a foreign gas, competes with the branching reactions . Since the 
species H02 does not contribute to the reaction, radicals are effectively removed and at 
high enough pressures a balance between radical production and destruction can be 
established. Above a second critical pressure, the upper explosion limit, the reaction goes 
smoothly rather than explosively. There is a third explosion limit at high pressures above 
which the reaction again goes explosively. 

The rate of the reaction as a function of pressure is shown schematically in Fig. 32.5. 
The rate is very slow at pressures below P 1 0 the lower explosion limit. Between P 1 and P2 the 
reaction velocity is infinite, or explosive. Above P2 , the upper explosion limit, the reaction 
goes smoothly, the rate increasing with pressure. Above P3 ' the third explosion limit, the 
reaction is explosive. 

The explosion limits depend on temperature. Below about 460 DC explosion does not 
occur in the low-pressure region. 

* 32 . 1 7 N U C LEAR F I S S I O N ;  T H E N U C LEAR R EACTO R 
A N D T H E " ATO M I C " B O M B  

The explosion of the " atomic " bomb depends on the same general kinetic principles as the 
H2 + O2 explosion. The situation in the bomb is somewhat simpler. 

If the nucleus of 2 3 5U absorbs a thermal neutron, the nucleus splits into two fragments 
of unequal mass and releases several neutrons. If we add the rest masses ofthe products and 
compare this sum with the rest masses of the original 2 3 5U and the neutron, there is a 
discrepancy. The products have less mass than do the reactants. The difference in mass, 
11m, is equivalent to an amount of energy by the Einstein equation E = (I1m)c2, where c is 
the velocity oflight. This is the energy released in the reaction. Only a small fraction ( < 1 % )  
of the total mass is converted to energy, but the equivalence factor c2 is so large that the 
energy released is enormous. 
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n + 2 3 5U � X + Y + em. 

The atoms X and Y are the fission products, IX is the number of neutrons released, and is, on 
the average, between 2 and 3. This is the same type of chain branching reaction as was 
encountered in the hydrogen-oxygen reaction. Here the action of one neutron can produce 
several. If the size and shape of the uranium is such that most of the neutrons escape before 
they hit another uranium nucleus, the reaction cannot sustain itself. However, in a large 
chunk of 2 3 5U, the neutrons hit other uranium nuclei before escape is possible, and the 
number of neutrons multiplies rapidly, thus producing an explosive reaction. The awe
inspiring appearance of the explosion of the bomb results from the enormous amount of 
energy which is released, this energy being, gram for gram, some 10 to 50 million times 
greater than that released in any chemical reaction. 

The fission reaction occurs in a controlled way in the nuclear pile. Here rods of 
ordinary 2 3 8U which has been enriched with 2 3 5U are built into a structure with a moder
ator such as graphite or D20. The neutrons that are emitted at high speeds from the fission 
of 2 3 5U are slowed to thermal speeds by the moderator. The thermal neutrons suffer three 
important fates : some continue the chain to produce the fission of more 2 3 5U, others are 
captured by 2 3 8U, and some are absorbed by the control rods of the reactor. The neutron 
flux in the reactor is monitored constantly. Moving the absorbing control rods into or out 
ofthe pile reduces or increases the neutron flux. In this way sufficient neutrons are permitted 
to maintain the chain reaction at a smooth rate, but enough are absorbed to prevent an 
explosion. 

The 2 3 8U absorbs a thermal neutron and by radioactive decay yields neptunium and 
plutonium. The sequence is 

2 ��U + 6n � 2��U 
2� �Np 
2��pU 

t1 /2 = 23 min 

/ 1 /2 = 2.3 day 

/ ' /2  = 24,000 yr 

) 

) 

2��Np + p- ,  
2 3 9pU + p-94 , 
2��U + IX. 

The plutonium produced can contribute to the chain reaction since it is fissionable by 
thermal neutrons. 

32 . 1 8 R EACTI O N S  I N  S O LU TI O N  

The empirical rate laws found for reactions in solution are the same as those for reactions 
in the gas phase. An intriguing fact about reactions that can be studied in both solution and 
the gas phase is that quite often the mechanism is the same, and the rate constant has the 
same value in both situations. This indicates that in such reactions the solvent plays no 
part, but serves only as a medium to separate the reactants and products. Reactions in 
solution may well be faster than in the gas phase because of our tendency to use compara
tively concentrated solutions. For example, in a gas at 1 atm pressure, the molar concentra
tion is about 10- 4 moljL. In making up solutions, our first tendency would be to make up 
a 0. 1 or 0.0 1  molar solution. The reaction would go faster in solution simply because of 
the increased concentration, not because of a different rate constant. In those cases in 
which the solvent does not affect the rate constant, it is found that the frequency factors 
and activation energy have essentially the same values in solution as in the gas phase. 
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* 32 . 1 9 R E LAXATI O N  M ET H O D S  

Since 1953 , Manfred Eigen and his colleagues have invented and developed several power
ful techniques for the measurement of the rates of very fast reactions, reactions that are 
effectively complete within a time period of less than about 10 Ilsec. These techniques are 
called relaxation techniques. If we attempt to measure the rate of a very fast reaction by 
traditional methods, it is clear that the time required to mix the reactants will be a limiting 
factor. Many devices have been designed to produce rapid mixing of reactants. The best of 
these cannot mix two solutions in a time shorter than a few hundred microseconds. Any 
method requiring mixing of the reactants cannot succeed with reactions that take place in 
times shorter than the mixing time. The relaxation methods avoid the mixing problem 
completely. 

Suppose that in the chemical reaction of interest we are able to monitor the con
centration of a colored species by passing light of the appropriate frequency through the 
mixture and observing the intensity of the transmitted beam. Consider a chemical reaction 
at equilibrium and suppose that the species we are monitoring has the concentration c 
(Fig. 32.6). Suppose that at time to one of the parameters on which the equilibrium depends 
(for example, temperature) is instantaneously brought to some new value. Then the con
centration of the species we are observing must achieve some new equilibrium value c. 
Since chemical reactions occur at a finite rate, the concentration of the species will not 
change instantaneously to the new value, but will follow the course indicated by the dashed 
curve in Fig. 32.6. The system, having been perturbed from its old equilibrium position, 
relaxes to its new equilibrium condition. As we will show, if the difference in concentration 
between the two states is not too large, then the curve in Fig. 32.6 is a simple exponential 
function, characterized by a single constant, the relaxation time T. The relaxation time is the 
time required for the difference in concentration between the two states to decay to lie of 
its initial value. 

The apparatus for the " temperature-jump " method is shown schematically in Fig. 
32.7. A high-voltage power supply charges a capacitor, C. At a certain voltage the spark 
gap, G, breaks down and the capacitor discharges, sending a heavy current through the 
cell that contains the reactive system at equilibrium in a conductive aqueous solution. The 
passage of the current raises the temperature of the system about 10 °C in a few micro
seconds. In the following time interval the concentration of the absorbing species adjusts to 

c 

T 

F i g u re 32.6 Concentrat ion change after i m pu lse. 
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F i g u re 32.7 Temperatu re-j u m p  apparatus.  

the equilibrium value appropriate to the higher temperature. This changes the intensity of 
the light beam emerging from the cell into the detecting photomultiplier tube, PM. The 
output of the photomultiplier tube is displayed on the vertical axis of an oscilloscope ; the 
horizontal sweep of the oscilloscope is triggered by the spark discharge. In this way the 
concentration versus time curve is displayed on the oscilloscope screen. 

The relaxation methods have the advantage that the mathematical interpretation is 
exceptionally simple. This simplicity is a consequence of arranging matters so thaJ the 
displacement from the original equilibrium position is small. 

Consider the elementary reaction 

A + B � C. 

The rate equation for this reaction can be written 

d(�/V) � = kf cA CB + ( - kr cc), (32.78) 

in which we have expressed the net rate as the sum of the forward rate (kf cA CB) and the 
reverse rate ( - kr cc). 1t is convenient for graphical representation to give the reverse rate a 
negative sign here. The mole numbers and the concentrations of each species are expressed 
in terms of the advancement of the reaction, � :  

nc = ng + �. 

° � 
Cc = Cc + V · 

The mole numbers, nO, and the concentrations, co, are the values of these quantities at 
� = o. When we use these values for the concentrations, Eq. (32.78) becomes 

From this equation it is apparent that the forward rate is a quadratic function of �; 
while the reverse rate is a linear function of � ;  these rates are shown as functions of � in 
Fig. 32.8 . The sum of the two functions is the net rate, indicated by the dashed line in 
Fig. 32.8 . 

At �, the equilibrium value of the advancement, the net rate is zero, and we have 

(32.79) 
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Reactants 
F i g u re 32.8 Forward, reverse, 

Products and net rates of react ion .  

in which the bar over the concentration indicates the equilibrium value. The exchange rate, 
r, is the rate of either the forward or the reverse reaction (without the minus sign) at 
equilibrium. Equation (32.79) can be rearranged to the form 

K = kJ = Cc 
kr CACB ' (32.80) 

which is the equilibrium relation for the elementary reaction ; K is the equilibrium 
constant. 

Although the detailed shapes of the curves will depend on the order of the reaction, the 
forward rate, the reverse rate, and the net rate of any elementary reaction will be related in 
the general way indicated in Fig. 32.8 .  Most importantly, it is apparent that the net rate 
can be approximated by a straight line over a narrow range near the equilibrium position. 
Let the net rate, (1/V) (d�/dt) = v. Then we expand v in a Taylor series about the equilibrium 
value of � :  

. 

v = v� + 
(dV) 

(� _ �). 
d� � 

However, v� is the net rate at equilibrium, which is zero. Introducing the definition of v 
and multiplying by the volume, the equation becomes 

d� = v(dV) 
(� _ �). 

dt d� � (32. 8 1 )  

We note that V(dv/d�� has the dimensions of  a reciprocal time, and depends only upon �, 
that is, only upon equilibrium values of concentration, not upon � or t. We define the 
constant "C, the relaxation time, by 

(32.82) 
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The minus sign is introduced to compensate the negative sign of the derivative ; see 
Fig. 32.8 . 

The introduction of r brings the rate equation, Eq. (32.8 1), to the form 

(32.83) 

in which r is independent of � or t. This equation has the form of a first-order law and 
integrates immediately to 

(32.84) 
in which (� - ()o is the initial displacement (at t = 0) from equilibrium. Since the dis
placement of the concentration 01 any species from its equilibrium value is �Ci = Ci - ci , 
and since Ci = c? + (v;/V)�, where Vi is the stoichiometric coefficient of the species in the 
reaction, we obtain directly �Ci = (v;/V) (� - () . Thus the displacement of the concentra
tion of any species from the equilibrium value is proportional to the displacement of the 
advancement. Consequently, the time dependence of the concentration of any species is 
given by the same relation as in Eq. (32.84). 

(32.85) 
The pattern that appears on the oscilloscope screen in the temperature-jump experiment is 
therefore a simple exponential one, provided only one reaction is involved. The value of r 

can be obtained by measuring the horizontal distance (time axis) required for the value of 
the vertical displacement to fall to lie = 0.3679 of its initial value (Fig. 32.9). 

It must be emphasized that Eqs. (32.8 1) through (32.85) are quite general ; they do not 
depend on the order of the reaction and most particularly they do not depend on the 
example we chose for illustration. Equation (32.85) is a typical example of a relaxation law. 
It implies that any small perturbation from equilibrium in a chemical system disappears 
exponentially with time. If there are several elementary steps in the mechanism of a reaction 
then there will be several relaxation times. In this event, the expression for Ci - Ci is a sum 
of exponential terms such as that in Eq. (32.85). There is one such term for each relaxation 
time. The coefficient of each term and the relaxation times are determined by a computer 
fit of the data. 

/).c 

(M)o 

1 

0 .3679 

r 

F i g u re 32.9 The relaxation t ime .  
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Tab le  32.1 
Rate constants of some very rap id  react ions at 25 'C 

Reaction 

H+ + OH- ¢ H2O 1 .4 X 101 1  
H +  + F - ¢ HF 1 .0 x 101 1  
H +  + HC03 ¢ H2C03 4 .7 X 1 01 0 
OH- + NHt ¢ NH3 + H20 (22 °C) 3.4 x 1 01 0 
OH- + HC03 ¢ CO� - + HzO (20 0c) � 6 .0 x 1 09 

2 . 5  X 1 0 - 5  
7 X 1 07 

� 8 X 1 06 
6 X 1 05 

From M. Eigen and L. DeMaeyer in Techniques of Organic Chemistry, Vol. VIII, part II. 
S .  L. Friess, E. S.  Lewis and A. Weissburger, eds. New York : Interscience, 1 963.  

We can evaluate the relaxation time for the example above by evaluating the derivative, 
dv/d!;, at !; = .;. Since v = kJCA CB - kr cc , then 

dv dCB dCA dcc 
d!; 

= kJCA d[ + kJ CB d[ - kr d[' 
But dCA/d!; = - l/V = dCB/d!;, and dcc/d!; = 1/V. Thus, at !; = .;, this becomes 

Then, by the definition of T, Eq. (32.82), 
1 
- = kicA + cB) + kr · 
T 

(32.86) 

By making measurements on the system with different values of the equilibrium 
concentrations, we can evaluate both k J and kr • Knowledge of the equilibrium constant, in 
view of Eq. (32.80), provides additional information about k J and kr . 

The relaxation method is not restricted to the study of very fast reactions. With 
appropriate choices of sensing and recording devices, we could use it to study the rate of 
any reaction. The value of the relaxation technique for the study of very fast reactions lies 
in the fact that ordinarily it is the only technique available for measuring the rate of these 
reactions . 

A few rate constants that have been measured by relaxation techniques are given in 
Table 32. 1 .  It should be noted that the rate constant k J for the combination of two oppositely 
charged ions is very large. This process is always very fast since it is limited only by the rate 
at which the two ions can diffuse through the medium and get close enough to each other to 
combine. It should be mentioned that the reaction, H+ + OH- -> H20, has the largest 
known second-order rate constant. 

* 32 . 20 CATA LYS I S  

A catalyst is a substance that increases the rate of a reaction and can itself be recovered 
unchanged at the end of the reaction. If a substance slows a reaction, it is called an inhibitor 
or a negative catalyst. 

As we have seen, the rate of a reaction is determined by rates of the several reactions in 
the mechanism. The general function of a catalyst is simply to provide an additional 
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V o  

� 
A B 

� 
Rate = Vo Rate = Vo + Vc 

F i g u re 32. 1 0 ( a )  U ncata lyzed react ion .  (b )  Catalyzed react ion .  

mechanism by which reactants can be converted to products. This alternative mechanism 
has a lower activation energy than that for the mechanism in the absence of a catalyst, so 
that the catalyzed reaction is faster. Consider reactants A going to products B by an un
catalyzed mechanism at a rate Vo (Fig. 32. lOa). If an additional mechanism is provided by 
a catalyst, Fig. 32. 1O(b), so that B is formed at a rate Vc by the catalytic mechanism, then 
the total rate of formation of B is the sum of the rates of formation by each path. 

For a catalyzed reaction, we have 

(32. 87) 

In the absence of a catalyst the reaction is often immeasurably slow, Vo = 0 ;  then, v = Vc . 
The rate Vc is usually proportional to the concentration of the catalyst. The analogy to an 
electrical network of parallel resistances (Fig. 32. 1 1a) or to parallel pipes carrying a fluid 
(Fig. 32. 1 1b) is apparent. In each case the flow through the network is the sum of that 
passing through each branch. 

For a catalyst to function in this way, the catalyst must enter into chemical combina
tion either with one or more of the reactants or at least with one of the intermediate species 
involved. Since it must be regenerated after a sequence of reactions, the catalyst is free to act 
again and again. As a result, a little catalyst produces a great deal of reaction, just as a 
minute concentration of radicals in a chain reaction produces a lot of product. 

The action of inhibitors is not so simply described, since they may act in a number of 
different ways. An inhibitor may slow a radical chain reaction by combining with the 
radicals ; nitric oxide functions in this way. In other cases, the inhibitor is consumed by 
combination with one of the reactants and only delays the reaction until it is used up. Some 
inhibitors may simply " poison " a trace of catalyst whose presence is unsuspected. 

The simplest mechanism by which a catalyst can act is given by the reactions 

S + C SC 

SC p + c. 

V = V1 + V2 

(a) (b) 

F i g u re 32.1 1 E lectr ica l  and  hydrau l i c  ana logs of cata lyzed reaction .  



834 Chemica l  K inet ics I 

The reactant S is called the substrate ; C is the catalyst, P is the product, and SC is an inter
mediate compound. The rate ofthe reaction per unit volume, v, is equal to the rate offorma
tion of the product in unit volume : 

1 d�z d[PJ V = - - = -- . 
V dt dt 

Since the product is formed in the second reaction, the rate law is 

v = kz [SC] 

The steady-state condition for the intermediate is 

d[SCJ -- = 0 = ki [SJ [CJ - L i [SCJ - kz [SC] . 
dt 

Dividing the equation by ki and solving for [SC] , we obtain 

in which the composite constant, Km , is defined by 

L i  + kz Km = 
ki 

. 

Using this steady-state value of [SCJ in the rate law, we obtain 

kz [SJ [CJ v = -=-==--=-=--=. Km 

(32.88) 

(32.89) 

(32.90) 

(32.91 ) 

(32.92) 

This expression illustrates the usual proportionality of the rate to the concentration of 
catalyst. 

Equation (32.92) is very cumbersome if we attempt to use it over the entire course of the 
reaction. Therefore we consider the behavior of the rate expression only in the initial 
stage of the reaction. We can write the concentrations of all the species in terms of the 
advancements per unit volume of the two reactions : Yi = �dV and Yz = �z/V. Then 

[SJ = [SJ o  - Yi 

[C] = [C] o - Yi + Yz 

eSC] = Y1 - Yz 

[PJ = Yz 

in which [SJ o  and [CJ o  are the initial concentrations of substrate and catalyst, respectively. 
By adding the first, third, and fourth of these relations, we get 

[SJ + eSC] + [PJ = [SJ o ; 

by adding the second and third, 

[C] + esC] = [c] o ·  

Solving these equations for [SJ and [CJ yields 

[SJ = [SJ o  - eSC] - [PJ , 

[C] = [C] o - [SC] . 
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Using these in the steady-state expression, Eq. (32.89), recognizing that in the initial stage, 
[PJ = 0, we obtain 

o = { [SJ o  - eSC] } {[CJ o  - esC] } - Km[SC] 
or 

o = [SJ o [CJ o  - {[SJ o  + [CJo  + Km} eSC] + [SCY 

This expression is quadratic in [SCJ ; however, the concentration of SC is limited by which 
of S or C is present in the smaller amount. We always arrange conditions so that either [SJ 
or [CJ is present in much lower concentration than the other ; thus the term in [SCJ 2 is 
always negligible. We solve the resulting linear equation for [SC] : 

eSC] = [SJ o [CJ o  
[SJ o  + [CJo  + Km 

(32.93) 

Using this value of eSC] in the rate law, Eq. (32.88), we obtain for the initial rate, Vo , 

k2 [SJ o [C] 0 Vo = . 
[SJ o  + [CJ o  + Km 

(32.94) 

Two limiting cases of Eq. (32.94) are important. 

Case 1. [CJ o  � [S] . In this case, [CJ o  is dropped from the denominator and we have 

Note that the initial rate is proportional to the catalyst concentration. 
If we invert Eq. (32.95), 

� = _1_ + (�) _1_ 
Vo k2 [CJ o  k2 [C] 0 [SJ o ' 

(32.95) 

(32.96) 

A plot of I/vo against 1/[8J o  is linear and enables us to calculate k2 [C] 0 and Km from the 
intercept and slope. 

The dependence of the initial rate on [SJ o  is interesting. If [SJ o  � Km , then 

and the rate is first order in [SJ o : 

where 

- k2 [SJ o[C]0 - k [SJ Vo - K - cat 0 
m 

k = k2 [C]0 = k [CJ . 
cat K C 0 , 

m 
the constant kc is called the catalytic coefficient for the catalyst C. 

However, if [SJ o  � Km , then 

[SJ o  + Km � [SJ o  

and the rate is zero order in [SJ 0 , 

(32.97) 

(32.98) 
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[S) o 

F i g u re 32.1 2 I n it i a l  rate versus i n it ia l  
concentrat ion of  substrate. 

The initial rate as a function of [SJ o  is shown in Fig. 32. 12 .  The limiting value of the 
rate is a result of the limited amount of catalyst present. The catalyst is needed to produce 
the reactive compound sc. As soon as the concentration of S reaches the point where 
essentially all of the catalyst is found in the complex SC, then further increase in [SJ 
produces no change in the initial rate. 

Case 2. [SJ o  � [CJ o. In this case Eq. (32 .94) becomes 

k2 [SJ o [CJ o  
Vo = -::---,--'---------'-[CJ o  + Km 

(32.99) 

The reaction is always first order in [SJ o  in this case, but may be first order or zero order 
in [CJ o , depending on the value of [CJ o . This case is not usually as convenient experi
mentally as Case 1 .  

* 32 . 2 1  E N ZY M E CATA LYSI S  

Enzymes are proteirt molecules that catalyze the myriads of chemical reactions required for 
a living organism to function. The most remarkable feature of enzyme catalysis is the 
specificity of the enzyme to a particular reaction. For example, urease catalyzes the hydro
lysis of urea, 

(NH2hCO + H20 -----f CO2 + 2 NH3 , 

and no other reaction. Consequently, there are nearly as many enzymes as there are 
chemical reactions occurring in the organism. Not all enzymes are restricted to one reac
tion. Some will catalyze a class of reactions ; for example, phosphatases catalyze the 
hydrolysis of many different phosphate esters. 

The specificity of the enzyme led to the postulate of a " lock-and-key" type of me chan
ism. The substrate molecule, by combining in a special way with the active site on the 
enzyme, is activated for the reaction that it is to undergo. The active' site on an enzyme may 
consist of more than one " site " on the protein molecule ; one site may attach to one part of 
the substrate molecule, while another site binds another part of the substrate molecule. 
The lock-and-key model seems to be generally correct, but the details of the action are 
different for different enzymes. 

The simplest enzyme mechanism is the same as the simple catalytic mechanism 



described in Section 32.23 ; namely, 

E + S 

ES k2 ---+ 

ES 

P + E, 

Enzyme Catalysis 837 

where E is the enzyme catalyst. Therefore we can take the result in Eq. (32.95) for the rate of 
reaction : 

k2 [E]0 [S] 0 Vo = 
[S] o  + Km · (32. 100) 

In this context the composite constant Km is called the Michaelis constant and the rate 
law, Eq. (32. 100) is called the Michae1is-Menten law. Here, again, we note that as [S] o 
becomes very large the rate approaches a limiting value, Vmax ; 

lim Vo == k2 [E] 0 = Vmax · [8]0-+ co 

When we use this notation for k2 [E]0 , Eq. (32. 100) becomes 

Vmax[S] 0 Vo = . 

[S] o + Km 
Inverting both sides of this equation yields 

1 1 (Km ) 1 
Vo 

= 
Vmax 

+ vm�x [S]o · 

(32. 101) 

(32. 102) 

(32. 103) 

This is the Lineweaver-Burk equation ; a plot of (l/vo) versus l/[S] o , a Lineweaver-Burk 
plot, yields a straight line with intercept equal to l/vmax and slope equal to Km/vmax 
(Fig. 32. 1 3). 

Since Vmax = k2 [E] 0 , if we know [E]o we can calculate k2 from Vmax . The constant, k2 ' 
is called the turnover number of the enzyme. The turnover number is the number of mole-

1 
va 

1 

Slope = Km 
V max 

1 
[ S l o 

F i g u re 32 . 1 3 L ineweaver- B u rk p l ot .  
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F i g u re 32.1 4 Dependence of 
enzyme activity on p H .  

cules converted in  unit time by  one molecule of  enzyme. Typical values of  kz are 100 to  1000 
per second, with some as large as 105 to 106 per second. 

The activity of an enzyme generally passes through a maximum at a particular pH. 
This can be interpreted by assuming that there are three forms of the enzyme in equilibrium, 

EHz � EH � E, 

of which only EH can combine with substrate to yield an intermediate, EHS, that can 
react to form products. The other intermediates EHzS and ES do not form products. Since 
the concentration of EH passes through a maximum at a particular pH, the activity of the 
enzyme has a maximum also (Fig. 32. 14). 

* 32 . 22 AC I D-BAS E CATA LYS I S  

There are many chemical reactions that are catalyzed by acids o r  bases, o r  by both. The 
most common acid catalyst in water solution is the hydronium ion and the most common 
base is hydroxyl ion. However, some reactions are catalyzed by any acid or by any base. If 
any acid catalyzes the reaction, the reaction is said to be subject to general acid catalysis. 
Similarly, general base catalysis refers to catalysis by any base. If only hydronium or 
hydroxyl ions are effective, the phenomenon is called specific acid or base catalysis. 

A classical example of specific acid-base catalysis is the hydrolysis of esters . The 
hydrolysis is catalyzed by H30 + and OH- but not by other acids or bases. The rate of 
hydrolysis in the absence of acid or base is extremely slow. 

The mechanism of acid hydrolysis of an ester may be illustrated as follows : 

H H H 
I I I H 2 O  0 + O - H  0 O - H  0 - O-H 

I I  I I I  I + 
R-C-O H ---? R-C- O + -H ---? R-C- O + - H  ---? RCOOH 

I I I I + 
H - O  R' H-O R' H - O  R '  R 'OH I I 

H O- H H O-H H -O + -H + 

I I I H 3 0 +  
H H H 



The base-catalyzed reaction has the meGhanism 

O - H  O -H I I 
0 H 0 - H I I  I 

R - C - O  -----> R-C-o --c-> I I I 
H - O - R' H-O R' 

The rate of the reaction is 

- O- H  
0 - H I I 

R - C- O +  I I 
H - O  R '  

Quest ions 839 

- OH 
+ 

------> RCOOH 
+ 

R'OH 

(32. 104) 

in which kH+ and kOH - are the catalytic coefficients for H + and OH- ,  respectively. 
The concentration of water does not appear in the rate law, since it is effectively 

constant during the course of the reaction in aqueous solution. Because of the relation 
[H +] [OH-] = Kw , the rate constant k = kH+ [H +] + kOH- [OH-] has a minimum at a 
pH that depends on Kw , kH + , and kos - o The dependence of logl o k on pH is shown 
schematically in Fig. 32. 1 5. 

pH 

QU ESTI O N S  

F i g u re 32. 1 5 Logar i thm of the 
rate constant versus p H  for a 
react ion cata lyzed by H+ and  
O W . 

32.1 Describe the application of the isolation method to determine the rate law, Eq. (32 .37) .  
32.2 What i s  a " pseudo-first-order " rate constant? How do  its dimensions differ from those o f  a 

second-order rate constant? 
32.3 Describe how the activation energy of the reaction in Problem 32.2 1  could be determined by 

appropriate measurements of concentration, time, and temperature. 
32.4 Discuss how the idea of " rate-limiting step " applies in the (a) low-pressure and (b) high-pressure 

regions of unimolecular reactions . 
32.5 Give several examples of the distinction between the " order " and the "molecularity " (uni

molecular, bimolecular, and so on) of reactions. 
32.6 What is the steady-state approximation? Use the Lindemann mechanism example to discuss 

its validity in terms of opposing gain and loss mechanisms for A * .  
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32.7 Why are chain mechanisms so common when species with unpaired electrons (such as H, Rr, 
CH3) are generated in an initiation step ? 

32.8 Apply the chemical relaxation Eq. (32.82) to the reaction A :;;:::: B ; Prob. 32.38a. Why does the 
relaxation time involve the sum of the forward and reverse rate constants ? 

32.9 Discuss the similarities and differences between the Lindemann rate law, Eq. (32 .6 1 ) ,  and the 
Case 1 catalysis rate law, Eq. (32 .95) . 

32.10 Sketch and explain the variation of the logarithm of the rate constant with pH for specific acid 
hydrolysis of an ester. 

P R O B LE M S  

32. 1  Consider the decomposition of cyc10butane at 438 °C 

C4HS ----'> 2 C2H4 · 

The. rate is to be measured by observing the pressure change in a constant volume system ; 
assume that the gas mixture is ideal . 

a) Express the rate of reaction d(I;/V)/dt, in terms of dp/dt. 
b) Let poo be the pressure in the system after the C4HS is completely decomposed (at t = 00). If 

the reaction is first order in the concentration of C4Hs , derive the relation between the 
pressure and time . What function of pressure should be plotted against time to determine the 
rate constant ? 

c) If the rate constant is 2 .48 x 1 0 - 4 s - 1 , calculate the half-life, and the time required for 98 % 
of the C4HS to decompose . 

d) What will the value of pJpoo be after 2 .0 hours ? 
32.2 The bleaching of bromophenol blue (BPB) by OH- can be followed by measuring the absor

bance at a particular wavelength. Note that A = dc, where [ is the molar absorptivity ; I is the 
length of the cell ; c is the concentration of the absorbing species. The reaction is 

BPB + OH- ----'> BPBOH- .  

The product does not absorb at the wavelength used . 
a) Express the rate of reaction per unit volume in terms of the change of absorbance with time, 

dAJdt. 
b) If Ao is the absorbance of the solution at t = 0, derive the relation between A and t. What 

quantity should be plotted against time to determine the rate constant ? Assume that the 
reaction is first order with respect to each of the reactants and that they are mixed in the 
stoichiometric ratio .  

32.3 a) Consider a reaction, A -> Products , which is one-half order with respect to A . Integrate the 
rate equation and decide what function should be plotted from the data to determine the rate 
constant . 

b) Repeat the calculation in (a) for a reaction that is three-halves order and nth order. 
c) Derive the relation between the half-life, the rate constant, and the initial concentration of 

A for an nth-order reaction. 
32.4 A certain reaction is first order ; after 540 s ,  32 .5  % of the reactant remains . 

a) Calculate the rate constant for the reaction. 
b) What length of time would be required for 25 % of the reactant to be decomposed ? 

32.5 The half-life of a first-order reaction is 30 min. 
a) Calculate the rate constant of the reaction. 
b) What fraction of the reactant remains after 70 min ? 
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32.6 At 25 DC the half-life for the decomposition of N20s is 2 .05 X 1 04 s and is independent of the 
initial concentration of N20S ' 
a) What is the order of the reaction ? 
b) What length of time is required for 80 % of the N20S to decompose ? 

32.7 The gaseous reaction, A2 -+ 2A, is first order in A2 . After 751 seconds, 64.7 % of A2 remains 
undecomposed. Calculate 
a) the half-life ; 
b) the length of time required to decompose 90 % of A2 . 

32.8 Copper-64 emits a fJ-particle . The half-life is 12 . 8  hr. At the time you received a sample of this 
radioactive isotope it had a certain initial activity (disintegrations/min) . To do the experiment 
you have in mind, you have calculated that the activity must not go below 2 % of the initial value. 
How much time do you have to complete your experiment ? 

32.9 Zinc-65 has a half-life of 245 days . 

a) What percentage of the original activity remains after 1 00 days ? 
b) How much time is required for the activity to decrease to 5 % ofthe initial activity ? 

32.10 The half-life of 2 3 8U is 4 .5 X 1 09 yr. How many disintegrations would occur in one minute in 
a 1 0  mg sample of 2 3 8U?  

32.1 1  Uranium-238 undergoes radioactive decay through a series o f  steps, ultimately producing 
lead-206. In a certain rock there are 0 .228 g of 206Pb per gram of 2 3 8u. If we assume that all 
of the 206Pb had its origin in the 2 3 8U, how much time has elapsed since the rock was first 
formed ?  The decay constant for 2 3 8U is 1 . 54 X 1 0 - 1 0 yr - 1 ; this isotope has the longest life 
in the series of radioactive elements that finally produce the 2 06Pb. 

32.12 Carbon-14 is radioactive with a half-life of 5760 years . Cosmic radiation in the upper atmos
phere synthesizes 1 4C which balances the loss through radioactive decay. Living matter main
tains a level of 14C that produces 1 5 . 3  disintegrations per minute for each gram of carbon. Dead 
organisms no longer exchange carbon with CO2 in the atmosphere, so that the amount of 1 4C 
in dead material decreases with time due to the,decay. A 0 .402 g sample of carbon from wheat 
taken from an Egyptian excavation exhibited 3 . 0  disintegrations per minute . How long ago did 
the wheat die ? 

32.13  A 1 mL sample of a bacterial culture at 37 DC is taken, and diluted to 1 0  L. A 1 mL sample of 
the diluted culture is spread on a culture plate . Ten minutes later, another I mL sample taken 
from the original culture is diluted and spread in the same way. The two plates are incubated for 
24 hours . The first exhibits 48 colonies of bacteria, the second 72 colonies .  If we assume that each 
colony originates with a single bacterium, what is the generation time ? 

32.14 In milk at 37 DC lactobacillus acidophilus has a generation time of about 75 minutes. Calculate the 
population relative to the initial value at 30, 60, 75, 90, and 1 50 minutes .  

32.15 What must the interest rate be if an investment is to double in ten years if compounding occurs 
(a) yearly, (b) quarterly, and (c) instantaneously? (d) Derive Eq. (32.27) . 

32.16 A substance decomposes according to a second-order rate law. If the rate constant is 6 .8  x 1 0 - 4 
L/mol s, calculate the half-life of the substance 
a) if the initial concentration is 0 .05 mol/L ; 
b) if it is 0 .0 1  mol/L. 

32. 17  A second-order reaction of the type, A + B -+ Products, is 40 % complete in 120 minutes, when 
the initial concentrations of both A and B are 0 .02 mol/L. Calculate 
a) the rate constant and the half-life ; 
b) the time required for the reaction to be 40 % complete if the initial concentrations of both A 

and B are 0 . 1 mol/L. 
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32.18 The rate of the reaction, 2 NO + 2 H2 ---+ Nz + 2 HzO, has been studied at 826 °C. Some of the 
data are : 

Initial pressure H2 Initial pressure NO Initial rate 
Run (PH,)o/kPa (PNO)o/kPa ( - dp/dt)/(kPa/s) 

1 53 .3  40.0 0. 1 37  
2 53 .3 20.3 0.033 
3 38 .5  53 .3 0.2 13 
4 1 9.6 53 .3 0. 1 05 

a) What are the orders of the reaction with respect to NO and with respect to Hz ? 
b) Assume that the gas mixture is ideal and find the relation between the rate of reaction per 

unit volume and dp/dt, where p is the total pressure . The volume is constant. 
c) Combine the results of (a) and (b) to find the relation between dp/dt and the pressure. Initially, 

the total pressure is Po , the mole fraction of NO is xo , that of Hz is I - Xo · 
32.19 From the following data for a reaction between A and B find the order of the reaction with respect 

to A and with respect to B, and calculate the rate constant. 

[AJ/(mol/L) [BJ/(mol/L) Initial rate/(mol/L s) 

2 . 3  x 1 0 - 4 3 . 1  X 1 0 - 5  5 .2 X 1 0 - 4 
4 .6 X 1 0 - 4 6 .2 X 1 0 - 5  4.2 X 1 0 - 3 
9 .2  X 1 0 - 4 6 .2 X 1 0 - 5  1 . 7 x l O - z 

32.20 The decomposition of acetaldehyde was studied in the gas phase at 79 1 K. The results of two 
measurements are : 

Initial concentration/(mol/L) 

Half-life/s 328 572 

a) What is the order of the reaction? 
b) Calculate the rate constant for the reaction. 

32.21 At 24. 8  °C, the reaction, 

has a rate constant k = 8 . 39 X 1 0 - 5 L/mol s in nitrobenzene. The reaction is first order with 
respect to each of the reactants. 
a) If equal volumes of solutions that are 0 . 1 2  mol/L in dimethylaniline and methyl iodide are 

mixed, how much time is required for 70 % of the reactants to disappear ? 
b) If the concentration of each reagent is doubled, what length of time is required for 70 % to 

disappear? 
32.22 Assume that the decomposition of HI is an elementary reaction, 

The rate of the opposing reaction must be included in the rate expression. Integrate the rate 
equation if the initial concentrations of Hz and Iz are zero and that of HI is a. 



32.23 Consider the opposing reactions, 

A � B � '  
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both of which are first order. If the initial concentration of A is a and that of B is zero-and if 
y moljL of A have reacted at time t-integrate the rate expression. Express L l in terms of the 
equilibrium constant K, and arrange the result in a form which resembles that for a first-order 
reaction in which the opposing reaction does not appear. 

32.24 Consider the opposing elementary reactions, 

A � 2A 2 � . 

Integrate the rate expression if the initial concentration of A2 is a and that of A is zero. 
K = kdk_ 1 . Compare this result with the result in Problem 32.22. 

32.25 Near room temperature, 300 K, an old chemical rule of thumb is that the rate of a reaction 
doubles ifthe temperature is increased by 10 K.  Assuming that it is the rate constant that doubles, 
calculate the value the activation energy must have if this rule is to hold exactly. 

32.26 For the reaction of hydrogen with iodine, the rate constant is 2.45 x 10 - 4 Llmol s at 302 °C 
and 0 .950 Llmol s at 508 °C. 

a) Calculate the activation energy and the frequency factor for this reaction. 
b) What is the value of the rate constant at 400 °C? 

32.27 At 552.3 K, the rate constant for the decomposition of S02Cl2 is 6 .09 x 10- 5 min - I . If the 
activation energy is 210 kllmol, calculate the frequency factor and the rate constant at 600 K.  

32.28 The activation energy for a certain reaction is 80 kJ/mol. How many times larger is the rate 
constant at 50 °C than the rate constant at 0 °C? 

32.29 The decomposition of ethyl bromide in the gas phase is a first-order reaction. The data are : 

Temperature 800 K 900 K 

Rate constant 0.0361 s - 1 

What is the activation energy for the reaction ? 
32.30 In the Lindemann mechanism, kapp = k2 k \  c/(L \ c + k2) is the .. apparent " first-order rate 

constant. At low concentrations, the value of kapp decreases. If, when the concentration is 
10 - 5  moljL, the value of kapp reaches 90 % of its limiting value at c = 00, what is the ratio of 
k2/L I ?  

32.31 Using the steady-state treatment, develop the rate expression for the following hypothetical 
mechanisms of formation of HBr : 
a) Br2 

k l 2 Br, � 

Br + H2 � HBr + H. 

b) Br2 
k l � 2 Br, 

Br + H2 � HBr + H, 

Br + HBr � Br2 + H. 

(Note that these are not chain mechanisms.) 
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32.32 The Rice-Herzfeld mechanism for the thermal decomposition of acetaldehyde is : 

1 )  CH3CHO k , CH3 + CHO, � 

2) CH3 + CH3CHO � CH4 + CH2CHO, 

3) CH2CHO � CO + CH3 , 

4) CH3 + CH3 � C2H6 • 

Using the steady-state treatment, obtain the rate offormation of CH4 . 
32.33 The activation energies for the elementary reactions in Problem 32.32 are E! = 320 kJ/mol, 

E! = 40 kJ/mol, m = 75 kJ/mol, and E1 = O. Calculate the overall activation energy for the 
formation of methane. 

32 .34 The initial rate of the hydrogen-bromine reaction is given by (d[HBr]\ (k1) 1 /2 1 /2 �)o = 2k2 ks 
[H2] o  [Br] 0 , 

if we assume that no HBr is present initially. The activation energies for the reactions are : 

Reaction 

Br2 � Br + Br 
Br + Br � Br2 
Br + H2 � HBr + H  

Rate constant 

a) Calculate the overall activation energy for the initial rate . 
b) Calculate the initial rate at 300 °C relative to that at 250 °C. 

E*/(kJ/mol) 

192 
o 

74 

32.35 Consider the following hypothetical mechanism for the thermal decomposition of acetone. 

Reaction E* /(kJ Imol) 

CH3COCH3 
k ,  � 2 CH3 + CO 290 

CH3 + CH3COCH3 
k2 � CH4 + CH2COCH3 63 

CH2COCH3 
k3 � CH3 + CH2CO 200 

CH3 + CH2COCH3 � CH3COC2Hs 33 

a)  What are the principal products predicted by this mechanism? 
b) Show that the rate of formation of CH4 is first order in acetone with an overall rate constant 

given by k = (k1k2 k3/k4) 1 /2 . (Note : k 1 is very small.) 
c) What is the overall activation energy for the reaction ? 

32.36 Consider the following mechanism for the decomposition of ozone into oxygen : 



a) Derive the rate expression for - d[03J/dt. 
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b) Under what condition will the reaction be first order with respect to ozone ? Show how the 
equation reduces in this situation . 

32.37 The mechanism proposed for the decomposition of NzOs is : 

NzOs � NOz + N03 , 

NOz + N03 � NzOs , 

NOz + N03 � NO + Oz + NOz , 

NO + N03 
k4 2 NOz · ----+ 

Derive the expression for the rate of disappearance of N10s based on the steady-state approxi
mation for the concentrations of N03 and NO. 

32.38 Derive the expressions for the relaxation time for each of the reactions : 

a) A --":i......... B ;  � 

Az --":i......... 2A. � b) 

32.39 Consider the two consecutive first-order reactions 

Integrate the rate equations to obtain expressions for [AJ , [B] , and [CJ as functions of time . 
If k 1 = 1 S - 1 , sketch each of these functions for the cases kz/kl = 0 . 1 ,  1, and 10 .  Assume that 
only A is present initially with a concentration co . 

32.40 The reaction between iodine and acetone, 

CH3COCH3 + Iz ----+ CH3COCHzI + HI, 

is catalyzed by H + ion and by other acids. In the presence of monochloroacetic acid the rate 
constant is given by 

k = kw [H +J + kCICH2cooH[CICHzCOOH], 

where [CICHzCOOH] is the concentration of undissociated CICHzCOOH. If the dissociation 
constant for the acid is 1 . 55 x 10 - 3 , calculate kw and kC1CH,COOH from the following data. 

cA/(mol/L) 0 .05 0 . 1 0  0 .20 0 .50 1 .00 

k/ 1O - 6 min- 1 4.6 7 . 6  1 1 .9  23 .8  40. 1  

I n  this case, CA i s  the total analytical concentration of ClCH1COOH. (Note: Plot k/[H +] versus 
[CICHzCOOH]/[H +J and d�termine slope and intercept.) (Data from K. 1 .  Laidler, Chemical 
Kinetics, 2d ed. New York : McGraw-Hill, 1965, p. 456.) 

32.41 The enzyme catalase catalyzes the decomposition of HzOz . The data are : 

[HZ01J/(mol/L) 0.001 0 .002 0 .005 

Initial rate/(mol/L s) 1 . 3 8  x 10 - 3 2 .67 X 10 - 3 6 .00 X 1O� 3 
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If the concentration of catalase is 4 .0 x 10 - 9 mol/L, plot the data to determine Vrn.., the constant 
Km , and the turnover number, kz . 

32.42 If an inhibitor, I, binds to an enzyme through the equilibrium, E + I ¢ EI, and the dissociation 
constant of the species EI is K" then [EIJ = [EJ [IJ/K, . If [EIJ � [IJ , then [1J � [IJ o and 
[EJ = [EJ o  - [ESJ - [EI] . Show that the steady-state treatment under the condition that 
[EJ o  � [SJo , yields a Lineweaver-Burk equation having the form 

32.43 The turnover number of the enzyme fumarase that catalyzes the reaction, 

Fumarate + H20 � L-malate, 

is 2.5 x 103 S - l and Km = 4.0 X 10- 6 moljL. Calculate the rate of conversion of fumarate 
to L-malate if the fumarase concentration is 1 .0  x 1 0- 6 moljL and the fumarate concentration 
is 2 .04 x 10- 4 mol/L . 

32.44 If the second step in the enzyme catalysis mechanism is reversible, that is, 

ES � P + E  � , 

derive the expression for the Michaelis-Menten law when [EJ o � [SJ o ' 



3 3  
C h e m i ca l  K i n et i cs 

I I . T h eoret i ca l Aspects 

33 . 1  I NT R O D U CTI O N  

The ultimate goal of theoretical chemical kinetics is the calculation of the rate of any 
reaction from a knowledge of the fundamental properties of the reacting molecules ; 
properties such as the masses, diameters, moments of inertia, vibrational frequencies, 
binding energies, and so on. At present this problem must be regarded as incompletely 
solved from the practical standpoint. Two approaches will be described here : the collision 
theory and the theory of absolute reaction rates. The collision theory is intuitively appeal
ing and can be expressed in very simple terms. The theory of absolute reaction rates is more 
elegant. Neither theory is able to account for the magnitude of the activation energy except 
by approximations of questionable validity. The accurate calculation of activation energies 
from theory is a problem of extreme complexity and has been done for only a few very 
simple systems. 

If we succeed in calculating the rate constant k for a reaction, we will have an inter
pretation of the Arrhenius equation, 

(33 . 1) 

We begin by looking a little more closely into the meaning of the activation energy of a 
reaction. 

33 . 2  T H E ACTIVATI O N  E N E R GY 

The expression in Eq. (33 . 1 )  is reminiscent of the form of the equation for the equilibrium 
constant of a reaction. Since 

d in K I1Ho 

dT RT2 ' 
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we have after integrating, 
!1Ho 

In K = - -- + In KOO RT ' (33 .2) 

where In KOO is the integration constant. For an elementary reaction, K = k Jlkr and 
KOO = kj Ik';' . Furthermore, !1Ho = H� - Ht where H� and H� are the total enthalpies 
of the products and the reactants, respectively. Using these values in Eq. (33 .2) and 
rearranging, we have 

In 
k J _ 

H� = In � _ 
H� 

kj RT k';' RT (33 .3)  

The rate constant for the forward reaction presumably depends only on the properties of 
the reactants, while that of the reverse reaction depends only on the properties of the 
products. The left-hand side of Eq. (33 .3) apparently depends only on the properties of 
reactants, while the right-hand side depends only on products . Each side must therefore 
be equal to a constant, which may be written - H* IR T; then 

So that 

H* - H� 
RT 

k - koo - (H*- H'f,)/RT I - J e 

and 

and 

H* - H� 
RT 

This argument can rationalize the form of the Arrhenius equation for the rate constants of 
any elementary reaction in either direction. The quantity H* - H� is the energy quantity 
which the Arrhenius equation writes as EY . Since we observe experimentally that EJ is 
positive, if follows that H* - H� is positive, and that H* > H� . Similar argument shows 
that H* is also greater than Hg . 

The variation in enthalpy through the course of the elementary step, as reactants are 
converted to products, is shown in Fig. 3 3 . 1 .  According to this view of the situation, an 
energy barrier separates the reactant state from the product state. The reactants upon 
collision must have sufficient energy to surmount this barrier if products are to be formed. 

H 

Activated state 

H* 

H O 
P Products 

F i g u re 33 . 1  Var iat ion of 
entha lpy in a react ion .  
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The height of this barrier is H* - H� ; this is the activation energy* for the reaction in the 
forward direction EY . Reactants which, upon collision, do not have sufficient energy to 
surmount the barrier will remain as reactants. 

Viewed from the product side, the height of the barrier is H* - Hg . This is the activa
tion energy for the reverse reaction E:. The relation between the two activation energies is 
obtained very simply. We write 

H* - Hg = H* - H� + H� - H� = H* - H� - �Ho. 
Thus 

E*  = E* - WO 
r J ' (33 .4) 

which is the general relation between the activation energies and the energy change in the 
reaction. If the activation energy for the reaction in the forward direction is known, that 
for the reverse reaction can be calculated directly from Eq. (33 .4) if WO is known. 

33 . 3  T H E C O L LI S I O N  TH EO RY O F  R EACTI O N  R ATES 

In  its simplest form the collision theory i s  applicable only to ·  bimolecular elementary 
reactions. With additional assumptions it can be applied to first-order reactions, and with 
some elaboration it is applicable to termolecular elementary reactions. As an example, we 
choose an elementary reaction of the type 

A + B � C + D. 

It is obvious that this reaction cannot occur more often than the number of times 
molecules A and B collide. The number of collisions between molecules A and B in one 
cubic metre per second is given by Eq. (30.23) : 

2 J8kT - -ZAB = lWAB -- NANB ' nf1. 
in which O"AB = !<O"A + O"B), and (11f1.) = ( lImA) + (lImB), where O"A and O"B are the 
molecular diameters, mA and mB the molecular masses, N A and N B the number of molecules 
of A and B per cubic metre, and k the Boltzmann constant, printed in boldface in this 
chapter to avoid confusion with the rate constant, k. If reaction occurred with every 
collision, then this would be equal to the rate of disappearance of either A or B per cubic 
metre : 

dNA _ dNB _ 2 J8kT N- N-- -- - - -- - nO" AB -- A B ' dt dt nf1. 

Every collision does not, in fact, result in the reaction of A and B, but only those collisions 
in which the energy of the colliding molecules exceeds E* .  The fraction of collisions in 
which the energy exceeds E* is proportional to exp ( - E* IR T) so that the rate of the 
reaction is (after setting N = cN A) 

* 

dCA N 2 J8kT - E'/RT � � - -d = AnO"AB -- e CA CB ' t nf1. (33 .5) 

There is a distinction between activation energy and activation enthalpy ; however, the relation between 
them depends on the type of reaction in question. We will use the term " activation energy " loosely here to 
describe whichever one we are interested in at the moment. 
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The empirical law for the rate of  the elementary reaction i s  -dcA.Jdt = kCACB , so  for the 
rate constant we obtain 

where ZAB = ZAB/NANB .  

k - N 2 J8kT -E*/RT - A Te(JAB --e , 
TeJ1. 

k = N AZAB e-E*/RT, 

(33 .6) 

(33 .7) 

The Arrhenius equation has the same form as Eq. (33 .6), so the collision theory predicts 
for the frequency factor 

2 J8kT 
A = NAzAB = NATe(JAB -- . TeJ1. 

(33 .8) 

Strictly speaking, A should be independent of temperature. However, the square-root 
dependence in Eq. (33 .8) is rather slight, so a weak dependence on temperature is not really 
a difficulty. The order of magnitude of A can be readily estimated. The value of the radical 
in Eq. (33 .8) is a molecular speed which, at ordinary temperatures, is about 400 m/s. The 
value of (J is about 3 x 10- 1 0 m, so we have 

A = (6 x 102 3/mol)Te(3 x 10- 1 0 m)2(400 m/s) � 7 x 1 07 m3/mol s. 

If the concentration unit is moljL, this must be multiplied by 1000 so that A = 
7 X 101 0 Llmol s. The order of magnitude of the frequency factor for bimolecular 
reactions is 109 to 10 1 0 Llmol s if T � 300 K. The frequency factors for reactions involving 
a light molecule such as H2 are larger : about 10 1 1  Llmol s. 

The collision theory predicts the value of the rate constant satisfactorily for reactions 
that involve relatively simple molecules if the activation energy is known. Difficulties are 
encountered with reactions between complicated molecules. The rates tend to be smaller 
than the collision theory predicts, in many cases by a factor of 105 or more. To account for 
this, an additional factor P, called the probability factor or the stericfactor, is inserted in the 
expression for k :  

(33 .9) 

The idea behind this is that even those collisions having the requisite energy may not 
·produce reaction ; originally it was supposed that the molecules had to collide in a particular 
configuration, hence the name steric factor. This idea has some validity, especially since 
the low rates of reaction are usually observed with complex molecules .  Presumably two 
complex molecules will have less chance of colliding in the correct orientation for reaction 
than will two simple molecules .  We will see shortly that the probability factor receives a 
more acceptable interpretation in terms of the entropy of activation of a reaction. In 
particular, the collision theory offers no explanation for abnormally fast reactions in which 
P would have to be greater than unity. 

33 .4  TE R M O LE C U LA R  R EACTI O N S  

The problem oftermolecular reactions can be treated by collision theory also .  A number of 
such reactions are known ; reactions of NO with H2 , O2 , Cl2 are famous examples. If we 
choose the reaction with oxygen, 

2NO + O2 � 2 N02 , 



the rate of the reaction is 
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Apparently the reaction as written is elementary and involves the simultaneous collision 
of two molecules of NO with one molecule of O2 , A remarkable feature of this reaction is 
that thy rate Qf the reaction decreases with increase in temperature. This behavior is 
exhibited by only a very few reactions. 

A difficulty in the treatment by collision theory arises as soon as we attempt to define a 
triple collision. If the molecules are hard spheres, the time in which they are in contact is 
zero .  The probability of being hit by a third molecule during the collision is therefore zero. 
A finite time interval must be specified for the collision of two molecules if a third is to 
collide with the two. The time interval is arbitrary ; a common specification is that the 
molecules are in collision so long as the distance between them is less than the molecular 
diameter. With this specification we can show that, approximately, Z3/Z 2 = 0/ A, where Z 3 
and Z 2 are the numbers of triple collisions and binary collisions per cubic metre per 
second, (J is the molecular diameter, and A is the mean free path. Since A is inversely pro
portional to the number of molecules per cubic metre, it follows that the number of triple 
collisions increases as the cube of the number of molecules per cubic metre. At ordinary
pressures A � 10- 6 m so that Z3 � Z2(1O- 1 0/1O- 6) = 1O- 4Z2 . Roughly speaking, there 
is one triple collision for every 10,000 ordinary collisions. Therefore reactions requiring 
triple collisions are slower, other things being equal, than those involving binary collisions. 
The rate constant calculated on the basis of triple collisions is much larger than the ex
perimental value, indicating that the probability factor is quite small. 

An alternative mechanism has been proposed for these reactions. The equilibrium 

NO + X2 
is assumed to he established very rapidly. Then 

(NOX2) = K(NO) (X2), 

where K is the equilibrium constant. The slow reaction follows : 

NOX2 + NO --------+ 2 NOX. 
The rate of this reaction is 

This mechanism accounts for the rate law. It is apparent that the equilibrium 

2 NO ;::::==:::::': N 2 0 Z 
followed by the slow step 

NzOz + Xz --------+ 2NOX 

would also account for the empirical rate law. The difference between the triple collision 
viewpoint and these mechanisms is not very great. The molecules NOXz or NZ02 can be 
thought of as two molecules that are involved in a " sticky" collision. The equilibrium 
assumption explains the negative temperature coefficient, since it implies that at higher 
temperatures more double molecules, NOX2 or N202 , are dissociated ; the lower con
centration of double molecules results in a lower rate. This implies that the activation 
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energy i s  negative. This explanation has its problems, since in  the reaction o f  NO with O2 , 
the activation energy is zero ; the decrease in rate constant with temperature is due to the 
frequency factor, which is inversely proportional to T3 . 

33 . 5  U N I M O LE C U LA R  R EACTI O N S  

Collision theory does not deal directly with unimolecular reactions but touches on the 
subject through the Lindemann mechanism. Once the molecule has been provided with 
sufficient energy by collision, the problem is to calculate the rate constant for the uni
molecular decomposition, 

A * -----+ Products. 

The theory of this type of decomposition has been developed by O. K. Rice, H. C. Rams
berger, and L. S. Kassel ; more recently, N. B. Slater has treated the problem in more exact 
and elegant terms. The treatment is based on the supposition that if too much energy gets 
into a particular mode of vibration, then vibration of the molecule in this mode leads to 
dissociation of the molecule. 

The Rice-Ramsberger-Kassel approach assumes that the activated molecule has a 
certain amount of vibrational energy spread among the various vibrational degrees of 
freedom of the molecule. Then the probability of one particular mode of vibration acquir
ing so much of this energy that the vibration leads to dissociation into fragments is cal
culated. 

We assume that there are s vibrational degrees of freedom and that the molecule has j 
quanta of energy distributed in the s degrees of freedom. Let Nj be the number of ways of 
distributing the j quanta in the s degrees of freedom. Let N m be the number of ways of 
distributing the j quanta in the s degrees, so that a particular degree of freedom has m 
quanta. Then the pro bability that that particular degree of freedom has m quanta is N miN j ' 
If j and j - m are large compared with s, we can show* that, approximately, 

�� = f � mY- 1
. (33 . 10) 

Since j is the total number of quanta, it is proportional to the total vibrational energy of 
the molecule E ;  the number m is proportional to Ee , the critical minimum energy required 
for dissociation to occur. Therefore we can write the probability of the particular degree of 
freedom having the critical energy in the form 

Nm = (E - Ee) S- 1
. Nj E (33 . 1 1) 

The rate of dissociation of the molecule is proportional to this probability, so that the rate 
constant is given by 

k = k,(E � EJ- 1
, (33 . 12) 

where k' is a constant. Since E may have any value from Ee to infinity, we must average the 
rate constant, using a Boltzmann distribution, over all values of E from Ee to infinity. We 

* The proof is elementary but is too lengthy to be included here . 
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evaluate the integral graphically for particular values of s, and Ee . Reasonable agreement 
with experiment is obtained if we use values of s comparable to the number of vibrational 
degrees of freedom in the molecule . .  

Thus we see that for unimolecular reactions, as well as for others, the molecule must 
have at least a critical minimum energy for reaction to occur. The interpretation of the 
Arrhenius equation for unimolecular reactions is more complex, however. The pre
exponential factor A is a function of the number of degrees of vibrational freedom s, as well 
as Ee and T. Note that Eq. (33 . 1 1) implies that the higher the energy E in the vibrational 
modes and the greater the number s of these modes, the greater is the probability that the 
molecule will have the required m quanta in the critical vibration. A related fact is that the 
rate of activation may be larger than the collision rate predicted by the Lindemann 
mechanism. Some molecules may be " self-activated " in the sense that quanta of vibra
tional energy which are spread over the various modes of vibration may flow into the 
critical mode and supply it with the critical energy. This process enhances the rate of 
activation. 

* 33 . 6  I R R EV E R S I B LE T H E R M O DY N A M I CS 

Considerable effort has been expended in the attempt to develop a general theory of 
reaction rates through some extension of thermodynamics or statistical mechanics. Since 
neither of these sciences can, by themselves, yield any information about rates of reactions, 
some additional assumptions or postulates must be introduced. An important method of 
treating systems that are not in equilibrium has acquired the title of irreversible thermo
dynamics. Irreversible thermodynamics can be applied to those systems that are " not too 
far " from equilibrium. The theory is based on the thermodynamic principle that in every 
irreversible process, that is, in every process proceeding at a finite rate, entropy is created. 
This principle is used together with the fact that the entropy of an isolated system is a 
maximum at equilibrium, and with the principle of microscopic reversibility. * The 
additional assumption involved is that systems that are slightly removed from equilibrium 
may be described statistically in much the same way as systems in equilibrium. 

An outstanding success of the theory has been the general derivation of the relations 
between certain pairs of rate constants in transport processes, the Onsager reciprocal 
relations. Although these relations were known before, the derivations were individualized 
and in certain cases the validity of the derivation was suspect. The theory is not applicable 
to the data obtained from the usual type of investigation in chemical kinetics in which the 
system is far removed from equilibrium. Investigations specifically designed to test the 
theory have supported its conclusions. An interesting aspect of the theory is that it requires 
certain relations between the rate constants of coupled reactions in systems that are " not 
too far " from equilibrium. 

Central to the thermodynamic discussion of irreversible processes is the concept of 
entropy production. Consider the Clausius inequality, dS ;::::: #Q/T, which we can re
arrange to the form 

* 

r!1Q dS - - > O. T -

Principle of microscopic reversibility : at equilibrium, any molecular process occurs at the same rate as the 
reverse of that process. 
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The quantity on  the left i s  greater than or  equal to  zero, so  we may write 

(IlQ dS - - = dO" 
T ' 

if we insist that dO" be either zero or positive. 

(33. 1 3) 

If we suppose that the system is in contact with a reservoir at T, and a quantity of heat 
(IlQ flows into the system, then a quantity, -(IlQ, flows into the reservoir. If the quantity, 
-(IlQ, is transferred reversibly to the reservoir, then the entropy change of the reservoir is 
dSres = -(IlQ/T, and we can write Eq. (33. 1 3) as 

dS + dSres = dO". 
The quantity dO" is the entropy increase of the system plus that of the surroundings (the 
reservoir) ; dO" is called the entropy production of the process. For any irreversible trans
formation, the entropy production is positive, while for a reversible transformation the 
entropy production is zero. 

We may write Eq. (33 . 1 3) in the form 

T dO" = T dS - (IlQ. (33 . 14) 

If we apply this equation to a transformation at constant T and p, we have (IlQp = dB, and 
T dS = d(TS), so that T dS - (IlQp = d(TS) - dB = -d(H - TS) ; then 

T dO" = -dG. (33. 1 5) 

For a chemical reaction at constant T andp, we have dG = (aG/aeh, p de, and therefore 

T dO" = - (��) de. (33 . 1 6) 
T, p 

DeDonder has introduced A, the affinity of the reaction, for the quantity, - (aG/aeh, p ' 

A == - (��)T' P 
(33 . 1 7) 

Combining this definition with Eq. (33 . 1 6) yields 

T dO" = A de . (33 . 1 8) 

Note that for the spontaneous direction of a reaction, (aG/aeh, p is negative, so that the 
affinity is positive. Dividing by dt, we obtain the rate of entropy production, dO"/dt. 

dO" de 
T

di 
= A 

dt " 
(33 . 19) 

Since the rate of entropy production by the second law must always be positive or zero, it 
follows from Eq. (33 . 1 9) that the product of the affinity and the rate of reaction, de/dt, must 
always be positive or zero. This result 

(33.20) 

is known as DeDonder's inequality. 
There is an important general relation that we can obtain with relative ease by 

combining a rate equation with a thermodynamic equation. Consider the reaction 

A + B :;==::::: C. 
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We write the rate equation as in Section 32. 1 9. 

� d� = kf CACB (1 _ 
kr cc ) . V dt kfcACB 

We recognize that CC/CA CB = Q, the proper quotient of concentrations for the reaction, and 
k f/kr = K, the equilibrium constant f-or the reaction. Then we have 

� �; = kf CA CB(1 - i). (33 .21) 

Near equilibrium, the quantity kf cA CB approaches r = kf cACB ,  the exchange rate of the 
reaction. Then 

. 

However, we have the relations 

� d� = r(l _ Q ) . V dt K 

(��)T' P = I1Go + RT In Q and 

which combine to yield 

or 

I1Go = -RT In K, 

Since A is very small near equilibrium, we can expand the exponential in series to obtain : 
Q/K = 1 - A/RT + . . . . This brings the rate equation to the form 

d� A 
dt 

= Vr RT · (33 .22) 

Equation (33.22) expresses the important result that the rate of a reaction near equilibrium 
is proportional to the affinity of the reaction. 

Equation (33 .22) is a chemical example of a linear law analogous to those mentioned 
in Section 30.2. In each of those cases, a flow, such as a heat flow, an electrical current, a 
fluid flow, or a diffusive flow, was proportional to a driving force such as a temperature 
gradient, an electrical potential gradient, a pressure gradient or a concentration gradient. 
In the chemical case, Eq. (33 .22), the " flow " is the rate of the reaction, while the driving 
force is the affinity of the reaction divided by T. 

If we combine the result of Eq. (33.22) with Eq. (33 . 1 9) for the rate of entropy pro
duction we obtain 

d(j = Rvr(�) 2 = � (a�) 2 . dt RT Vr at (33.23) 

This shows the positive character of d(j/dt since it is proportional to the square of the 
affinity or to the square of the reaction rate. 
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The two equations, Eqs. (33 .22) and (33 .23) are typical o f  the application o f  thermo
dynamics to irreversible processes. We obtain, or assume, a linear rate law such as the one 
in Eq. (33 .22) in which the flow is proportional to the driving force ; and we obtain a 
quadratic law for the entropy production in which, as in Eq. (33 .23), the rate of entropy 
production is proportional to the square of the driving force. 

33 . 7  T H E T H E O RY O F  A B S O L U T E  R EACTI O N  RATES 

The theory of absolute reaction rates, which is  based on statistical mechanics, was developed 
in full generality by H. Eyring in 1935, although it was foreshadowed in kinetic theory 
investigations as early as 1 9 1 5. A simplified development of the equations will be given here. 
In this theory, we have a postulate of " equilibrium " away from equilibrium, applied more 
broadly here than in the irreversible thermodynamics. 

The fundamental postulate of the theory of absolute reaction rates is that the reactants 
are always in equilibrium with activated complexes. The activated complex is that con
figuration of the atoms which corresponds energetically to the top of the energy barrier 
separating the reactants from the products (Fig. 33 .2). We write the equilibrium 

A + B 
and the equilibrium constant is 

(33 .24) 

in which the c's are concentrations in moles per cubic metre. The standard concentration, 
CO = 1000 moljm3 . The concentration of activated complexes is 

ct = (�; )CACB .  (33 .25) 

If we know the concentration of activated complexes, the problem resolves into the 
calculation of the rate at which these complexes decompose into products ; that is, we must 
calculate the rate of the reaction 

Mt ----+ Products. 

The activated complex is an aggregate of atoms, which may be thought of as being similar 
to an ordinary molecule except that it has one special vibration with respect to which it is 
unstable. This vibration leads to dissociation of the complex into products. If the frequency 

E 
Activated state I 

Products F i g u re 33 .2 Energy va r iat ion 
i n  the tra nsformation from 
reactants to prod ucts. 
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of this vibration is v, then the rate, in moles per unit volume per second, at which products 
are formed is 

Using Eq. (33 .25) we can write 

d(�/V) = vet . 
dt 

But the elementary reaction, A + B � Products, has the rate, 

Comparing Eqs. (33 .27) and (33 .28), we find that the rate constant is given by 

k = vKt . 
CO 

(33 .26) 

(33 .27) 

(33.28) 

(33 .29) 

A review of the steps involved in deriving Eq. (33 .29) shows that it is not restricted by the 
choice of two reactants, but is correct for any elementary reaction, if CO is replaced by 
(eO) - �v where L1 v is the net increase in the stoichometric coefficients in the elementary 
reaction ; for the above case, L1 v = - 1 .  

The values of v and K t can be calculated if we write the equilibrium constant in terms 
of molecular partition functions per unit volume, q/V [See Eq. (29 .75).J Then 

K _ 
N°(q t/ V) 

t - (qA/V)(qB/V) 
(33 . 30) 

Any molecular partition function can be written in the form (q/V) = Ie - EO/kT. The function 
I is the partition function per unit volume evaluated using energies relative to the zero
point energy to of the molecule. Then Eq. (33 .30) becomes 

N°! N°! j 
K - __ t - (EO j - EOA - EOB)/kT _ __ t - �Eo/RT t - IA IB 

e -
IA IB 

e . (33 .3 1) 

The activation energy L1Eb is defined as the difference in zero-point energies between the 
activated complex and the reactants : L";.Eb = N A(tO t - tOA - tOB) '  

As we have seen in Section 29. 12, the partition function can be written as a product of 
partition functions for translation, rotation, and vibration. We direct our attention 
to that particular vibration which dissociates the activated complex into products, and 
factor that vibrational partition function out of It .  Let 

(33 .32) 
where It is what remains of It after Iv has been factored out. If the frequency of this 
vibration is v, then by Eq. (29.44), 

.r. = k T  
e- l1v/2kT v 

hv ' 

if v is small and hv/kT � 1 . Since the exponential is about equal to unity, .fv = k T/hv and 
Eq. (33 .32) becomes 

f = kT 
I t t hv . (33 .33) 
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Using this value o f  f� in Eq. (33 .3 1), we obtain - � K _ kT Nj -Ml,/RT 

Define K� by 
� - hv fA fB 

e . (33 .34) 

N°'ft 
Kt = __ e - AE&/RT . (33 . 35) 

fA fB ' 

then Kt = (k T  Ihv)K� . Using this value in Eq. (33 .29) yields, for the rate constant, 

kT Kt k = h CO 
, (33 .36) 

which is the Eyring equation for the rate constant of a reaction. The value of Kt can be 
calculated from the partition functions of the reactants and the activated complex using an 
equation having the form of Eq. (33 .35) . If we use Eq. (33 .35) in Eq. (33 .36), we obtain 

k = kT (N°)L - AE&/RT 
h CO fA fB 

e . (33 .37) 

Comparing this result with the Arrhenius equation, we see that the frequency factor A is 
given by 

(33 .38) 

Note that (N°jCO) = NA . 
The expression in Eq. (33 .38) is interesting because the partition functions depend on 

the translational degrees of freedom of the molecules and the activated complex, and on 
the internal degrees of freedom as well. The collision theory cannot take into account the 
internal degrees of freedom without becoming incredibly complicated mathematically. The 
Eyring theory includes the internal degrees of freedom in a very simple way. 

Two things are required to calculate the rate constant by Eq. (33 .37). First, the activated 
complex must be specified sufficiently so that f� can be calculated ; this implies knowing 
its size and shape so that the moments of inertia can be calculated. The calculation of the 
vibrational frequencies can be done quantum mechanically, but is quite complicated. 
Second, AE� must be known. The calculation of AE� from quantum mechanics is quite 
complicated unless drastic approximations are made. This procedure has been carried out 
in full detail for a number of reactions, particularly for reactions involving hydrogen atoms 
and hydrogen molecules. Considering the approximations involved, the results are very 
good. 

It is relatively easy to obtain a rough estimate of the order of magnitude of the fre
quency factor using Eq. (33 .38). Consider the reaction 

The frequency factor is 
H2 + 12 -----+ 2 HI. 

A = kT NA f� . h fH2 ii2 
The partition function fH2 can be written as a product of partition functions for three 
translational, two rotational, and one vibrational degree of freedom : 

ii2 = fH2 = fU;fv . 
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We use the same value for ;;2 since we wish to make only a calculation of the order of 
magnitude. The complex (HI)2 has three translational, three rotational, and five vibra
tional degrees (one vibrational degree was removed in the early part of the derivation) ; thus 
we write f t = fU;f� . Using these values, we find for A, 

A =  kT NA fif;f� = kT (NA f�) 
h fi!';fv !if;fv h fifr '  

At ordinary temperatures the usual magnitudes of these quantities are ft � 101 0 jm, 
j� � 10, fv � 1 ,  and (kTjh) � 10 1 3jS. Using these values, we obtain 

(10 1 3jS) 2 3 6 3 A � 
( 10 1 0jm)3 1 0 (6 x 1 0  jmol) � 10 m jmol s, 

which is in rough agreement with the value we calculated using Eq. (30.23) for the collision 
frequency. This value ofthe frequency factor usually agrees roughly with the values A found 
for bimolecular reactions, which are often between 106 and 108 m3 jmol s. Considering 
the very approximate values used for the partition functions, the agreement is good. 

33 . 8  C O M PA R I S O N  O F  T H E C O L LI S I O N  T H EO R Y  
W I T H  T H E A B S O LUTE R EACTI O N  R A T E  T H E O R Y  

For bimolecular reactions, w e  can easily compare collision theory with absolute reaction 
rate theory, using the results of the preceding section. Consider the bimolecular reaction 
between two polyatomic molecules A and B to yield a complex 

A + B --------+ (AB):!: .  

If  nA and nB are the number of atoms in A and B and if  both molecules are nonlinear, then 

since the complex contains nA + nB atoms. Using these values in Eq. (33. 37), we obtain 

k - _ A t r v - t'J.E6IRT _ _ � - t'J.E6IRT kT ( N f 3f 3f 3 (nA + nB) - 7  ) kT N f5 - h fit; f�nA 6fi/; f�nB 6 e - h fif; e . (33 .39) 

Now the Eyring equation yields the same result as the collision theory if we treat A and B 
as if they were atoms and (AB)t as if it were diatomic ; then we would have fA = fB = fi 
and f t = fif;, and 

k _ k T  NAfi f; - t'J.EJ IRT _ k T  NA f} - t'J.E�!RT 
collis - h [ 3 f 3 e - h f 3 e 

. , t  t t 

Comparing Eqs. (33 .39) and (33.40), we obtain 

(fv) 5 k = f,. kcollis '  

(33 .40) 

(33.41) 

The probability factor P, which must be introduced arbitrarily in the collision theory, is 
according to Eq. (33 .41), 

(3 3.42) 

If fv = 1 and f.. = 10, then P = 10- 5 , which is a not uncommon value of P. This equation 
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gives u s  a little insight into the effect o f  the internal degrees o f  freedom that make reactions 
between polyatomic molecules very much slower than those between simple molecules. 

The great advantage of the theory of absolute reaction rates is that the postulated 
equilibrium between activated complex and reactants evades entirely the question of just 
how the complex is formed ; the theory resembles thermodynamics in this regard. For the 
same reason a trace of dissatisfaction with the theory can be voiced, for the 0 bject of kinetics 
is to look into the details of how the reaction goes. The great simplicity introduced by the 
equilibrium assumption enables us to suppress this feeling of dissatisfaction to some extent. 
The collision theory could take into account the presence of internal degrees of freedom in 
the molecule. However, the mathematical treatment using this approach would be intoler
ably complex. 

33 . 9  G I B B S E N E R G Y  A N D E N T R O PY O F  ACTIVATI O N  

Equation (33. 36), the Eyring equation, we can generalize to apply to any elementary 
reaction, 

by writing 

where 

A + B + C + · · · � Mt 

Kt = _ it e - !J.E5/RT 
(No)!J.1A iB ic " · 

. 

The equilibrium constant Kt can be written in terms of a standard* Gibbs energy of 
activation �Gt : 

Then we obtain for the rate constant 

k = 
kT

( _o)!J.v - !J.G+ /RT h c e , 

(33.43) 

(33.44) 

which emphasizes the Gibbs energy of activation as the fundamental quantity, rather than 
the energy of activation. Then we can write .6.Gt = �Ht - T .6.St, so that 

k = 
k: (cO)!J.ve!J.S+/Re - !J.HI/RT

, (33.45) 

which resembles the Arrhenius equation, except that �H+ appears instead of E*. The 
quantity .6.H+ is often called the heat of activation. The frequency factor A, according to 
Eq. (33 .45), is 

A = \T 
(cOlve!J.S+/R. (33 .46) 

A negative entropy of activation will result in a quite low frequency factor, while a positive 
entropy of activation will raise its value. The probability factor introduced in the collision 

* The usual degree superscript used to designate a standard Gibbs energy is omitted on the symbol i1G+ to 
avoid a cumbersome symbol. 
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theory can be interpreted in terms of the entropy of activation. We write 

kT e"'�I/R NAPZ = h � ' (33 .47) 

The collision frequency z is readily calculated so that from the value of P the value of �st, 
the entropy of activation, can be calculated. 

If the activated complex resembles the products more than the reactant, then the 
entropy of activation may be nearly equal to the �so of the overall reaction. The values of 
�st and �so do seem to parallel one another in many cases, although it is rare that they are 
equal. 

* 33 . 1 0  R EACTI O N S  i N  SO LUTI O N  

In Section 32. 1 8  we mentioned the fact that the rate constant for a reaction in solution is 
often very nearly the same as that for the same reaction in the gas phase. A rate constant in 
solution which is very much different from that in the gas indicates a comparatively strong 
interaction between the solvent and the reactants or the activated complex. 

The reason for the equality between the rate of reaction in the gas and that in the 
solution can be explained rather simply in terms of the collision theory. Suppose a reaction 
requires the collision of two molecules in a pure gas A :  

A + A ----+ Products. 

The number of collisions per cubic metre per second can be written as 

Zl 1 = ziVi . (33 .48) 
Ifforeign molecules B are introduced, there will be collisions between A and B and collisions 
between B and B. This fact does not change the number of collisions between A and A, 
which is still given by Eq. (33 .48). Thus, even if all the intervening space in the gas is filled 
with foreign molecules B, the rate constant should not change. On this basis, the rate con
stant in solution should have the same value as in the gas. The argument is correct only for 
reasonably ideal solutions. Nonideality in the solution implies solvation effects of the type 
alluded to in the preceding paragraph. 

Consider the reaction in solution : 

A + B M+  ----+ Products. 

The rate of this reaction is given by Eq. (33 .26), 
d(�/V) 

= vet 
dt 

But in solution, 

K _ at _ ( Y+ ) (etjCO) 
t -

aA aB 
-

YA YB (eAieO)(eB/eo) ' (33 .49) 

where Kt is the equilibrium constant, CO = 1000 mol/m3, the a's are the activities and 
the Y's are activity coefficients. Then the rate becomes 
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and the rate constant is 

k = vKt (YAYB) -
CO yt . 

Comparison of Eqs. (33 .29) and (33 .36) shows that vKt = (kTlh)Kt, so we have 

k = kT Kt (YAYB) 
h CO yt ' (33 .50) 

which is the equation we must use to discuss reactions in solution. 
The definition of the activity coefficient depends on the choice of the reference state In 

which Y = 1 . If we wish to compare the rate of reaction with the rate in the gas phase, then 
we will choose the reference state of unit activity coefficient as the ideal gas. This reduces 
Eq. (33. 50) to 

kT Kt kg = h CO , (33 . 5 1 )  

where kg i s  the rate constant for the reaction in the gas phase. Then in solution 

k = kg(Y �JB )g ' (33 . 52) 

In Eq. (33.52) the subscript g on the activity coefficient ratio indicates the choice of reference 
state. The deviation of the value of the rate constant in the solution from that in the gas 
depends on this ratio of activity coefficients .  If the solvent lowers the Gibbs energy of the 
reactants more than it does that ofthe activated complex (if the reactants are strongly 
solvated), then YA and YB will be small, while y t will not be so small. The rate constant in this 
case will be smaller in solution than in the gas. Conversely, if the activated complex is 
strongly solvated while the reactants are not, the rate constant will be larger in solution than 
in the gas. 

If the reaction is one that does not take place in the gas phase, then it is more useful to 
choose the infinitely dilute solution as the reference state of unit activity coefficient. If the 
rate constant in infinitely dilute solution is ko , since the y's are unity, we have 

kT Kt ko = h CO 
and 

k = koe�JB) o' (33.53) 

Here the subscript zero on the activity coefficient ratio indicates the infinitely dilute 
solution as the reference state. 

* 3,3 . 1 1 I O N I C  R EACTI O N S ; SALT E F F E CTS 

The majority of reactions between ions in solution, particularly between simple ions of 
opposite charge, occur so rapidly that until recently it was impossible to measure the rates 
of these reactions .  Relaxation techniques such as those described in Section 32. 1 9  are now 
used to determine the rate of reactions such as H30 + + OH- � 2 H20. The rate constant 
of this particular reaction is 1 .4 x 101 1  Llmol s. 
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There are some reactions between ions and neutral molecules that progress slowly 
enough that ordinary methods of measurement can be used. The rate constants of these 
reactions depend on the ionic strength of the solution. Equation (33 .53) was first derived by 
Bqzlnsted and Bjerrum before the theory of absolute reaction rates was developed ; applied 
to ionic reactions, Eq. (33 .53) is called the Brpnsted-Bjerrum equation. By combining 
Eq. (33 .53) with the Debye-Huckel limiting law for ionic activity coefficients, we can deduce 
the dependence ofthe rate constant on the ionic strength. Writing Eq. (33 .53) in logarithmic 
form, we have 

(33. 54) 
The value of ln 'Y is given by Eq. ( 16.75) ; by comparing Eqs. (16.75) and ( 16.77) we find that 
for a single ion the Debye-Huckel limiting law is 

(33 .55) 
where A is a constant ; in water at 25 °e, A = 0.50 (L/mol) 1 /2 . Using the limiting law in 
Eq. (33 .54), and realizing that z+ = ZA + ZB , we can write 

10gl o k = logl o ko - A[zl + z� - (ZA + ZB)2Jn/2 = logl o ko + 2AzA zBI� /2 . 
Using A = 0.50 (L/mol) 1 /2, we have 

(33 .56) 
A plot of log1 0 k against the square root of the ionic strength should yield, in dilute solution, 
a straight line with a slope equal to ZAZB ' 

If the ions have like signs, Z A ZB is positive and the rate constant increases with increase 
in ionic strength. If the ions are oppositely charged, the rate constant decreases with 
increase in ionic strength. Equation (33 .56) is a description of the primary kInetic salt effect 
or, more simply, the primary salt effect. Figure 33 .3 shows a verification of this equation by 
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LaMer. The agreement i s  eminently satisfactory. The reactions for Fig; 33 . 3  are 

I. Co(NH3hBr2 + + Hg2 + , ZAZB = 4, 
II. S20� - + 1 - , ZAZB = 2, 

III. N02NC02C2Hs + OH- ,  ZAZB = 1 ,  
IV. C1 2H2 201 1  + OH-,  ZAZB = 0, 
V. H202 + H+ + Br- ,  ZAZB = - 1 , 

VI. Co(NH3)sBr2 + + OH- ,  ZAZB = - 2. 
The physical reason for the behavior in the cases of like and unlike charges on the ions 

is a result of the relative net charge on the complex. The value ofthe activity coefficient goes 
down exponentially with Z2 . If both ions have the same sign, the complex has a net charge 
that is high compared with either one. This makes yt very small, and the ratio (y A YB/yt)o 
is very large . If the ions differ in sign (the net charge on the complex is less than that on 
either ion), yt is then much larger than YA and YB ; the net result is that the ratio (YA YB/yt)O 
and the reaction rates are small. If one species is uncharged (B for example), then A and the 
complex have the same charge and the ratio yAiyt is unity and independent of n/2 . The 
value of YB is not much affected by changes in Ie because B is a neutral molecule. 

Q U ESTI O N S  

33.1 What is the lowest possible value of the activation energy for an endothermic reaction ? 
33.2 The reaction 2 CH3 .4 C2H6 proceeds with negligible activation energy. Estimate k via the 

collision theory. 
33.3 Long range electrical forces operate between the reactants in ion-polarizable molecule reactions. 

What are they? Would Eq. (33 . 9) apply to such reactions ? 
33.4 Would a steric factor probably be required for the reaction CH3I + Rb -+ RbI + CH3 ? Explain. 
33.5 The reaction I + I + M -+ 12 + M, where M is a buffer gas molecule, is termolecular . Consider 

whether isolated collision of two I atoms can lead to energetically stable 1 2 , Suggest the role of 
M in the reaction. 

33.6 The unimolecular rate constant Eq. (33 . 12) predicts that at fixed energy E, k decreases as the 
number of vibrational degrees of freedom increases. Rationalize this trend . 

33.7 What is the activation energy Eo in Eq. (33 . 3 1) for the reaction H2 + D2 -+ 2 HD ?  
33.8 Two ions form a very weakly polar activated com'plex. What is the expected effect on the rate 

constant as a moderately polar solvent is replaced by a highly polar solvent ? 

P R O B LE M S  

33.1 At 700 K the rate constant for the reaction H2 + 12 -+ 2 HI is 6.42 x 1 0 -
2 Llmol s . The acti

vation energy, E* = 167 kJ. 

a) Calculate the rate constant predicted by the collision theory, using O"H2 = 225 pm and 
0"1, = 559 pm, which are obtained from viscosity measurements .  Compare with the experi
mental value . 

b) What would O"A + O"B have to be if the collision theory prediction is to agree with the experi
mental value ? 
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33.2 If the activation energy for the reaction Hz + Iz -> 2 HI is 167 kJ and the I'1E for the reaction 
is - S .2 kJ, what is the activation energy for the decomposition of HI ? 

33.3 If the diameter of HI (obtained from viscosity) is aHI = 435 pm, estimate the rate of decom
position of HI at 700 K using the kinetic theory expression for the number of collisions between 
like molecules and the values of the activation energy obtained in Problem 33.2 . 

33.4 The internuclear distances in the molecules Hz , Iz , and HI are 74.0 pm, 266.7 pm and 160 .4 pm 
respectively. Use these values instead of the molecular diameters in the calculations in Problems 
3 3 . 1  and 33 . 3  and observe the differences in the results. 

33.5 If the molecules ofa gas have a diameter of 3 x W - 1 0 m, calculate the number of triple collisions 
compared with the number of binary collisions in the gas at 300 K and 0 . 1 ,  I ,  10, and 100 atm 
pressure . What would the values be at 600 K ?  

33.6 Suppose that a molecule that decomposes unimolecularly has four vibrational degrees of 
freedom. If 30 quanta of energy are distributed among these degrees of freedom, what is the 
probability that 10 quanta will be found in a particular degree of freedom ? What is the proba
bility that 20 quanta will be in a particular degree of freedom? 

33.7 Combine Eq. (33 .23) with Eqs. (32 .S3) and (32. S4) and show that the rate of entropy production 
per unit volume is 

d(a/V) 
= R

[(� - �)O] Z e - Zt/, 
dt V n;z 

Integrate this result from t = 0 to t = CX) to obtain the total entropy production per unit 
volume. Show that the total entropy production, a/ V, for the chemical reaction A + B ¢ C, 
discussed in Section 32. 19, is given by 

a 1 [(CA - CA)6 (CB - CB)6 (Cc - Cd6] 
- = zR + + . V CA CB CC 

Note that this result is general ; for any reaction, a/V = !R Li (I'1Ci)6!Ci ' The total entropy 
production near equilibrium does not depend on the rate of reaction but only on the displace
ments and the equilibrium concentrations. 

33.8 Estimate the frequency factor at 300 K for the reaction between an atom and a diatomic 
molecule, A + BC --> AB + C, using the values of the partition functions given in Section 33 . 7 .  

33.9 For the reaction between ethyl iodide and triethylamine, the frequency factor in  various sol
vents, at 100 °C, ranges between 2 x 103 and I x 105 L/mol s .  Calculate the range of I'1S· for 
the reaction. 

33.10 Given the data : 

Reactants 

Cr(HzO)� + + CNS 
Co(NH3)5Br2 + + OH
ClO- + CIOi 

A/(L/mol s) 

Assuming that T � 300 K, calculate I'1S. for each reaction and compare. (The effect is inter
preted in terms of a greater loosening of the solvent sheaths of the two ions when two ions of 
opposite charge form an activated complex.) 

33. 1 1  Predict the effect of increase in ionic strength on the rate constant for each of the following 
reactions . 
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33.12 Consider the reaction of two atoms t o  form an activated complex : A + B ::::=: CAB). Write the 
partition functions for the atoms and the diatomic complex and show that the frequency factor 
predicted by the Eyring equation is identical to that predicted by the collision theory if rAB , 

the interatomic distance in the complex, is identified with CT AB .  

33.13 Consider the reaction NO + C12 ::::=: NOCI + Cl. The values for ev ,  er > and r e for NO and Cl2 
are given in Table 29. 1 .  Estimate the frequency factor for this reaction at 300 K using the Eyring 
equation. Assume that the activated complex is linear : Cl-Cl-N-O and that the N-Cl 
distance is 200 pm while the Cl-Cl and N-O distances are the same as in the separated 
molecules. The degeneracy of the electronic state is the same in the initial and in the activated 
state. Assume that for all the vibrational degrees of freedom, Iv = 1 .  
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I I I . H eterog e n e o u s  R ea ct i o n s, 
E l ectro lys i s, P h otoc h e m i st ry 

34. 1  H ET E R O G E N EO U S  R EACTI O N S  

Very early in the development of the art of chemistry finely divided powders of various 
sorts were recognized as catalysts for many reactions. Only relatively recently have the 
details of the mechanism of reactions on surfaces been elucidated. For a long time it 
was thought that the function of the surface was simply to concentrate the reactants on 
it ; the increased rate was attributed to the increase in " concentration." It can be shown 
that this certainly is not correct for the great majority of reactions. Calculation shows 
that for a concentration effect of this type to produce the increases in rate ordinarily 
observed would require surface areas per gram of catalyst that are impossible to attain. 

In the majority of cases the increased rate of reaction on a surface is the result of the 
surface reaction having a lower activation energy than that of the homogeneous reaction. 
At ordinary temperatures, each kilojoule difference between the activation energies 
means a factor of 1 . 5  in the rate. The mode of action of the surface therefore is the same 
as that of other catalysts (see Section 32.20) in its provision of an alternative path of lower 
activation energy for the reaction. 

34. 2  STE P S  I N  T H E M EC H A N I S M  O F  S U R FA C E  R EACTI O N S  

For a reaction to occur on a surface the following sequence of steps is required. 

1 .  Diffusion of reactants to the surface. 
2. Adsorption of the reactants on the surface. 
3. Reaction on the surface. 
4. Desorption of products. 
5. Diffusion of products from the surface. 

Any one or a combination of these steps may be slow and therefore be rate determining. 
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F i g u re 34.1 The N ernst 
d d iffus ion layer. 

In gaseous reactions the diffusion steps (1) and (5) are very fast and are rarely, if 
ever, rate determining. For very fast reactions in solution the rate may be limited by 
diffusion to or from the surface of the catalyst . If diffusion is the slow step, then the con
centration c' of the diffusing species at the surface will differ from the concentration c 
in the bulk. In Fig. 34. 1 ,  the concentration is plotted as a function of the distance from the 
surface. This curve is conveniently approximated by the two dashed lines. The distance (j 
is the thickness of the diffusion layer. This approximation was introduced by Nernst, 
and the layer in which the concentration differs appreciably from that in the bulk is 
called the Nernst diffusion layer. The concentration gradient across the diffusion layer is 
given by (c -:- c')/(j, so that the rate of transport per square metre of the surface is 

- D(c - c') 
(j 

where D is the diffusion coefficient. This approximation is a simple correction to the 
kinetic equations when diffusion is slow enough to matter. The rate of diffusion can be 
enhanced considerably by vigorous stirring, which thins the diffusion layer. The thickness 
(j in a well-stirred solution is of the order of 0.001 cm. In less well-stirred solutions the 
thickness is of the order of 0.005 to 0.010 cm. 

It is more commonly observed that the rate of reaction is determined by step (2), 
or by a combination of steps (3) and (4). We consider these cases in order. 

34. 3  S I M P L E  D E C O M P O S I TI O N S  O N  S U R FA C E S  

In the case o f  the simple decomposition o f  a molecule on  a surface, the process can be 
represented as a chemical reaction between the reactant A and a vacant site S on the 
surface. Mter adsorption, the molecule A may desorb unchanged or may decompose to 
products. The elementary steps are written 

Adsorption A + S � 

Desorption AS � 

Decomposition AS � 

If v is the rate of reaction per square metre of surface, then 

where CAS is the concentration (moljm2) of A on the surface. 

AS ; 

A + S ;  

Products . .  

(34. 1 ) 
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Let Cs be the total concentration of surface sites per square metre and let e be the 
fraction of these sites that are covered by A. Then CAS = cs e, and c.(1 - e) = Cs , the 
concentration of vacant sites on the surface. Then the rate of the reaction can be written 

(34.2) 
The value of e is obtained by applying the steady-state condition to the rate of formation 
of AS : 

dCAS dt = 0 = klCa Cs( l  - e) - L 1cs e - k2 Cs e, (34.3) 

where Ca is the concentration of the reactant A either in the gas or in solution. From 
Eq. (34.3) we obtain 

e = k1ca 
k1 ca + L l + k2 

This value of e in the rate law, Eq. (34.2), yields 

k2 kl Cs Ca " v = . k1ca + k- l + k2 
If Eq. (34.5) must be considered in full, then it is convenient to invert it : 

1 1 k- l + k2 - = - + . v k2 cs k2 klCs Ca 

(34.4) 

(34.5) 

(34.6) 

A plot of l/v versus l/ca yields llk2 Cs as the intercept and (L 1 + k2)/k2 kl Cs as the slope. 
Usually it is more convenient to consider the limiting cases of Eq. (34.5) . 

Case 1. The rate of decomposition is very large compared with the rates of absorption 
and desorption. In this case, k2 � k1ca + L b "and the denominator in Eq. (34.5) 
is equal to k2 ; then the rate is given by 

(34.7) 
This is simply the rate of adsorption. Physically, the assumption that k2 is large implies 
that an adsorbed molecule decomposes immediately, so that the rate of decomposition 
depends on how quickly the molecules can be adsorbed. From Eq. (34.4) and the assump
tion that k2 � kl Ca , it follows that e � 1. The surface is sparsely covered with the reactant. 
The reaction is first order in the concentration of the reactant A. This situation is realized 
in the decomposition of N20 on gold, and of RI on platinum. 

Case 2. The rate of decomposition is very small compared with the rate of absorption 
and desorption. In this case, k2 is very small so that the denominator of Eqs. (34.4) and 
(34. 5) is k1 ca + k_ 1 • Introducing the absorption equilibrium constant K = kdk_ 1 , 
Eq. (34.4) becomes 

e = KCa , KCa + 1 (34.8) 
which is the Langmuir adsorption isotherm. The occurrence of the decomposition does 
not affect the adsorption equilibrium at all. The rate becomes 

(34.9) 
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v 

Zero-order 
region \ 

F i g u re 34.2 Rate of a su rface 
react ion as a funct ion of 
reactant concentrat ion .  

In this case both the surface coverage () and the rate depend on the concentration Ca ' 
At low concentrations, KCa � 1 ,  and () ::::; Kca ; the coverage is small. Then 

(34. 10) 
and the reaction is first order in the concentration of A. At high concentrations, KCa � 1 ,  
and fJ ::::; 1 ;  the surface i s  nearly fully covered with A. Then 

(34. 1 1) 
and the reaction is zero order with respect to A. Since the surface coverage ceases to vary 
significantly with the concentration of A at high concentrations, the reaction rate becomes 
independent of the concentration of A. The decomposition of HI on gold 'and of NH3 
on molybdenum are zero order at high pressures of HI and NH3 . 

The typical variation in the rate of reaction as a function of the concentration of 
the reactant is shown in Fig, 34.2 . This figure should be compared with Fig. 32. 12, which 
shows the same behavior for a homogeneous catalyst. Note that Eq. (34.5) has the same 
form as Eq. (32.95), the equation for homogeneous catalysis, which is the same as the 
Michaelis-Menten law, Eq. (32. 100), for enzymes. Also, Eq. (34.6) has the same form as 
the Lineweaver-Burk equation for enzymes. 

34. 4  B I M O LEC U LA R  R EACTI O N S  O N  S U R FA C E S  

Two molecules A and B can react on  a surface if they occupy neighboring sites o f  the 
surface. Let ()a and ()b be the fractions of the surface sites covered by A and B, respectively, 
and let ()v be the fraction of sites that are vacant ; ()v = 1 - ()a - ()b ' We represent the 
reaction by 

AS + BS � Products. 

The rate per unit area, v, is 
v = kC;()a ()b ' (34. 12) 

To evaluate ()a and ()b we consider the two adsorption reactions 

A + S � AS k - l  and B + S � BS. k - 2  
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The steady-state equations are 

dCAS 2 . at = ° = k1 cs ca Ov - k_ 1cs Oa - k Cs Oa Ob ,  

deBs 2 at = ° = k2 cs Cb Ov - k_ 2 cs Ob - kcs °a Ob ' 

Since 0 v = 1 - 0 a - Ob ,  these two equations can be solved for 0 a and 0b ' We will consider 
only the case for which k is very small ; if we set k = 0, these equations reduce to 

(34. 13)  

where K1 = k1/L 1 and K2 = k2Ik_ 2 . Using these values of Oa and Ob in Ov = 1 - Oa - Ob , 
we obtain 

so that 

o = 1 
v I + K1ca + K2 cb 

This value of Ov brings Eqs. (34. 1 3) to the form 

These values used in Eq. (34. 12) yield the rate law 

kKiK2 c;ca Cb 
v = 2 '  ( 1  + K1ca + K2 Cb) 

which has some unusual characteristics. We examine each case separately. 

(34. 14) 

(34. 1 5) 

(34. 1 6) 

Case 1 .  Both A and B are weakly adsorbed ; the surface is sparsely covered. In this case, 
K1ca � 1 and K2Cb � 1 .  The denominator of Eq. (34 . 1 6) is about equal to unity and the 
rate law is 

(34. 17) 

The reaction is second order overall, and is first order with respect to both A and B. 

Case 2 .  One reactant, A, more strongly adsorbed than the other. In this case, Kl Ca � K2Cb ; 
the denominator is about equal to 1 + Kica , and Eq. (34. 1 6) takes the form 

kK1K2 c; ca Cb 
v = 

(1 + K1Ca? 
. (34. 1 8) 

The rate is first order with respect to the less strongly adsorbed reactant ; the dependence 
of the rate on the concentration of the more strongly adsorbed reactant is more compli
cated. At low values of Ca , the rate increases as Ca increases, passes through a maximum 
value at Ca = llKi , and then decreases with further increase in Ca ' At very high values of 
Ca , the rate becomes inversely proportional to Ca (see Case 3). 

Case 3. One reactant very strongly absorbed. If A is very strongly adsorbed, we have the 
same situation as in Case 2 but with the additional condition that K1 ca � 1 ,  so that the 
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denominator of  Eq. (34 . 1 8) i s  (Kl Ca)2 . Then the rate is 

kK2 c; Cb v = --=----:=---=-
[(lCa 

(34. 1 9) 

The rate of the reaction is inversely proportional to the concentration of the strongly 
adsorbed species. This is an example of inhibition, or poisoning. In this case one of the 
reactants itself inhibits the reaction. The reaction between ethylene and hydrogen on 
copper is of this type. At low temperatures the rate is given by 

the ethylene being strongly adsorbed. At higher temperatures the ethylene is less strongly 
adsorbed, the surface is sparsely covered, and the rate expression reduces to that given 
by Eq. (34. 1 7) : 

It is generally true that if one substance is strongly adsorbed on the surface (whether 
it be reactant, product, or a foreign material) the rate is inversely proportional to the 
concentration of the strongly adsorbed substance ; this substance inhibits the reaction. 

3 4 . 5  T H E R O LE O F  T H E S U R FA C E  i N  CATA LYS I S  

In homogeneous catalysis the catalyst combines chemically with one o f  the reactants 
to form a compound that reacts readily to form products. The same is true of a surface 
acting as a catalyst . One or more of the reactants are chemisorbed on the surface ; this is 
equivalent to the formation of the chemical intermediate in the homogeneous case. In 
both cases, the effect of the catalyst is to provide an alternative path of lower activation 
energy. This lower energy is the principal reason for the increased rate of reaction. 
Figure 34.3 shows schematically the energy variation as the reactants pass to products. 
It is apparent from the figure that if the activation energy for the forward reaction is 
lowered, then that for the reverse reaction is lowered by the same amount. The catalyst 
therefore increases the rate of the forward and the reverse reaction by the same factor. 

E 

Products 

F i g u re 34.3 Energy su rfaces for 
u ncata lyzed and catalyzed 
react ions .  
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Tab le  34.1 
Activation  energ i es for cata lyzed and 

u ncata lyzed reactions 

Decomposition of Surface E�at/(kJ Imol) EJncat/(kJ/mol) 

HI Au 105 184 
Pt 59 

N20 Au 121 245 
Pt 136 

NH3 W 163 330 
Os 197 
Mo 130-180 

CH4 Pt 230-250 330 

By permission from K. J. Laidler, Chemical Kinetics. New York : McGraw
Hill, 1950. 

Table 34. 1 lists a few values of the activation energies for various reactions on surfaces, 
and the corresponding values for the uncatalyzed reaction. 

An important fact about surface reactions is that the surface sites on a catalyst 
differ in their ability to adsorb the reactant molecules. This is demonstrated by the action 
of catalytic poisons. In the preceding section, the effect of strong adsorption of one 
reactant was to inhibit reaction or poison the catalyst. Foreign molecules that do not 
take part in the reaction can also poison the surface if they are strongly adsorbed. The 
algebraic effect on the rate equation is to make the rate inversely proportional to some 
power, usually the first power, of the concentration of the poison. 

It has been shown that the amount of poison required to stop the reaction is ordinarily 
significantly smaller than the amount needed to form a monolayer of poison on the surface. 
This observation led H. S. Taylor to postulate that the adsorption and subsequent 
reaction takes place preferentially on certain parts of the surface, which he called " active 
centers." The active centers may constitute only a small fraction of the total number of 
surface sites. If these active centers are covered by molecules of the poison, the reaction is 
unable to proceed except at an extremely slow rate. 

Imagine the appearance of a surface on the atomic scale. There are cracks, hills and 
valleys, boundaries between individual grains, different crystal faces exposed, edges, 
points, and so on. It is not surprising that adsorption takes place more easily in some 
places than in others. The chemical kinetic consequences of this lack of uniformity in the 
surface have been explored extensively, both from the theoretical and the experimental 
standpoints. 

The chemical nature of the surface determines its ability to act as a catalyst for a 
particular type of reaction. For illustration, two reactions of an alcohol can be considered. 
On metals of the platinum group such as Ni, Pd, and Pt, the alcohol is dehydrogenated. 

CH3CH20H ----+ CH3CHO + H.2 . 

On a surface such as alumina, dehydration occurs : 

CH3CH20H ----+ CH2CH2 + H20. 

In the two cases the mode of attachment is different. 



874 Chemica l  K i net ics I I I  

Nickel has a strong affinity for hydrogen so that on  nickel the attachment i s  pre
sumably to the hydrogen atoms : 

H 
I 

H C-C-O � 3 I I 
H H 

Ni Ni Ni Ni 

H 
I 

H3C-C=0 rIIIfl __ H2 H----Ni Ni Ni Ni 

On alumina, there are hydroxyl groups at the surface as well as oxide groups. The 
surface could be imagined as having the configuration 

Then the attachment of the alcohol could be 

H H 
I I 

H-C-C-H 
I I 

H Q-H 

H 

o "
0 I I 

Al Al 
- "0 / 

H H 
I I 

H-C=C-H 

b�o 1 H H "
0 0 I I 
Al Al 

"0/ 

� H20 

After desorption of the water molecule the surface is left · unchanged. Note that these 
diagrams are intended to represent nothing more than plausible suppositions about the 
surface structure and the mode of attachment of the molecule. 

34. 6  E L E CT R O LYS I S  A N D P O LA R I ZATI O N  

Electrolysis refers to the chemical reaction or reactions that accompany the passage of a 
current supplied by an external source through an electrolytic solution. An electro
chemical cell through which a current is passing is said to be polarized. Polarization is a 
general term that refers to any or all of the phenomena associated with the passage of a 
current through a cell. 

We can write any electrolytic half-reaction in the general form : 

0 =  I ViAi + ve e- .  
i 

The quantity of charge that passes the electrode as the reaction advances by d� is dQ, where 

(34.20) 
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The current is given by I = dQ/dt, so that 
d� 

I = v.F dt . (34.21) 

The current is proportional to the rate, d�/dt, of the reaction (or vice versa) so that the 
rate is usually expressed in amperes. If A is the area of the electrode, then the current 
density, i, is 

i = � = V. F(� �;) ; 
i = Ve FVA . 

where v A is the rate of reaction per unit area. 
1 d� VA = - -A dt 

(34.22) 

(34.23) 

The significant quantity is the rate per unit area ; therefore, we will use current densities to 
describe the rates, the usual units being A/cm2 or mA/cm2 . 

The sign of the current density follows the sign of the stoichiometric coefficient Ve . 
If Ve is plus, electrons appear on the product side, and the reaction is an oxidation. The 
current is an anodic current and has a positive sign. The symbol for an anodic current 
density is i + or ia • If Ve is minus, electrons appear on the reactant side, and the reaction is a 
reduction. The current is a cathodic current and has a negative sign. The symbol for a 
cathodic current density is L or ie •  

The total current density at an electrode is the algebraic sum of the anodic and 
cathodic current densities for the reaction taking place on that electrode : 

(34.24) 
If more than one electrolytic reaction is occurring on the electrode, the total current 
density is the algebraic sum of the current densities for all the anodic and cathodic 
reactions taking place on that electrode. 

The study of electrode reactions is unique in the sense that within limits the rate 
of the reaction can be controlled by simply increasing or decreasing the current through 
the cell. The electrolysis reaction also differs from other chemical reactions in that " half " 
of it occurs at one electrode and the other " half" occurs at the second electrode, which 
may be spatially distant from the first. For example, the electrolysis of water, 

H20 � H2 + !02 , 

can be broken down into two " half " reactions : 
At the cathode 

At the anode 

2H + + 2e- � H2 , 

H20 � !02 + 2 H + + 2e-

Each of these reactions is proceeding at the same rate I, the current being passed. If the 
area of the cathode is Ae and that of the anode is Aa , then the rate of the cathodic reaction 
per unit area of cathode is ie = I/Ae ,  and that of the anodic reaction per unit area of 
anode is ia = I/Aa . The current density at either electrode depends on the concentrations 
of reactants and products near the electrode, just as any reaction rate depends on con
centrations. In addition, the current density depends on the electrode material and 
very strongly on the potential of the electrode. The phenomena associated with electrolysis 
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are properly linked with the kinetics of  reactions on surfaces. Because of  great experimental 
difficulties, particularly the problem of controlling impurities in liquid solutions, the 
study of electrode kinetics has become reasonably scientific only relatively recently. 
Some of the earlier work is excellent, but much of it is erroneous. 

34. 7  P O LA R I ZATI O N  AT A N  E LE CT R O D E  

Rather than describe the electrolysis of any solution with any two electrodes, we begin 
by considering a single reversible electrode at equilibrium and then ask what happens if 
we pass a current into the electrode. 

Consider a hydrogen electrode in equilibrium with H + ion at a concentration c 
and hydrogen gas at a pressure p. The equilibrium potential of this electrode is denoted 
by <Po .  The equilibrium is Hz :;;:::: 2 H + + 2e - . If the potential of the electrode is increased 
(made more positive), this equilibrium will be disturbed. The reaction from left to right 
will predominate, Hz will be oxidized, and a positive current will flow into the solution. 
If the potential of the electrode is lowered (made more negative), the equilibrium will be 
disturbed. The reaction from right to left will predominate, Hz will be liberated, and a 
positive current will flow into the electrode or a negative current will flow into the solu
tion. The current that flows to the electrode, therefore, depends on the departure of the 
potential from the equilibrium value, <P - <Po .  This difference between the applied po
tential <P and the equilibrium potential <P is the overpotential, or overvoltage, 1] :  

1] == <P - <Po · (34.25) 
Since the current varies continuously with the potential, and therefore with the over

potential, we can expand the current in a Taylor series. Since i = ° when 1] = 0, the series 
becomes ( di) 1 (dZ i ) z i =  - 1] + - -z 1] + . . . . d1] n = O  2 d1] n = O  
We can write this in a slightly different Way, using only the first term, 

. (io F) 1 =  - 1] .  RT 

(34.26) 

(34.27) 

For small values of 1], i is proportional to 1]. Note also that the sign of i depends on the sign 
of 11. The exchange current density for the reaction, io , defined by Eq. (34.27), is the equi
librium value of either the anodic or cathodic current density. The value of io depends on 
the concentrations of the electro active materials, H + and Hz in this case, and on the 
composition of the electrode surface. 

For the hydrogen evolution reaction on platinum, for example, io � lO- z A/cmz, 
but on mercury, io � 10- 1 4 A/cmz. It is, in fact, these values of io that allow us to use 
platinum as the electron collector for a reversible hydrogen electrode and prevent our 
using mercury for this purpose. 

In the kinetic sense there is a gradation between what are called reversible electrodes 
and irreversible electrodes. The reversible potential of an electrode is measured by 
balancing a cell in a potentiometer circuit. This involves detecting the point at which the 
current flow to the electrode is zero. Suppose the galvanometer registers " zero current " 
for any value of current between i' and - i' . The magnitude of i' depends on the sensitivity 
of the galvanometer. The characteristics of the " very reversible " electrode and the " very 
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F i g u re 34.4 Cu rrent-potent ia l  re lat ion at (a) revers ib le  and (b )  i rrevers ib le  e lectrodes. 

irreversible " electrode are shown in Fig. 34.4. The balance will be observed for the re
versible electrode anywhere in the range between <P2 and <Pl ' This uncertainty in the 
measurement of <Po is very small. 

For the irreversible electrode (Fig. 34.4b), the null point is registered anywhere in 
the wide range of potential between <P'1 and <p� . The slope of the curve is very small ; that is, 
io very small. An electrode with a large io is therefore " more reversible " than one with a 
small io . 

34. 8  M EAS U R E M E N T  O F  OVE RVO lTAG E 

Before considering the theoretical ideas that relate the current to the overvoltage, we 
should understand the principle of the measurement of overvoltage. A cell is shown 
schematically in Fig. 34.5. A measured current is passed between the two electrodes A 
and B. The reference electrode R is the same kind of electrode as B. Matters are arranged 
so that the same electrode equilibrium is established at both B and R. When i = 0, B and R 
both have the same potential. When the current passes into B, this electrode has a potential 
measured on the potentiometer P that is different from that of R, which carries no current. 
This difference in potential is the measured overvoltage, 11m = <PB - <PR ' The value of 11m 
is measured for various values of the current density. 

F i g u re 34.S Cel l  for the measu rement 
of overvoltage. 
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As the experiment stands, the measured value contains an  ohmic component from 
the ir drop between R and B, a concentration component resulting from concentration 
changes in the vicinity of the electrode, and a component, denoted by 1], which is related 
to the rate constant of the reaction. Thus 

1]m = 1]ohmic + 1]conc + 1]. (34.28) 

There are methods for measuring 1]ohmic separately ; 1]conc can usually be reduced to a 
negligible value by vigorous stirring. Thus from 1]m the value of 1] can be found as a function 
of the current density. This 1], which is related to the rate constant of the reaction, is often 
called the activation overvoltage. 

* 34. 9  T H E C U R R E N T-POTENTIAL R E LATI O N  

To derive the equation connecting the current with the overpotential we consider the 
dissolution of a metal ; the reaction is 

M(metal) ----+ MZ+ (aq) + ze- (metal) 

The reverse reaction is the metal-deposition reaction. Within the metal, the equilibrium 

MZ + (metal) + ze- (metal) � M(metal) 

is established very rapidly. Adding these two equations together, we obtain 

MZ + (metal) ----+ MZ+ (aq) 

as the effective charge transfer reaction. Thus we may regard the metal dissolution reaction 
as one in which a metal ion in the metal passes over an activation potential barrier and 
becomes a metal ion in the aqueous solution. Similarly, the electrodeposition reaction is 
the transfer of the metal ion from the aqueous phase over a potential barrier to the metal. 
The dependence of the current on the potential is a consequence of the dependence of the 
barrier height on the potential. The relationships are shown in Fig. 34.6(a) and (b). 

We consider first the hypothetical case in which there is no electrical potential 
difference between the metal and the solution. Then the Gibbs energy of activation is 

G 0  
Metal Solution 

( l - a) zF!/J 

(a) !/J = !/Js = 0 (b) !/J to 0 

F i g u re 34.6 Dependence of G ibbs energy of activat ion on potentia l .  
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given simply by �G} for the anodic reaction and by �G; for the cathodic reaction (Fig. 
34.6a). Next we apply a potential, cp, to the metal, keeping the electrical potential of the 
solution, CPs > at its original conventional value, CPs = O. The Gibbs energy of the metal ion in 
the metal is raised by an amount zFcp (Fig. 34.6b). The Gibbs energy of the metal ion in 
the activated state is also raised by an amount (1 - rx)zFcp, where 0 :::; rx :::; 1 .  The net 
result is that the Gibbs energy of activation for the anodic reaction, �G� , in the presence 
of the potential cp, is given by 

�G� = �G} + (1 - rx)zFcp - zFcp = �G} - rxzFcp, 
while the Gibbs energy of activation for the cathodic reaction is 

�G� = �G; + (1 - rx)zFcp. 
The anodic and cathodic current densities are given by 

L = - zFkr cox , 

(34.29) 

(34.30) 

(34. 3 1 )  

in which kf and kr are the rate constants per unit area for the forward (anodic) and 
reverse (cathodic) reactions ; Cred is the concentration of the reduced species and Cox the 
concentration of the oxidized species. In this case, Cred is the concentration of the metal 
ion in the metal, which is a constant. The Cox is the concentration of the metal ion in the 
aqueous solution. 

Since, by Eq. (33 .44), 

and k = (kT) - I1G! IRT r h e , (34.32) 

we can use these values for k f and kr in the expressions for the current densities and, at 
the same time, use Eqs. (34.29) and (34.30) for the values of �G + and �G _ ; this yields 

i = zFc (kT)e- (I1G; - aZF<I» IRT + red h 

L = _ ZFCox(k:)e- [I1Gr-+ (l - a)ZF<I>lIRT. 

These can be abbreviated to 

and 

(34.33) 

(34.34) 

(34.35) 

where k + and k _ are the parts of the rate constants that do not depend on the potential, 
cp ;  that is, 

and (34.36) 

The net current density is given by : 

i = i + + L , 

i = k + Cred eazF<I>lRT - k_ cox e- ( l - a)zF<I>IRT. (34.37) 

The rate of dissolution is therefore equal to the difference of the rates of the forward 
and reverse reactions as in ordinary kinetics. When the electrochemical reaction is at 
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equilibrium, i = 0 ,  and 
(34.38) 

where (i + )o and (L)o are the (equal) rates of the anodic and cathodic reactions at equi
librium. They are both equal to io , the exchange current for the electrochemical reaction. 

Note that 

(34.39) 

where (Cred)O and (cox)o are the equilibrium values of the concentrations and cPo is the 
equilibrium value of the potential. If we now divide each term in Eq. (34.37) by io , we get 

i 
_ 

Cred azF(</> - </>o)/RT cox - ( l - a)zF(</> - </>0) - - -- e - -- e 
io (Cred)O (coJo ' (34.40) 

in which the values of io from Eq. (34.39) have been used to eliminate the individual rate 
constants, k+ and L ,  on the right-hand side. Since cP - cPo = 1] by the definition in 
Eq. (34.25), the current density can be written in terms of the overpotential and the ex
change current : 

. _ . [ Cred azF�/RT cox - ( l - a)ZF�IRTJ 1 - 10 --e - -- e . (Cred)O (cox)o 
(34.41) 

This equation is a typical example of a rate equation for an electrochemical reaction at an 
electrode. 

In the particular instance of metal dissolution, the concentration of metal ion in the 
metal is a constant ; hence in all circumstances Cred = (Cred)O ' If, in addition, the solution 
is stirred well, the passage of the current does not affect the concentration of the metal ion 
just outside the double layer ; then cox = (cox)o . The equation becomes 

We can always write Eq. (34.42) in the form : 

i = 2i e(a- l /Z)zF�/RT sinh ( zF1] ) . o 2RT 

(34.42) 

(34.43) 

For many reactions rx = !, and for many others rx is remarkably close to l When 
rx = !, we have the simple symmetric form 

i = 2io Sinh(;:� ) . (34.44) 

These curves are shown in Fig. 34.7 for z = 1 and for several values oUo . It is apparent 
that if io is small, a large value of 1] is required to produce even a small current. This 
equation is correct for the Cd --+ Cd2 + + 2e- reaction ; rx = 0.5, io = 1 . 5  ma/cmz at 
[Cdz + ] = 0.01 moljL. 

On the other hand, for Ag --+ Ag+ + e- , rx = 0.74 and io = 4.5 A/cmz at [Ag+ ] = 
0. 1 moljL. Consequently, Eq. (34.43) is the appropriate one for silver. 

* 34. 9 . 1  The  Tafel  Equat ion  

When the overpotential i s  large (either positively or  negatively), that is, when 1 1] 1 > 
� 75 m V, then one term in the rate equation may be neglected in comparison to the other. 
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Thus Eq. (34.42) becomes 

or 

10 
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zF" 
RT 

F i g u re 34.1  io versus zFy//RT. 

(I] > '"-' 75 mY) (34.45) 

(I] < � - 75 mY). (34.46) 
If we take the logarithm of both sides of either of these equations we obtain an equation 
of the form 

(34.47) 
This is the Tafel equation. On the anodic side, b = 2.303RT/rxzF, while on the cathodic 
side, b = 2.303RT /(1 - rx)zF. Thus from a Tafel plot, a plot of I I] I against IOgl O I i i ,  we 
obtain the two important parameters, rx and io . The rx is obtained from the slope and the io 
from the intercept on the horizontal axis (Fig. 34.8). 

F i g u re 34.8 Tafel p lot for cathodic 
log lOi overvoltage. 
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34. 9 . 2  The H yd rogen E l ectrode 

The hydrogen electrode provides a simple example of an electrode reaction that involves 
a two-step mechanism. We write the equations for the anodic oxidation of H2 , but keep 
the expressions for the forward and reverse reactions, so that the equations also describe 
the cathodic reduction of H+ ion to H2 . Of the several possible mechanisms, we choose 
only the most obvious one for illustration. It consists of the two elementary reactions, 

( 1) 
(2) 

Hz(aq) + 2V = 2H(ads) 

H(ads) = H+ + V + e-

in which V is a vacant site on the surface. 
Although the first reaction does not pass electric charge across the interface directly, 

each time it occurs the second reaction must pass two electrons across the interface. 
Consequently, we can write the rate of reaction (1) in terms of an equivalent current 
density, i 1 

(34.48) 

At equilibrium, i 1 = 0, and the exchange current is given by 

i = 2Fkl (CH2Mcy)� = 2FL 1 (CH)� ' 
Using these equations to eliminate the rate constants in Eq. (34.48) and writing CH = ()cs 
and Cy = (1 - () cs (where () is the fraction of the surface sites occupied by hydrogen 
atoms and Cs is the total number of surface sites per unit area), we can reduce Eq. (34.48) 
to the form 

i1 = i 1 0 [(::')0 
G � :J 2 

- (:orl 
where ()o and (cH,)o are the equilibrium values (il = 0) of () and CH2 ' 

Using Eq. (34.41) as a guide, we can write the rate of the second reaction as 

. _ . [ CH aF�/RT CH +  Cy - ( l - a)F�/RTJ 12 - 120 -- e - ---- e . (CH)O (CH + )O (Cy)o 

(34.49) 

We assume that the solution is stirred well enough that the concentration of H+ ion near 
the electrode is maintained at the equilibrium value, that is, CW/(CH + )O = 1 ;  then, when 
we introduce the value of the surface coverage, this equation becomes 

i = i _ eaF�/RT _ ___ e- ( l - a)F�/RT [ () 1 - () ] 2 2 0 ()O 1 - ()O 
. (34.50) 

Since only the second reaction passes an electrical charge to the electrode, we have 
for the current, i, 

(34. 5 1 )  
When the electrode reaches a steady state, the values of  11 and i are constant ; the steady
state condition is dcHfdt = O. In terms of the currents this condition is 

(34. 52) 
Using the values of i l and i2 from Eqs. (34.49) and (34.50), and assuming that the supply 
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of hydrogen or the stirring is such that CH,!(CH2)O = 1, we obtain 

. [(�) 2 _ (.!) 2] _ . [.! IXFTfIRT 
_ � - < l - a)FTfIRT] l 1 0 1 _ ()o ()o - l20 ()o e 1 _ ()o e • 

This equation can be solved for () as a function of 11 and the result placed in Eq. (34.50) 
to yield the relation between i and 11. In practice this involves a general solution of a 
quadratic and the result is cumbersome. Two extreme cases can be easily distinguished. 

Case 1. il 0 � i2 o ' In this case reaction (1) is very nearly in equilibrium, thus, we can set 

i l ( 1 _ () ) 2 ( () ) 2 
il 0 � 

0 = 1 - ()O 
- ()o 

This yields () = ()o .  Using this value in Eq. (34.50), we obtain 

i = i2 0 [eaFTfIRT - e- < l - a)FTfIRT] , 
which is the rate equation for the simple charge-transfer reaction. 

(34.53) 

Case 2 .  i2 0 � il 0 • In this case the charge-transfer reaction is essentially in equilibrium 
and we have 

Solving for () yields 
() e-FTfIRT 
()o = 1 - ()o + ()o e- FTfIRT ' 

Using this value in the equation, i = i l , yields 

1 - e- 2FTfIRT 
i = i l 0 ( 1 _ ()o + ()o e FTfIRT)2 ' 

At very small coverages, ()o � 1, and the equation becomes 

i = i l 0 ( 1 - e- 2FTfIRT) .  

(34.54) 

(34. 55) 
On the cathodic branch, when 11 < - 75 mY, we can neglect the first term in Eqs. 

(34.53) and (34.55) to obtain 

- i = i20 e- < 1 - a)FTfIRT, 
- i = i l 0 e- 2FTfIRT, 

(slow discharge of H+ ion) ; 

(slow combination of H atoms). 

If CI( = !, the Tafel slope corresponding to each of these cases at 25 DC is 

b = 2(2.3�)R T = 0. 1 18 V, 

b = 2.303RT = 0 030 V F . , 

(slow discharge) ; 

(slow combination). 

These Tafel slopes are characteristic of the two limiting cases of this mechanism. Many 
metals including Pb, Hg, A�, Cu, Pt, and Pd exhibit the 0 . 1 1 8  V Tafel slope. 



884 Chemica l  K i net ics I I I  

34. 1 0 G E N E RA L  C O N S EQ U E N C E S  OF T H E 
C U R R E NT-P OTE NTIAL  R E LATI O N  

Rather than discuss the mechanisms of electrode reactions in further detail, we will 
describe some general implications of the current -potential relation. 

We ask whether it is possible to plate zinc onto a platinum electrode. Consider a 
solution containing HCI and ZnClz in which aH +  = 1 and aZn2 +  = 1 .  Suppose we electro
lyze this solution using a platinum cathode. As soon as hydrogen starts to evolve at the 
cathode, it behaves as a hydrogen electrode. Since the pressure of Hz in the vicinity is 
very close to 1 atm and aw = 1, the potential of the electrode on the conventional scale 
is zero if no current flows, and slightly less than zero if current is flowing. The dependence 
of the potential of the electrode as a function of current density is shown in Fig. 34.9(a). 
Since the hydrogen overvoltage on platinum is very small, the potential decreases very 
slowly as the current density is increased. If zinc is to deposit on the electrode, the potential 
must be more negative than the value of the reversible potential of the Znz + , Zn couple, 
which is - 0.763 V in this situation. It is clear from the figure that a very high current 
density ( � 400 A/cmZ) will be required to bring the potential to a value below - 0.763 V 
and thus permit the deposition of zinc. The current density required is so large that, as a 
practical matter, zinc cannot be plated onto a platinum surface. 

The electrolysis of this solution proceeds quite differently if a lead cathode is used. 
The hydrogen overpotential on lead is much larger than that on platinum at every current 
density. The current-potential relation is shown schematically for the system with the 
lead electrode in Fig. 34.9(b). Only a very small current density (� 0.4 /lA/cmZ) is required 
to bring the potential down far enough so that zinc will deposit. After this value is reached, 
the potential does not drop very much with increase in current density because the over
voltage for deposition of zinc on a lead (or zinc) surface is very small. (After the lead is 
coated with zinc, of course, the electrode is a zinc electrode. The hydrogen overvoltage on 
zinc is also quite high, so the shape of the curve is essentially the same as for lead.) Figure 
34.9(b) can be interpreted as follows. In the region from A to B, all of the current goes into 
hydrogen evolution. At B, zinc deposition commences. At any point beyond B, both 

rplV rpl V  

A 

B - 0 .763 (Zn2 + ,  Zn) - 0.763 

I - i  I 
(a) (b) 

F i g u re 34.9 Current-potent ia l  cu rves for the deposit ion of zinc on 
(a) a p l at i n u m  e lectrode and (b) a leadl  e lectrode .  

c 

I - i  I 
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F i g u re 34. 1 0  Cu rrent versus potentia l  for 
deposit ion of zinc plat i n u m  and on l ead . 

hydrogen evolution and metal deposition occur. The rate of hydrogen evolution is iB , 
and this rate remains nearly constant in the region from B to C, since the potential is 
effectively constant in this range. The rate of metal deposition, iM , is therefore 

(34.56) 

and increases as i increases. The fraction of the current used in metal deposition is 
iM/i = 1 - iB/i. The ratio iM/i is the current efficiency for metal deposition. Since iB 
is very small, the current efficiency is nearly unity at high values of i. In Fig. 34. 10  we 
illustrate the situation more realistically by using a logarithmic scale for the current. 

A very active metal such as sodium cannot be deposited from aqueous solutions 
except under special circumstances. The reversible potential for the reduction of N a + 
is - 2.714 V. Even with a lead cathode an enormous current density would be required 
to bring the cathode below this potential ; the current efficiency for sodium deposition 
would be exceedingly small. Sodium can be deposited into mercury, which has a high 
hydrogen overpotential, if a highly alkaline solution is used. High current densities are 
required and the current efficiency is very low. Three factors influence the process. 

1. The alkaline solution, which brings the potential at which hydrogen is deposited 
closer to the potential for sodium deposition. 

2. The high hydrogen overvoltage on mercury. 
3. The fact that metallic sodium will dissolve in mercury ; this brings the sodium de

position potential nearer the hydrogen value and also keeps the sodium that has been 
deposited from reacting with water. 

It is worthwhile mentioning that charging the lead storage battery would not be 
possible if it were not for a high hydrogen overvoltage on the negative plate, which permits 
the reaction 
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to  occur with high efficiency. A high oxygen overvoltage on the positive plate, Pb02 , 
is required so that the reaction 

can occur with high efficiency. If these overvoltages were not large, it would not be 
possible to polarize the plates to the potentials required for the charging reactions to 
occur, and passage of the charging current would only decompose the water into hydrogen 
and oxygen. 

Corrosion reactions are another group of reactions that depend critically on the 
presence or absence of a significant hydrogen overvoltage on the surface. 

* 34 . 1 1 C O R R O S I O N 

34 . 1 1 . 1 Co rros i o n  of M eta ls  i n  Ac ids  

To discuss the corrosion of  metals in  acid solution, we consider the cell shown in Fig. 
34. 1 1 (a) . It consists of a zinc electrode and a hydrogen electrode immersed in a ZnS04 
solution that contains sufficient sulfuric acid to prevent the precipitation of Zn(OH)z . 
If this cell is short -circuited, the reaction 

Zn + 2 H+ ---------+ Zn2 + + H2 
occurs. Zinc dissolves and hydrogen is liberated on the platinum electrode. Now suppose 
that instead of constructing the cell, we simply attach a piece of platinum to the zinc and 
immerse the composite in the solution, as in Fig. 34. 1 l (b). The result is the same : the 
zinc dissolves and hydrogen is liberated on the platinum. The anodic current from the 
zinc is balanced by the cathodic current to the platinum 

or 

2H + 

Zn 

Zn Pt 

(a) (b) 

F i g u re 34. 1 1 (a )  Short-c i rcu ited Zn-H 2 cel l .  (b)  Zn-Pt cou p le  i n  ac id solut ion .  
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F igu re 34. 1 2 C o rros i o n  c u rrent for z i n c  in acid so l ut i o n .  (Ada pted from K.  J. Vetter, Electro
chemical Kinetics, N ew York : Acad e m i c  Press, 1 967, pp. 737-738. ) 

If we make the areas of the zinc and platinum equal, Azn = Apt >  the current densities 
balance. 

iaCZn) + icCPt) = O. 
This requirement is shown graphically in Fig. 34. 12, which shows the i versus 1'/ curves for 
the zinc dissolution reaction and for the hydrogen evolution reaction. At the potential 
¢ M ,  the current densities sum to zero. At this point, ia = icorr , the corrosion current density. 
The potential of the Zn-Pt composite is a mixed potential, ¢M ' Since ¢M  is determined by 
the relative areas and the kinetics of the two electrode processes, it is very sensitive to 
the character of the surface and does not have any thermodynamic significance. Note 
that at the higher pH, since the equilibrium potentials of the Zn2 +, Zn and the H+, H2 
electrodes are closer together, the corrosion current is less. This suggests that we can 
control corrosion by controlling the potential of the metal. This is, in fact, done in certain 
industrial situations . If, from an external power source, we impress a potential on the 
metal that is more negative than ¢M  then by Fig. 34. 12, ia will be reduced and ic will be 
increased. A sufficiently negative potential can reduce the corrosion current to a negligible 
value. 

If we remove the platinum and simply immerse a piece of zinc in acid, what is the 
mechanism of corrosion? In any single piece of zinc metal there are some regions in 
which the crystals are under greater strain than in others. This strain is reflected in a 
higher average Gibbs energy of the zinc atoms. These atoms dissolve to form zinc ions 
in solution more readily than the atoms in the low strain areas. Thus there are in any piece 
of metal anodic areas in which the anodic reaction 

Zn ------> Zn 2 + + 2e -

takes place more readily than in the other areas, which become cathodic areas. The H2 
evolution reaction occurs on the cathodic areas. Since a zinc surface has a much lower io 
for hydrogen evolution than does a platinum surface, the rate of corrosion of pure zinc 
is much smaller than the rate of corrosion when it is in contact with a surface, such as 
platinum, which has a low hydrogen overvoltage. 
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34. 1 1 . 2 Corros i o n  by Oxygen 

Corrosion by oxygen requires the reaction, 

Oz + 4H + + 4e- ---> 2 HzO, 

Oz + 2 HzO + 4e- ---------+ 4 0H- ,  

(po = 1 .23 V 

cPo = 0.401 V 

(acid solution) ; 

(basic solution). 

at the cathodic areas of the metal. The i versus IJ curves for oxygen corrosion in acid solu
tion are shown schematically in Fig. 34. 1 3  for several different metals . The figure shows that 
the corrosion current for zinc is larger than that for iron, which is larger than that for 
copper. If Fig. 34- 1 3  had been drawn to scale, the differences in corrosion current would be 
even larger than are shown in the figure. At high overpotentials the cathodic current is 
limited by the rate of supply of oxygen to the surface. This is indicated by the plateau in 
the oxygen polarization curve in Fig. 34. 13 .  The limiting current is proportional to the 
oxygen concentration in the solution. 

i/(AJcm2) 

Low O2 pressure 

______ ----"",--- Higher 02 pressure 

F i g u re 34. 1 3  Oxygen corros ion in acid soluti o n .  (Ada pted from K. J. Vetter, Electrochemical 
Kinetics, New York : Academic Press, 1 967, pp .  737 -738 . )  

Iron sheet 

F i g u re 34. 1 4  D ifferent ia l  aerat ion . 
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A difference in oxygen concentration is sufficient to set up a corrosion current. 
Consider a piece of iron partially immersed in an aqueous salt solution (Fig. 34. 14). 
Near the air interface there is an abundance of oxygen ; this makes the area more positive 
than the deeply immersed portions. Electrons flow in the metal from the deeply immersed 
region to the region near the air interface. This releases Fe2 + ions deep in the solution. 
Thus the deeply immersed portions corrode by the reaction Fe -> Fe2 + + 2e - ,  while 
the oxygen is reduced to OH- near the water line. The pH increases as the process goes 
on. As the Fe2 + and OH- ions diffuse toward each other, Fe(OHh is precipitated at an 
intermediate position. This is called " oxygen defect corrosion " ;  the corrosion occurs where 
there is no oxygen. This results in some unusual effects such as corrosion under a bolt head, 
for example. The metal dissolves underneath the bolt head where it is protected from 
oxygen. Pitting of metals under a particle of dust or an imperfect coat of paint or protective 
metal occurs because of this differential aeration effect. 

34. 1 1 .3 Corros i o n  by M eta l Co ntact : Corros i o n  I n h i b i t i o n  

The contact o f  dissimilar metals commonly results in corrosion. For example, if a piece 
of iron in contact with a piece of copper is immersed in a conducting solution that does 
not contain appreciable amounts of either Fe2 + or Cu 2 + , the potential of the iron will 
be negative (anodic) relative to the copper ; the electrons produced by the oxidation of the 
iron 

Fe --------> Fe2 + + 2e-

move to  the copper, where they are removed either by hydrogen evolution or by oxygen 
reduction. The result is a rapid corrosion of the less noble metal, iron. If the two metals 
were not connected, both would corrode in an oxygenated solution ; but if the two metals 
are electrically connected, only the more active metal corrodes. This is the basis of cor
rosion protection using a sacrificial anode. A bar of zinc or magnesium is electrically 
connected to the steel that is to be protected. In domestic hot water heaters, for example, a 
magnesium rod is attached to the interior of the steel tank. The magnesium rod corrodes 
but the steel tank is protected. Similarly, ropes to which zinc bars are attached are hung 
over the side of steel ships to lessen the attack by salt water. In some instances the metal to 
be protected is connected to an external source of power ; a sufficiently cathodic potential is 
impressed to reduce the corrosion current to zero. 

Corrosion can also be reduced through the use of coatings of various kinds. To be 
effective the coating must be as impermeable as possible or be capable of resealing itself 
if it is perforated. The protective oxide on aluminum reseals itself in air if it is broken. 
Some anodic inhibitors, alkalis, and oxidizing agents inhibit corrosion by assisting the 
formation of a relatively adherent film of oxide on the metal and assisting the repair of 
breaks in the coating. Some cathodic inhibitors on the other hand act by poisoning the 
hydrogen evolution on the cathodic surface, thus increasing the hydrogen overvoltage and 
reducing the corrosion current. Other cathodic inhibitors, Cu2 + for example, by producing 
a film on the surface simply block the access of oxygen to the cathode surface and thus 
shut off the corrosion current. 

34. 1 2 P H OTO C H E M I ST R Y  

The study o f  photochemistry embraces all o f  the phenomena associated with the absorp
tion and emission of radiation by chemical systems. It includes phenomena that are 
mainly spectroscopic, such as fluorescence and phosphorescence ; luminescent chemical 
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reactions, such a s  flames and the gleam of  the firefly ; and photo stimulated reactions, such 
as photographic, photosynthetic, and photolytic reactions of various kinds. 

The influence of light on chemical systems may be trivial or profound. If the light 
quanta are not energetic enough to produce a profound effect such as the dissociation 
of a molecule, the energy may simply be degraded into thermal energy. This latter effect 
may be regarded as trivial in a photochemical sense, since the same result could be 
achieved by raising the temperature by any means. 

Any effect of light, whether trivial or profound, can be produced only by light that 
is absorbed by the system in question. This fact, which today seems obvious, was first 
recognized at the beginning of the 19th century by Grotthuss and Draper, and is called 
the law of Grotthuss and Draper. 

34. 1 3 T H E STA R K-E I N ST E I N lAW O F  
P H OTOC H E M i CA L  e Q U I VA L E N C E  

The Stark-Einstein law of photochemical equivalence is in a sense simply a quantum
mechanical statement of the Grotthuss-Draper law. The Stark-Einstein law (1905) is 
another example of the break with classical physics. It states that each molecule which 
takes part in the photochemical reaction absorbs one quantum of the light which induces 
the reaction ; that is, one molecule absorbs the entire quantum; the energy of the light beam 
is not spread continuously over a number of molecules. 

If we define the primary act of the photochemical reaction as the absorption of 
the quantum, then the quantum efficiency for the primary act is, by the Stark-Einstein 
law, equal to unity. For each quantum absorbed, one primary act occurs. For any sub
stance X taking part in a photochemical reaction, the quantum efficiency or quantum 
yield for the formation (or decomposition) of X is ¢x and is defined by 

¢x = number of molecules of X formed (or decomposed) 
. 

number of quanta absorbed 
(34. 57) 

More conveniently, if we measure the rate of formation of X in molecules per second, 
dNx/dt, then the quantum yield is 

¢x = dNx/dt 
number of quanta absorbed/second 

The number of quanta absorbed per second is the absorbed intensity, so that 

¢x = dNx/dt . 
fa 

(34.58) 

To determine the quantum yield of the reaction it is necessary to measure the rate 
of reaction and the amount of radiation absorbed. The rate of the reaction is measured 
in any convenient way. Figure 34. 1 5  shows a typical arrangement for measuring the 
absorbed intensity. The reacting system is confined to a cell. The intensity of the trans
mitted beam is measured with the reaction cell empty and with the cell filled with the 
reaction mixture. The detector may be a thermopile, which is a set of junctions of dis
similar metals covered with a blackened metal foil. All the radiation is absorbed on the 
blackened metal and the energy of the radiation is converted to a temperature increase ; 
the temperature increase is converted to a potential difference by the thermopile. The 
device must be calibrated against a standard light source. It has the advantage of being 
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F i g u re 34. 1 5 Schematic d i agrams of apparatus 
for measurement of l i g ht i ntensity. 

Detector 

usable for light of any frequency. Photoelectric cells are convenient detectors but, since 
the response varies with frequency, they must be calibrated for each frequency. 

A chemical actinometer can be used as the detector. The chemical actinometer 
utilizes a chemical reaction whose photochemical behavior has been accurately in
vestigated. For example, the compound, K3Fe(C204)3 , dissolved in a sulfuric acid 
solution decomposes when irradiated ; the C20I - is oxidized to CO2 and Fe3 + is reduced 
to Fe2 + . For wavelengths between 509 nm and 254 nm the quantum yield for the pro
duction of Fe2 + is known as a function of wavelength, varying between 0.86 and 1 .25. 
The Fe2 + formed can be determined very accurately by adding 1 , 1O-phenanthroline, 
which forms a complex with Fe2 + . The absorbance of the complex is measured colori
metrically. Two measurements are made, one with the cell empty and one with the reactive 
mixture in the cell. The first yields the incident intensity, 10 ; the second yields the trans
mitted intensity, 1. The difference, 10 - 1 = la ,  is the absorbed intensity. 

* 34. 1 4 P H OTO P H YS I CA l  P R O C ES S E S ; F LU O R ES C E N C E  
A N D P H O S P H O R ES C E N C E  

Much of what is called photochemistry is in fact concerned with the phenomena of 
fluorescence and phosphorescence in systems that do not undergo any chemical change. 
We will first describe these photophysical phenomena and later discuss photochemical 
processes. Since all of the electrons are paired in the ground state of most molecules, the 
result of the absorption of a quantum of radiation is to unpair two electrons and produce 
an excited electronic state that is either a singlet or a triplet .  The energy levels of the 
molecule then divide, much like the levels of the alkaline earth atoms, into a system of 
singlet levels and a system of triplet levels. Bear in mind that at least some of these excited 
states are bound states that will have vibrational and rotational levels associated with 
them. A typical arrangement of the molecular levels is shown schematically in a Jablonski 
diagram (Fig. 34. 16). The vertical axis measures the energy of the system ; the horizontal 
axis simply spreads the figure for the sake of clarity. 

The singlet and triplet electronic levels are labeled S and T, respectively. Subscripts 
indicate the order of increasing energy ; the superscript v indicates that a molecule has an 
excess vibrational energy ; absence of a superscript indicates that the vibrational energy 
of the molecule is in thermal equilibrium ; a zero superscript indicates that a molecule is 
in the lowest vibrational level. For clarity, the vibrational and rotational levels 'are shown 
equally spaced. 

If the system is initially in the ground state, So , the only quanta that it can absorb are 
those which raise it to some level in another singlet state, S l or S2 in the diagram. (Radiative 
transitions are indicated by solid lines, nonradiative transitions by wavy lines.) Because 



892 Chemica l  K inet ics I I I  

2nd Singlet 

� 

F So 
Ground state 

2nd Triplet 

Ist
=
Triplet i � 

Tf' � 
= T2 

(IC)l E So' �_ 

�� sJ 
�� 

i 
so� Ground state 

F i g u re 34. 1 6 Excited states and photophys ica l  trans it ions between these states in a 
" typica l " organ ic  molecu le .  Rad iative tra ns it ions between states a re g iven by so l id  l i n es, 
rad iation less processes by wavy l i nes;  IC = i nterna l  convers ion,  I S C  = i ntersystem 
cross ing .  Vert ica l  wavy l i n es a re v ibrationa l  relaxat ion processes. Vi brat iona l  and  rotat iona l  
l evels are shown approxi mately eq ua l ly  spaced for  conven ience i n  presentation .  (By 
permission from J .  G .  Ca lve rt and J ames N .  P itts, J r .  Photochemistry, N ew York : John 
Wi ley, 1 966 . )  

of the Franck-Condon requirement, the molecule will most likely be in an excited vi
brational state such as S'l or S2 ' Let us assume that the molecule is in the S2 state and 
examine the various possibilities. 

The thermal equilibration of the vibrational energy within the electronic level S2 
occurs rapidly ; this is represented by the wavy arrow ending at S2 ' The nonradiative 
transition from S2 to Sl' is also rapid ; this is represented by the wavy horizontal arrow and 
is called internal conversion (IC). Note that there is no change in energy in this process, 
whereas the equilibration ofthe vibrational energy entails a loss of energy and therefore 
requires one or more collisions to carry off the excess energy. From the level of Sl' there 
is again a rapid equilibration of the vibrational energy via collisions. In practice, this means 
that after equilibration the system will most probably be in the ground vibrational level 
of S 1 since the vibrational level spacing is large enough to keep all but a few of the molecules 
from occupying the upper states. 

Having reached the lowest level in S l , the system has three paths available for return 
to the ground state, So . 
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Path 1 :  Radiative transition with emission of a quantum of fluorescent radiation, hv'. 
The fluorescent radiation has a lower frequency than that of the absorbed light which 
raised the system from So to S2 ' Since the transition, S 1 -lo So , is permitted by the selection 
rules, it is very rapid. Since it drains the excited level very rapidly, it ceases almost im
mediately after the exciting radiation, which supplies population to the upper state, is 
extinguished. 

Path 2 :  Nonradiative crossing to T'1 followed by rapid vibrational equilibration to T l ' 
This is followed by a radiative transition T 1 -lo So . The radiation emitted is called phos
phorescence. The nonradiative intersystem crossing (IS C) is much slower than the 
vibrational equilibrations, but competes with the fluorescent emission in the molecules 
that exhibit phosphorescence. The radiative transition, T 1 -lo So , is usually very slow 
since the triplet-singlet transition is spin-forbidden by the selection rules. Consequently, 
the phosphorescence persists for some time after the exciting radiation is turned off. 

Path 3a : Nonradiative internal conversion to So' and rapid thermalization of the 
vibrational energy to bring the system to So . 

3b : Nonradiative quenching of S l  by collision. 

We can describe the system under steady illumination by writing the rate equation for 
each process. 

Process Reaction Rate 

Excitation So + hv -lo S l  fa (34.59) 

Fluorescence Sl -lo So + hv' A1 O [S lJ (34.60) 

Fluorescence quenching S l + M -lo So + M k: [SlJ [MJ (34.61)  

Internal conversion S 1 -lo So k7c[S lJ (34.62) 

Intersystem crossing S 1 -lo T1 k7sc[S lJ (34.63) 

Phosphorescence T 1 -lo So + hv" ATS[T1J (34.64) 

Phosphorescence quenching T 1 + M -lo So + M k!'[T 1J [MJ (34 .65) 

Intersystem crossing T 1 -lo So k;sc[T 1J (34.66) 

The k's are the rate constants for the various processes ; the A 1 0 and ATS are the Einstein 
coefficients for spontaneous emission. In this mechanism, M is intended to represent any 
atom or molecule that may be present. Then [MJ, the concentration of M, is proportional 
to the total concentration of all the species in solution ; in the gas phase, [M] is pro
portional to the total pressure. 

The emitted intensity of fluorescence, I:m , is given by 

(34.67) 

If the system is under steady illumination, the [S 1J and [T 1J do not vary with time ; the 
steady-state conditions are 

d[S 1J F S S ---:it = 0 = fa - A1 0ES 1] - kq [S 1J [MJ - kIC[S lJ - kISC[S lJ (34.68) 



894 Chemica l  K i netics I I I  

and 

(34.69) 

We define , F, the fluorescence lifetime, and , p, the phosphorescence lifetime, by 

and 

These definitions reduce Eqs. (34.68) and (34.69) to 

d[S l]  = 0 = I _ 
[S l]  

dt a 
'F 

and 
d[T 1] = 0 = MSC[S l] _ 

[T 1] . dt 'P 

Solving these two equations for [S 1] and [T 1] yields 

(34.70) 

(34.71)  

(34.72) 

(34.73) 

(34.74) 

Using this value of [S l] in the expression in Eq. (34.67), we obtain for the fluorescence 
intensity, 

and for the quantum yield, 
'" I:rn 'l-'F = - = A1 o 'F ·  

Ia 
If we invert Eq. (34.75) and use the value in Eq. (34.70) for 'F ' we find that 

--}, = � (1 + k�c 
+ k�sc) + k:[ M] . 

Iern Ia A 1 0 A l oIa 

(34.75) 

(34.76) 

(34.77) 

A plot of l/I:rn versus [M] , called a Stern-Volmer plot, should yield a straight line. 
From the measured value of Ia and a value of A1 0  we can obtain the quenching constant 0; . The constant A1 0  can be calculated from the measurement of the molar absorption 
coefficient of the absorption band. 

If we assume that every collision is effective in quenching the fluorescence, then the 
rate of quenching is the number of collisions between the excited species, S 1 , and all other 
species, M. The number of collisions is given by Eq. (30.23). 

Thus we expect k: will have the value 

F 2 J8kT 
kq = 1[(712 --, nf.1 

(34.78) 

(34.79) 
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in which a 1 2 is the average.ofthe two molecular diameters. The factor, 1tai2 , is the collision 
cross section. In fact, the values of k: calculated by Eq. (34.79) are usually larger than the 
experimental values. If we define a quenching cross section, 1ta: such that 

F 2J8kT (kq )meas = 1taq -- , 
1tJ1, 

(34.80) 

then the ratio, (k:)meas/(k:)colb is equal to the ratio of the quenching cross section to the 
collision cross section : 

(k:)meas 1ta: 
F = -2- ' (kq )coll 1ta 1 2 

Some values of the ratio (1ta:)/(1tai2) for quenching the fluorescence of N02 are given in 
Table 34.2. These values indicate that the effectiveness of a molecule in quenching fluore
scence increases as the number of internal modes of motion increases. For example, if a 
helium atom or argon atom collides with an activated molecule, the excess energy can only 
be drained off into translational energy of the colliding atom. This process is not very 
effective in dissipating the excitation energy and, as a result, the relative cross sections of He 
and Ar are quite small. The value 0.04 can be taken to mean that 1/0.04 = 25 collisions are 
required to quench the excitation. Looking at the diatomics, we find that H2 is relatively 
ineffective while O2 and N2 are only slightly more effective. Although these molecules do 
have a vibrational mode, the vibrational quantum is so large that it is not effective in 
quenching. Molecules with small spacings between the vibrational and rotational energy 
levels are more effective than those with larger spacings. Consequently, molecules with 
more modes of motion and heavier atoms are noticeably more effective. Heavy atoms lower 

Tab le  34. 2  
C ross sect ions f o r  quench ing  N 0 2  f luorescence by 

d i fferent gases (excitat ion wave length = 435 .8 nm)  

1tU; 
Quenching gas 1tu;/ 1O- 20 m2 1tUI2/ 1O- 20 m2 1tUt} 
He 1 .6 34.2 0 .04 
Ar 3 . 8  44.0  0.08 
H2 2 .5  38 . 3  0 .06 
N2 5 .0  48 . 7  0. 10 
O2 6.0 46.2 0. 13  
NO 9 . 7  47 .4 0.20 
<;:H4 7 .9  50.2 0 . 1 6  
N20 1 1 .9 50.2 0 .24 
N02 1 3 . 5  5 5 . 3  0 .24 
CO2 1 3 . 8  5 1 . 5  0.27 
SF6 25 .7  72 . 5  0 . 35  
CF4 24. 5  6 1 . 9  0 .39 
H2O 28 . 3  59 . 3  0.48 

From G. H. Myers, D. M.  Silver, and F. Kaufman, J. Chern. Phys. 
44, 7 1 8  ( 1966). 
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the sizes of  the vibrational and rotational energy quanta ; similarly, complex molecules 
have bending vibrational modes, which have low energy quanta. Polar molecules, such as 
water, are particularly effective. 

Note that if the system does not exhibit phosphorescence this implies that Mse = O. 
Then the value of Me can be determined from the intercept of the Stern-Volmer plot if A 1 0 
is known. 

If phosphorescence does occur, then 

I:m = ATS[T 1] . (34.8 1) 

The value of [T 1J is given by Eq. (34.74), so that 

(34.82) 

The quantum yield for phosphorescence is 

(34.8 3) 

Using Eq. (34.76) we can write this in the form 

(ATS) S <pp = <PF A 1 0 
krse 'Cp · (34.84) 

By inverting this equation and using the value in Eq. (34.71) for 'Cp , we have 

� = � (A1 0) {ATS + kr�e + k�[MJ} . <pp <PF ATS krse 
(34.8 5) 

If both <PF and <pp have been measured as a function of the total concentration, [MJ , a 
Stern-Volmer plot of l/<pp versus [MJ can yield the quenching cross section for phos
phorescence and the ratio, krse/k�se , if the Einstein coefficients are known. 

* 34 . 1 5 F LAS H P H OTO LYS I S  

While the steady-state measurements made under continuous illumination yield ratios of 
rate constants, the absolute values of the rate constants can be determined from a study of 
the transient phenomena (such as the decay of fluorescence or phosphorescence) that 
appear after the interruption of the incident radiation. Flash photolysis is an important 
method for studying transients in a photochemical system. 

The apparatus for a flash photolysis experiment is shown in Fig. 34. 17 .  The reactive 
materials are irradiated with an intense flash of " white " light, which provides a continuum 
of wavelengths from the infrared to the vacuum ultraviolet. The energy for the flash is the 
energy stored in a large capacitor (� 10 J.LF) charged to about 10 kV. When the capacitor is 
discharged through a tube containing an inert gas (such as krypton) at about 100 mq:t 
pressure, a brilliant flash of light is produced. This intense light falling on the system raises 
the material to a variety of excited states and produces a variety of active intermediates. 
The duration of the flash ranges from 1 to 100 J.LS. The energy is determined by the capacity 
and the voltage, U = iCV2 ; the time of the flash depends on the electrical resistance, which 
is proportional to the length of the flash tube, the capacitance, and the inductance of the 
circuit. Energies of the order of 1000 J per flash are usual. 
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F i g u re 34. 1 7 Schematic d iag ram i l l u strat ing  the pr i nc ip le  of the f lash photolysis 
tec h n ique .  ( By permiss ion from G. Porter, Flash photolysis, Technique of Organic 
Chemistry, vol .  V I I I  part I I .  S. L. Fr iess, E. S. Lewis, and  A. Weissbu rger, eds. N ew 
York:  I ntersc ience, D iv. of John  Wi ley, 1 963. ) 

After the system is exposed to the flash, a time-delay circuit fires a low-energy flash 
from the monitoring flash tube. This beam of light passes through the excited species 
produced by the first flash and an absorption spectrum is recorded on the spectrograph. 
By varying the delay time, we can observe the rate of decay of the various species. Alter
natively, after making an initial spectrographic study to determine the identity of the 
species present, we can choose a particular wavelength and measure the absorption at 
this wavelength as a function of time ; we do this by replacing the monitoring flash tube 
with a continuous source such as a tungsten filament lamp. When we place a mono
chromator in the optical path, the transmitted radiation is collected in a phototube 
whose output we can monitor on an oscilloscope. By this means we can follow the concen
tration of a selected species as a function of time. 

We can interpret the transient behavior of S 1 by using the mechanism given above but 
modifying it by setting I a = 0 since the source has been extinguished. Then instead of the 
steady-state condition, Eq. (34.72), we have 

d[S l] 
dt 

This is the first-order rate law, which on integration yields 

[5 1J = [5 1J o e - t/rF. 

(34.86) 

(34.87) 

Using this result in Eq. (34.67), we obtain the expression for the decay of the emitted 
fluorescence intensity with time. 

(34.88) 

where (Ifm)o is the emitted fluorescence intensity at the time when the incident radiation is 
turned off. Measurement of , F as a function of concentration yields the value of k: from the 
the plot of l/'F versus [M] , and the sum, A 1 0 + k�c + k�sc , from the intercept ; see Eq. 
(34.70). 
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We can treat the decay of  the phosphorescence similarly. Instead ofsettingd[T 1J/dt = 0 
as in Eq. (34.73), we write 

d[T 1J = k�SC[S lJ _ 
[T 1J . 

dt 'P 

Using the value of [S l J from Eq. (34.87) and rearranging, we have 

d[T 1J + 
[T 1J 

_ kS [S J - t/tF - ISC 1 o e . dt 'P 

(34.89) 

Since the initial concentration of S l is the steady-state concentration under illumination, 
we may use Eq. (34.73) and set k�sc[S 1J O  = [T 1J O/' p , so that this equation becomes 

d[T1J + 
[T1J = [T1Jo e- t/tF

. dt 'P 'P 

This equation can be easily integrated if we substitute for [T 1J : 

It then becomes 

dF 
dt 

in which 
1 1 1 

This equation integrates directly to 

F = [T 1J O  1 + � - � = [T 1J O  
'P - 'F e ( - tit) ( - tit) 

'P 'P 'P - 'F 

since F(O) = [T 1J O ' Then Eq. (34.91) becomes (,p e- t/tp _ 'F e- t/tF) 
[T1J = [T 1J o . 

'P - 'F 

Inserting this expression in Eq. (34.8 1), we obtain (, e - t/tp _ , e- t/tF) 
I�m = (I�m)o 

P F 
, 

'P - 'F 

(34.90) 

(34.91) 

(34.92) 

(34.93) 

in which we have set ATS[T 1J O  = (I�m)o , the initial value of the phosphorescence in
tensity. 

Ordinarily 'F is many orders of magnitude smaller than 'p . Typically, 'F < 10- 7 s, 
while , P ::>;; 1 to 10 s . This means that , P - 'F :::::; 'p . It also means that after a few multiples 
of 'F (a few microseconds) have elasped, the term in exp ( - t/rF) has decayed to a negligible 
value and we are left with a simple exponential decay for the p�()sphorescence : 

(34.94) 

The existence of the nonzero lifetime, 'F ' introduces a very slight deformation in the curve 
of I�m versus t at very short times but does not affect the rate of decay at longer times. 

Since the flash produces relatively large populations in the excited states, it is possible 
to 0 bserve the absorption spectrum of some of these excited species ; for example, transitions 
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from an excited singlet state to higher singlet states, and transitions from the triplet state 
to the higher triplet states. This method has yielded an abundance of information about 
the energy levels of molecules. 

34. 1 6 A B SO R PTI O N  A N D E M I S S I O N  S P ECTRA O F  
O R G A N I C  M O LE C U LES 

When the molecules in  a given electronic state are thermally equilibrated, most of  them are 
in the lowest vibrational level of that state. Therefore the absorption spectrum consists of a 
band that originates in the lowest vibrational level of the ground electronic state. Con
versely, since the internal conversion process after excitation is very rapid, all the excited 
species are quickly drained down to the lowest vibrational level of S 1 ' The fluorescence 
emitted originates in the lowest vibrational level of S 1 and terminates in the various 
vibrational levels of So . The energy levels for these transitions are shown in Fig. 34. 1 8 .  It 
is clear that absorption involves larger energy quanta than does emission ; consequently, 
the absorption band is in a shorter wavelength region than the emission band. The ground
state to ground-state transition is the same for both. If the vibrational-level spacings are 
about the same in the two states, the emission spectrum will appear to be the mirror image 
of the absorption spectrum (at least the position of the lines on a frequency scale will 
appear so). Whether the intensities match depends on the overlap of the wave functions in 
the two states. Figure 34. 19  shows the effect for anthracene in three different physical 
states. The numbers in the figure for the vapor phase are the vibrational quantum numbers 
in the upper (prime) and lower (double prime) states . The O�O bands for absorption and 
fluorescence are separated because the molecule in the excited state has a long enough 
lifetime to equilibrate with its neighbors and thus lower its energy slightly before the 
fluorescence occurs . There is not enough time for this energy adjustment to occur during 
the absorption process. The shift to lower frequencies (red shift) In solution and in the solid 
phase is typical ; it is the result of the interaction of the molecule with its neighbors . 

SO ����-L-----L------� '----v----' � 
Absorption Emission 

Increasing A 
F i g u re 34.1 8 Trans it ions i n  a bsorpt ion 
and  emissio n .  
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F i g u re 34. 1 9  Absorpt ion (shaded cu rves) and f luorescence spectra of 
anthracene in vapor, so lut ion,  and sol i d  phases. Arrows i nd icate the 0-0 bands.  
Note the red sh ift and i nc reased separat ion of the 0-0 bands i n  go ing to the so l i d  
phase. Other vibron ic bands  a re shown fo r  the vapor. ( From J .  G .  Ca lvert and  
J .  N .  P i tts, J r. Photochemistry. N ew York : J o h n  Wi ley, 1 966 . )  

34. 1 7 A B S O R PTI O N  WITH D i S S O CI AT I O N  

A common class of photolytic reactions consists of those in which the primary photo
chemical act is absorption of the quantum by a molecule followed by dissociation of the 
molecule : 

M + hv -------+ Fragments. 

Since the fragments produced are often atoms or free radicals, this primary step frequently 
initiates a chain mechanism, whose occurrence may be indicated by quite large values of 
the quantum yield, although a chain reaction can occur with very small values of the 
quantum yield. 

Ordinarily the energy required for an absorbed light quantum to produce dissociation 
of a molecule is significantly greater than the thermodynamic dissociation energy of the 
molecule. The reason is simply that for radiation to be absorbed there must be an upper 
electronic state to which the system can be transported by the absorbed quantum. The 
potential energy diagram for 1z is shown in Fig. 34.20. The absorption band of 1z is due to 
the transition from the lowest vibrational level ofthe 1 L ;  state to the levels in the 3nriu state. 
The band converges to a continuum at 499.0 nm. At this wavelength the energy of the 
transition is sufficient to bring the molecule to that required to dissociate the molecule into 
two iodine atoms, one of which is in the excited state, z P l /Z  . Strictly speaking, the transition 
from 1}2 ;  to 3nriu should be spin-forbidden, but because of the large number of electrons 
in the 1z molecule this prohibition is relaxed. The transitions from the ground state to 
3n lu and 3}2 � are very weak. From the diagram we see that the thermodynamic dissociation 
energy is only 148.7 1 kllmol while the energy of a 499 nm quantum is 239.73 kJ/mo!. It 
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( From J .  G .  Ca lvert and J .  N .  P itts, J r. Photochemistry. N ew York : John  Wi ley, 
1 966 . )  

follows that the excitation energy for an iodine atom from 2 P 3 /2 to 2 P 1 /2 is 9 1 .02 kJ Imol. 
The dissociation process can be written 

12 + hv --------* Ie p 3/2) + Ie p 1/2), 
More often we would simply write 

12 + hv --------* I + 1*, 

it < 499 nm. 

it < 499 nm, 

indicating by the asterisk that the iodine atom is in an excited state. Table 34.3 shows some 
reactions together with the wavelengths below which the dissociation occurs . 

In the case of oxygen the continuum begins at 175 .9 nm corresponding to a transition 
from the 3�;  state to the 3� �  state. As indicated, the dissociation produces one normal 
and one excited oxygen atom. 

The case of HI is unusual in the sense that all the upper states of HI are repulsive. 
Depending on the wavelength, the iodine atom may or may not be in an excited state. But 
in all instances the product atoms have a large amount of excess kinetic energy. Because of 
the great differences in the masses of the H atom and the I atom, most of this excess energy 
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Tab le  34.3 
Wavelengths requ i red to d i ssociate 

s imp le  molecu l es 

Reaction 

Hz + hv � H(ls) + H*(2s or 2p) 
Oz + hv � Oep) + O*eD) 
Clz + hv � CI + CI* 
Br z + hv � Br + Br* 

Iz + hv � ICZP3/z) + I*CZP1 /Z) 
HI + hv � H + I 

NOz + hv � NO + 0 
NH3 + hv � NHz + H 
HzO + hv � H + OH 

o 
I I  

R-C-H + hv � R + CHO 
o 
I I  

R-C-R + hv � R + RCO 

Alnm 

< 84.5 
< 175 .9  
< 478 . 5  
< 5 1 1 .0 
< 499 .0 
< 327 
< 366 
< � 220 
< 242 

< � 330 

< � 330 

is given to the hydrogen atom, which is then referred to as a " hot " atom. Figure 34.2 1 
shows the transitions from a bound state to two different repulsive excited states. When the 
molecule is excited from the ground vibrational state to the state at point B, the excess 
energy labeled I1E is an amount beyond that needed to dissociate the molecule to normal H 
and I atoms. This excess energy winds up as the kinetic energy of a hydrogen atom in its 
ground electronic state. Depending on which states are involved, the excess kinetic energy 
can be very large. 

1000 

� 800 

� � 600 � 
400 

200 

o 400 600 
Internuclear distance/pm 

F i g u re 34.21 Potenti a l  energy cu rves for the 
lowest e lectron ic  states of H I .  (Adapted from J .  G .  
Ca lvert and J .  N .  P itts, J r .  Photochemistry. N ew 
York :  J o h n  Wi ley, 1 966 . )  



Examples of P hotochemica l  R eact ions 903 

34. 1 8 EXA M P LE S  O F  P H OTOC H E M I CA L  R EACTI O N S  

34. 1 8 . 1  The P h oto lys is  o f  H I  

The kinetics of two photochemical reactions will be compared with the kinetics of the 
thermal reactions . In the absence of light, hydrogen iodide decomposes by the elementary 
reaction : 

or possibly 
2 HI -------> H 2 + 2 I. 

In the initial stages the reverse reaction can be ignored. In either case the rate of reaction 
can be written 

In the photochemical reaction, at wavelengths below about 327 nm, the mechanism is 

HI + hv 
H + HI 

H + I, 

H2 + I, 

Rate = la ,  

Rate = k2 [H] [HI] ,  

Rate = k3 [IY 

Other possible elementary reactions either have much higher activation energies or require 
three-body collisions. The rate of disappearance of HI is 

- d[HI] 
dt 

= 1a + k2 [H] [HI] . 

The steady-state requirement is 

Cortlbining these two equations, we obtain 

- d[HI] = 21 
dt a (34.95) 

By definition the quantum yield is cjJ = ( - d[HI]/dt)/la ,  so that, from Eq. (34.95) we find 
that cjJ = 2. In a variety of experimental situations, the observed value of cjJ is 2. 

The interesting point about the photochemical reaction is that the rate, by Eq. (34.95), 
is simply twice the absorbed intensity and is not directly dependent on the concentration 
of HI. This fact implies that the reaction is very slow, since even fairly intense light sources 
do not produce a very large number of quanta per second. The dependence of rate on 
intensity can be readily verified by altering the distance between the system and the light 
source. The incident intensity varies inversely as the square of the distance, so for a given 
cell and given concentration of HI, the absorbed intensity must vary in the same way. 
Indirectly, the rate depends on the concentration of HI, since the absorbed intensity is 
dependent on concentration through Beer's law. 
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34. 1 8 . 2  The P h otoc h e m i ca l  React i o n  between H 2 a n d  Br  2 

The photochemical reaction between H2 and Br 2 follows a kinetic law which resembles that 
for the thermal reaction, in contrast to the decomposition of HI, where the kinetics are 
quite different. Using light of wavelength less than 5 1 1  nm, the mechanism of the photo
chemical reaction between H2 and Br 2 is 

Br2 + hv ----+ 2 Br, 

Br + H2 
k2 ----+ HBr + H, 

H + Br2 � HBr + Br, 

H + HBr � H2 + Br, 

2 Br � Br2 · 
The rate of formation of HBr is the same as that given in Eq. (32.65) for the thermal 
reaction 

The steady-state conditions for H atoms and Br atoms are 

Addition of these two equations yields 2ks [Br] 2 = 21a , so that 

[Br] = (�:r /2
. 

This result in either of the steady-state equations yields ultimately 

H _ 

(kf, )I!I' 
[ ] - k3 [Br2] + k4 [HBr] ' 

These values in Eq. (34.96) bring it to the form 

d[HBr] _ 
(�)n/2 [H2] 

dt -
1 + k4[HBr] 

. 

k3 [Br2] 

(34.96) 

(34.97) 

The expression in Eq. (34.97) is very similar to that for the thermal reaction where the factor 
I� /2 is replaced by ki /2(Br2) 1 /2 . This means that the bromine atom concentration is main
tained by the photochemical dissociation of bromine rather than the thermal dissociation. 
The dependence on the square root of the intensity is notable, since it has the consequence 
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that the quantum yield is inversely proportional to the square root of the intensity : 

d [HBr] 
dt ¢ = --,--fa 

As the intensity increases, a greater proportion of the bromine atoms formed are converted 
to Br 2 instead of entering the chain ; most of the additional quanta therefore are wasted, 
and the process is less efficient. Because k2 is very small, the quantum yield is less than unity 
at room temperature in spite of the fact that the HBr is formed in a chain reaction. As the 
temperature increases, the increase in k2 increases the quantum yield (ks is nearly inde
pendent of temperature). 

34. 1 9 P H OTOS E N S I TI Z E D  R EACTI O N S  

Photosensitized reactions make up an important class of photochemical reactions. In these 
reactions the reactants are mixed with a foreign gas ; mercury or cadmium vapor are often 
used. The primary photochemical act is the absorption of the quantum by the foreign atom 
or molecule. 

If a mixture of hydrogen, oxygen, and mercury vapor is exposed to ultraviolet light, the 
mercury vapor absorbs strongly at 253 .7 nm with the formation of an excited mercury 
atom, Hg* : 

Hg + hv -------* Hg*. 

The energy corresponding to this wavelength is 471 . 5  kJ/mol. The energy required to 
dissociate a molecule of hydrogen in its ground state to two hydrogen atoms in their 
ground state is 432.0 kllmol. The dissociation of oxygen requires 490.2 kllmol. The 
energy possessed by the excited mercury atom is more than enough to dissociate H2 but not 
enough to dissociate O2 . The quenching reaction 

Hg* + H2 -------* Hg + H + H 

introduces H atoms into the mixture, which can initiate chains to form H20 by the usual 
mechanism. A reaction that is initiated by light in this way is a photosensitized reaction ; 
the mercury is called a sensitizer. 

The importance of photosensitization derives from the fact that reaction is produced in 
the presence of the sensitizer in circumstances where the direct photochemical dissociation 
is not possible. The example just cited is a case in point. Radiation of wavelength 253 .7 nm 
was absorbed by a mercury atom. The excited mercury atom dissociated a molecule of 
hydrogen by transferring the excitation energy in a collision. The mercury atom had 
471 . 5  kl ; of this 432.0 kJ were needed for the dissociation ; 39 .5 kJ are left over and go into 
additional translational energy of the two hydrogen atoms and the mercury atom. If the 
attempt is made to dissociate Hz directly by the process 

H2 + hv -------* H + H, 

we find that light of A = 253.7 nm will not produce any dissociation even though it still has 
the 471 . 5  kJ, which is more than enough if we consider only the thermodynamics of the 
process. For the direct absorption to produce dissociation, the wavelength must lie in the 
absorption continuum ; for H2 the continuum begins at 84.9 nrn. The absorption of light 
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in  the continuum produces at least one atom in  an excited state : 

H2 + hv -------+ H + H*, II. � 84.9 nm. 

As we have seen, the selection rules that govern the absorption of radiation forbid the direct 
absorption ofa quantum by H2 to yield two H atoms in their ground state ; thus a quantum 
oflight does not necessarily produce dissociation even though it may have sufficient energy. 
The quantum must have enough energy to produce the dissociation in the special way 
required by the selection rules. The transfer of energy in a collision is not limited by this 
requirement, and so sensitization can produce dissociation. 

The decomposition of ozone sensitized by chlorine is another example of photo
sensitization. Ozone is stable under irradiation by visible light. The absorption continuum 
begins at about 290 nm. In the presence of a little chlorine, ozone decomposes rapidly. 
The chlorine absorbs continuously below 478 . 5  nm : 

Cl2 + hv -------+ 2 Cl, II. � 478 . 5  nm. ' 

The chlorine atoms react with ozone in a complex chain mechanism. Bromine is also 
effective as a sensitizer for this decomposition. 

The decomposition of oxalic acid photosensitized by uranyl ion is a common actino
metric reaction. The light may have any wavelength between 250 and 450 nm. The 
absorption of the light quantum activates the uranyl ion, which transfers its energy to a 
molecule of oxalic acid, which then decomposes. The reaction may be written 

UO� + + hv -------+ (UO� +)* 

(UO� +)* + H2C204 -------+ UO� + + H20 + CO2 + CO. 

The quantum yield depends on the frequency of the light, varying between about 0.5 and 
0.6. After a measured period of time, the light is turned off and the residual oxalic acid 
determined by titration with KMn04 ' From these data and knowing the original amount 
of oxalic acid, the intensity is calculated using the value of the quantum yield appropriate' 
to the frequency of light used. 

A practical example of photosensitization is in the use of certain dyes in photographic 
film to render the emulsion sensitive to wavelengths that are longer than those to which it 
ordinarily responds ; for example, infrared photography, which permits photographs of 
objects in the absence of visible light. 

34 . 20 P H OTOSYNT H ES I S  

The synthesis o f  the compounds required for the structure and function o f  plants is 
sensitized by chlorophyll, the principal constituent of green-plant pigments. Chlorophyll 
exhibits two strong absorption band!> in the visible region, a band between about 600 and 
680 nm and another between 380 and 480 nm ; it is the long wavelength region that 
apparently is most efficient in photosynthesis . In addition, there is a molecule, apparently 
a particular form of chlorophyll-a, which absorbs at 700 nm. This form is crucial to the 
photosynthetic mechanism. The other plant pigments such as the carotenes and the phyco
bilins contribute through their ability to absorb light and transfer the excitation energy to 
chlorophyll-a . 

The photosynthesis reaction of classical chemistry was written in the form of the over
all transformation 
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The (CH20)n is the general formula for a carbohydrate. It was then assumed that the 
energy stored in the carbohydrate was used in other chemical reactions to synthesize all 
the other plant materials (proteins, lipids, fats, and so on). It is now clear that amino acids, 
for example, are immediate products of the photosynthetic reduction of carbon dioxide, 
and that carbohydrate need not be synthesized first. This is not to minimize the importance 
of the photosynthesis of carbohydrate, but only to note that many other types of com
pounds are produced photosynthetically. The overall mechanism and many of the details 
of the carbon reduction cycle, CO2 to carbohydrate, were worked out by Melvin Calvin and 
his colleagues, for which he received the Nobel Prize. 

The gathering of energy occurs via the plant pigments ; the energy is transferred to 
chlorophyll-a, which in one form transfers the energy to oxidize water to oxygen and in the 
other form ultimately reduces the compound nicotinamide adenine dinucleotide phosphate, 
NADP, to NADPH. It is the reducing ability ofNADPH that ultimately brings the CO2 to 
(CH20)n ' 

These reactions are mediated through many steps by enzymes, and labile intermediate 
compounds. It is apparent that between 6 and 12 moles of quanta are required to convert 
one mole of carbon to carbohydrate. It is an intricate mechanism requiring several stages of 
pumping energy uphill. 

34. 21 T H E P H OTOSTATI O N A R Y  STATE 

Absorbed light has an interesting effect on a system in chemical equilibrium. The absorp
tion of light by a reactant can increase the rate of the forward reaction without directly 
influencing the rate of the reverse action ; this disturbs the equilibrium. The concentration 
of products increases somewhat, increasing the rate of the reverse reaction. In this way the 
rates of the forward and reverse reaction can be brought into balance with the system 
having a higher concentration of products than that in the equilibrium system. This 
new state is not an equilibrium state but a stationary state, called a photostationary state. 

The dimerization of anthracene offers a convenient example. The reaction 

2A � A2 

occurs upon irradiation of a solution of anthracene by ultraviolet light. A plausible 
mechanism is 

A + hv � A* Rate = la , , 

A* + A � A2 , Rate = k2 [A*] [A] ,  

A* -----+ A + hv', Rate = k3 [A*], (fluorescence) 

A2 -----+ 2A, Rate = k4[A2] .  

The net rate o f  formation of A2 is 

(34.98) 

In the steady state, d[A*]/dt = 0, so that 

or [A*] _ la 
- k2 [A] + k3 

(34.99) 

In the photo stationary state we have the additional requirement that d[A2]/dt = 0 ;  so 
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that Eq. (34.98) yields for the concentration o f  Az , 

[Az] = 
kz [A*] [A]

. 
k4 

Using the value for [A *] from Eq. (34.99), we obtain 

If the concentration of monomer , [A] ,  is very large, then this becomes 

fa 
[Az] = k4

' (34. 100) 

The difference between Eq. (34. 100) and the usual equilibrium expression [Az] = K[A] Z, 
should be noted. In the photo stationary state in the condition for which Eq. (34. 100) is 
appropriate, the concentration of dimer is independent of the concentration of monomer. 

Many other examples of the photostationary states are known. The decomposition of 
NOz occurs photochemically below � 400 nm. 

while the reverse reaction is a dark reaction. 
The maintenance of a certain amount of ozone in the upper atmosphere is the result of 

a complex photostationary state. The ozone filters the sun's rays so that no radiation of 
wavelength shorter than about 290 nm reaches the earth's surface. Ozone absorbs strongly 
at wavelengths shorter than this . This fortunate circumstance of the ozone layer makes life 
possible on earth. Radiation of wavelengths shorter than this produces severe damage and 
in many cases has a lethal effect on living cells. The effective thickness of the ozone layer is 
estimated at about 3 mm if the gas were at standard pressure and temperature. Since 
halogen atoms catalyze the decomposition of ozone, the accumulation of halogen atoms in 
the upper atmosphere from the photolytic decomposition of fluorocarbons has prompted 
grave concern over the massive commercial use ofthese compounds. A significant depletion 
of the ozone layer could have serious adverse effects on life forms on earth. 

34 . 22 C H E M i lU M i N ES C E N C E  

Reactions of the ordinary thermal type in which some intermediate or the product itself are 
formed in an electronically excited state exhibit chemiluminescence. The excited molecule 
emits a quantum of light, usually in the visible spectrum. Since the reaction may be pro
ceeding at ordinary temperatures, the light emitted is sometimes called " cold light," 
presumably to contrast it with the " hot light " emitted by a flame or incandescent body. 
The oxidation of 3-amino phthalic cyclic hydrazide, luminol, in alkaline solution by 
hydrogen peroxide is a classic example. A bright green light is emitted. 

The greenish glow of slowly oxidizing phosphorus is apparently due to the formation 
of an oxide in an excited state. The light of the firefly and the light emitted by some micro
organisms in the course of metabolism, bioluminescence, are other examples of chemilum
inescence. The phosphorescence observed in marshy areas, the will 0' the wisp, is apparently 
due to a slow oxidation of rotting organic material. 
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34.1 Discuss the similarities and differences between the surface decomposition rate law, Eq. (34. 5), 
and the Lindemann rate law, Eq. (32 .61 ) .  

34.2 Discuss the Case 3 surface decomposition rate, Eq .  (34. 19), in terms of the competition of 
reactants A and B for the available surface sites .  

34.3 Estimate the activation energy decrease by a catalyst required to triple a reaction rate at 300 K. 

34.4 Argue that the Eq. (34 .37) ,  when applied at equilibrium, is consistent with the Nernst equation. 
34.5  Why doesn't the exchange current io vanish at equilibrium? 
34.6 What is the meaning of (X in Eqs . (34.29) and (34. 30) ? lf the potential rjJ is approximately linear 

in the separation of a metal ion from the metal through the double layer, what does the typical 
value (X = 1/2 suggest about the symmetry of the chemical Gibbs energy (ilGt) behavior as a 
function of this separation ? 

34.7 Contrast fluorescence and phosphorescence in terms of (a) routes available to relevant electronic 
states, (b) the wavelengths involved, and (c) radiative lifetimes. 

34.8 Would the fluorescence emission spectrum of a molecule depend on time if internal conversion 
processes were not rapid ? Explain. 

34.9 How could absorption with dissociation of a diatomic combined with fragment energy measure
ments be used to determine dissociation energies ? 

34.10 Organic singlet SI and triplet T 1 states often undergo different reactions . T 1 can sometimes be 
produced directly from So by a so-called triplet sensitizer. What advantage does this have over 
irradiation of So if only the product from T 1 is desired? 

P R O B LE M S  

34.1 The diffusion coefficient of many species in aqueous solutions is of the order of 10 - 9 mZ/s. In a 
well-stirred solution, () = 0.001 cm. If the concentration of the reactant molecule is 0 .01 
mole/litre., what will be the rate of the reaction if the slow step is diffusion of the reactant to the 
surface ? The concentration of the reactant at the surface may be taken as zero, since it reacts 
very rapidly on arrival at the surface .  

34.2 a)  Using data from Table 34. 1 ,  compare the relative rates of the uncatalyzed decomposition 
of HI at 400 K and 500 K.  

b)  Compare the relative rates of the catalyzed decomposition of HI on platinum at  400 K and 
500 K.  

34.3 What conclusions can be reaclied about absorption on the surface from each of the following 
facts ? 
a) The rate of decomposition of HI on platinum is proportional to the concentration of HI. 
b) On gold the rate of decomposition of HI is independent of the pressure of HI. 
c) On platinum, the rate of the reaction SOz + iOz -> S03 is inversely proportional to the 

pressure of S03 . 
d) On platinum the rate ofthe reaction COz + Hz --> HzO + CO is proportional to the pressure 

of CO2 at low COz pressures and is inversely proportional to the pressure of COz at high 
COz pressures. 

34.4 The galvanometer in a potentiometer circuit can detect ± 10- 6 A. The io for hydrogen evolution 
is 10- 1 4 A/cmz on mercury and lO - z A/cmz on platinum. lf the electrode area is 1 cmz, over 
what range of potential will the potentiometer appear to be in balance (a) if platinum is used as 
a hydrogen electrode ? (b) if mercury is used as a hydrogen electrode ? (Assume that the relation 
between i and I) is linear ; t = 20 °C.) 
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34.5 By  passing a current through a ferric sulfate solution, 1 5  cm3 o f  O2 at STP is liberated at the 
anode and the equivalent quantity of ferric ion is reduced to ferrous ion at the cathode . If the 
anode area is 3 .0  cm2 and the cathode area is 1 . 2  cm2 , what are the rates of the anodic and 
cathodic reactions in A/cm2 ? The current passes for 3 .5  min. 

34.6 The exchange current measures the rate at which the forward and reverse reactions occur at 
equilibrium. The exchange current for the reaction !H2 ¢ H +  + e - on platinum is 10- 2 A/cm2 . 

a) How many hydrogen ions are formed on 1 cm2 of a platinum surface per second ? 
b) If there are 101 5 sites/cm2 for absorption of H atoms, how many times is the surface occupied 

and vacated in 1 second ? 
34.7 Consider the oxidation reaction Fe -> Fe+ 2 + 2e- . 

a) By how much does the activation Gibbs energy change from its equilibrium value if an over
potential of + 0. 100 V is applied to the anode ? Assume IX = !, and t = 25 °C. 

b) By what factor does this increase i+ over the io ? 
34.8 Silver is deposited from a O. lO mol/L Ag+ solution. For the reaction Ag+ + e - -> Ag, IX = 0 .74, 

io = 4.5 A/cm2 when [Ag+] = 0. 10 mol/L at 20 DC. Calculate the overpotential for current 
densities of 10- 3, 10- 2 , 10- 1 , and 1 A/cm2• 

34.9 A solution contains 0.Q l mol/L Cd 2 + and 0. 10 mol/L H + . For hydrogen deposition on cadmium, 
Eq. (34.42) represents the situation if io = 1 0 - 1 2 A/cm 2 , Z = + 1, and IX = !; the same equation 
represents the current voltage curve for cadmium deposition if IX = ! and io = 1 . 5  mA/cm2 . 
The equilibrium potential of the Cd2 + + 2e- ¢ Cd reaction is - 0.462 V, in 0.01 mol/L Cd2 + 
solution and the equilibrium potential of the 2 H +  + 2e- ¢ H2 couple is - 0.060 V in 0 . 10 
mol/L H+ solution at 25 °C. 
a) At what current density will cadmium deposition commence ? 
b) When the current density is - 1 .0 x 10- 3 A/cm2 what fraction of the current goes into hydro

gen evolution ? 
34.10 Suppose that a piece of cadmium is touched to a piece of platinum, and the metals are immersed 

in a 0. 1 mol/L acid solution. Calculate the corrosion potential and the rate of dissolution of the 
cadmium for various ratios of the areas : Apt/ACd = 0 .01 , 0. 10, 1 .0, 10, and 100. For hydrogen 
evolution on platinum, Eq. (34.42) may be used with io = 0. 10 mA/cm2, Z = + 1, and IX = l 
For cadmium dissolution io = 1 . 5  mA/cm2 and IX = l The equilibrium potentials are : </>O(H + .  H2 ) = 
-0.060 V ;  </>O(Cd2 + . Cd) = -0.462 V at 25 °C. 

34. 1 1  Use the data in Problems 34.9 and 34. 10 and suppose that a piece of cadmium is immersed in an 
acid solution. What is the corrosion potential and what is the rate of dissolution of the cadmium 
if the area ratios are : AJ Aa = 1 .0, 1 03, 106 , and 109 ? 

34.12 A 0.01 molar solution of a compound transmits 20 % of the sodium D line when the absorbing 
path is 1 . 50 cm. What is the molar absorption coefficient of the substance ? The solvent is 
assumed to be completely transparent. 

34.13 If 10 % of the energy of a 100 W incandescent bulb goes into visible light having an average 
wavelength of 600 nm, how many quanta of light are emitted per second ? 

34.14 The temperature of the sun's surface is 6000 K. What proportion of the sun's radiant energy is 
contained in the spectrum in the wavelength range 0 ::;; A ::;; 300 nm ? (See Problem 19 .3 . )  

34.15 The ozone layer is estimated to be 3 mm thick if the gas were at 1 atm and 0 0C. Given the 
absorption coefficient IX (defined by J = Jo I0-·pl where p is the pressure in atm and l is the length 
in cm). What is the transmittance to the earth's surface at each of the following wavelengths ? 

A/nm 340 320 3 10  300 290 280 260 240 220 

IX/cm- 1 atm - 1 0 .02 0 .3 1 .2 4.4 12 48 130 92 20 
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34.16 At 480 nm, the quantum yield for the production of Fe+ 2 in the photolysis of K3Fe(C204)3 in 
0.05 mol/L sulfuric acid solution is 0 .94. After 20 min irradiation in a cell containing 57.4 em3 
of solution, the solution is mixed thoroughly and a 10 .00 mL sample is pipetted into a 25.00 mL 
volumetric flask. A quantity of 1, lO-phenanthroline is added and the flask filled to the mark with 
a buffer solution. A sample of this solution is placed in a 1 .00 cm colorimeter cell and the trans
mittance measured relative to a blank containing no iron.  The value of 1110 = 0 . 543 . If the 
molar absorption coefficient of the complex solution is 1 . 1 1  x 103 m2/mol, how many quanta 
were absorbed by the solution ? What was the absorbed intensity? 

34.17 The quantum yield of CO in the photolysis of gaseous acetone (p < 6 kPa) at wavelengths 
between 250-320 nm is unity. After 20 min irradiation with light of 3 1 3  nm wavelength, 18 .4  cm 3 
of CO (measured at 1008 Pa and 22 °C) is produced. Calculate the number of quanta absorbed 
and the absorbed intensity in joules per second. 

34.18 A substance has AlO  = 2 X 106 S - 1 and k�se = 4.0 x 106 S - 1 . Assume that k�c = 0 and that 
there is no quenching. Calculate c/>F and rF '  

34.19 If "CF = 2.5 X 10- 7 s and A1 0 = 1 X 106 S - 1 calculate the k�se and c/>F ' assuming that quench
ing does not occur and that k�c = O. 

34.20 For napthalene, rp = 2 .5  s in a mixture of ether, isopentane, and ethanol (EPA). If c/>F = 0 .55 
and c/>p = 0.05, calculate Ars ,  kJse , and k�se/A 1 0 '  assuming no quenching lind k�e = O .  

34.21 For phenanthrene, rp = 3 . 3  s, c/>F = 0 . 12, c/>p = 0. 1 3  in an alcohol-ether glass at  77 K.  Assume 
no quenching and no internal conversion, k�e = O. Calculate Ars ,  kise , and Mse/Al O ' 

34.22 Naphthalene in an ether-alcohol glass at 77 K absorbs light below 3 1 5  nm and exhibits fluores
cence and phosphorescence. The quantum yields are c/>F = 0.29 and c/>p = 0.026. The lifetimes 
are "CF = 2 .9 X - 10 - 7 s and rp = 2 .3  s. Calculate A10 ,  Ars ,  kJse , and k�se , assuming that no 
quenching occurs and that Me = O. 

34.23 a) Using the mechanism for the formation of dianthracene described in Section 34.2 1 ,  write the 
expression for the quantum yield in the initial stage of the reaction when [A2] = o . 

b) The observed value of c/> ::::; 1 .  What conclusion can be reached regarding the fluorescence 
of A* ? 

34.24 A likely mechanism for the photolysis of acetaldehyde is : 

CH3CHO + hv � CH3 + CHO, 

CH3CO � CO + CH 3 , 

CH3 + CH3 � C2H6 · 

Derive the expressions for the rate of formation of CO and the quantum yield for CO. 
34.25 A suggested mechanism for the photolysis of ozone in low-energy light (red light) is : 

1) 

2) 

3) 0 +  O2 + M 

The quantum yield for reaction (1) is c/>1 ' 
a) Derive an expression for the overall rate of disappearance of ozone . 
b) Write the expression for the overall quantum yield for the disappearance of ozone, c/>o . 
c) At low total pressures c/>o = 2. What is the value of c/> 1 ?  
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34.26 A possible mechanism for the photolysis of  CHz 0 vapor a t  3 1 3  nm includes the following steps : 

1) CHzO + hv ---7 CO + Hz , 

2) CHzO + hv ---7 H + CHO, 

3) H + CHzO � Hz + CHO, 

4) CHO + M � CO + H + M, 

5) CHO + wall � tco + tCHzO.  

The rate of the last reaction can be written ks [CHO] . The quantum yields for reactions (1)  and 
(2) are rPl and rPz , respectively. Derive the expression for d[HzJ/dt and for the quantum yield 
for Hz . 
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P o lymers 

35 . '  I NT R O D U CTI O N  

Our time has been called the "plastic age," more often than not with a derogatory sneer. 
Certainly the burgeoning use of polymeric materials of all kinds has brought some curses 
along with its multitude of blessings. The widespread use of these materials is remarkable, 
considering that barely a half-century has passed since the existence of macromolecules 
became commonly accepted. Before the pioneering work of Staudinger, beginning in 1920, 
polymeric materials were classified as colloids and were considered to be physical aggre
gates of small molecules, much as droplets in a mist or fog are physical aggregates of water 
molecules. Staudinger's insistence on and demonstration of the validity of the macro
molecular concept ultimately led to its acceptance and to the rapid development of the 
science and its applications. 

35 . 2  TY P E S  O F  M AC R O M O LE C U L E S  

Among the natural macromolecules in  the organic world are various gums, resins, 
rubber, cellulose, starch, proteins, enzymes, and nucleic acids. Inorganic polymeric 
substances include silicates, the polyphosphates, red phosphorus, the PNCl2 polymers, 
and plastic sulfur, to name only a few. 

Although we will refer to all macromolecules as " polymers," many of them are not 
simply multiples of a monomeric unit . For example, polyethylene can be described as 
(-CH2-)n , a simple " linear " structure with -CH2- as the repeating unit . On the 



91 4 Polymers 

other hand, a protein has the general structure 

[-{J-r-j 
R H n 

and the R group is different, as we move along the chain. Each (monomeric) segment in the 
chain is usually the residue of one of the 20 common amino acids. The exact sequence of 
amino acid residues is important to the biological function of the protein. Similarly, the 
DNA molecule is a polymeric ester of phosphoric acid and deoxyribose. But along this 
polymeric backbone, a base is attrached to each unit of the polymer. The base may be any 
one of four : adenine, guanine, cytosine, and thymine. Here, too, the order in which the 
bases are attached is of overwhelming importance to the organism. A portion of a DNA 
molecule has the structure : 

(baSe)2r:rH 
(baseh(:J H H 0 H H 0 0 I I  o I I  H . O-P-

H 0-P-0-CH2 H I -0-CH2 H I 0 -
0-

The process of  polymerization can conveniently be  regarded as  belonging to  one of 
two types. If the repeating unit in the polymer has the same chemical composition as the 
monomer from which it is formed then the process is called addition and the polymer is an . 
addition polymer ;  for example, polyethylene : 

H H "- / C=C / "-
H H 

monomer r � �
/l C-C / 1 I 

H H n 
polymer 

or 

However, if the repeating unit is different in composition from the monomer, the process is 
called condensation and the polymer is a condensation polymer. Typical are the polyesters 
or polyamides, which eliminate water in the condensation reaction. 

Type Monomer Polymer 

Polyester 

Polyamide 
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These particular examples are linear polymers. The materials and the reaction from 
which the polymer is made allow no deviation from linearity, so long as no side reactions 
occur. For example, at low temperatures ethylene polymerizes to yield a linear polymer 
through the propagation of a free radical chain : 

R "  + H2C = CH2 -----> R-CH2-CH2 " ' 

The product radical can add another ethylene molecule : 

Continuation in this way yields a strictly linear molecule. However, it is possible for this 
radical to transfer a hydrogen atom from within the chain to the end carbon atom. 

This radical can now add monomer at the carbon atom next to the R group and thus 
produce a polymer with a short side chain. (This branched structure is typical of the 
ordinary polyethylene used in squeeze bottles.) Linear polyethylene produced at low 
temperatures has a much more rigid structure. Generally speaking, the molecules with a 
more regular structure produce a more rigid bulk material. 

If the monomer has two double bonds as in isoprene, 

H CH3 '" / 
C=C H -----> / '" / 

H C=C / '" 
H H 

H CH3 I I 
-C-C CH -

I 2 � / 2 

H C 
I 

H 

the polymer has the possibility of adding a monomer at position 2 to begin a side chain and 
thus produce a branched molecule. Crosslinking between two polymer chains can also 
occur in this way. 

Natural rubber is almost exclusively the head-to-tail polymer of isoprene with the H 
atom and the CH3 group in the cis configuration while gutta-percha, the sap from another 
type of rubber tree, is the head-to-tail polymer having H and CH3 in the trans position. 

natural rubber (hevea) gutta-percha 

The synthetic polyisoprenes are not purely cis or trans but exhibit branching. If a side 
chain growing on a diene polymer combines with one growing from another molecule, 
the result is a crosslink between the two molecules. Extensive crosslinking between polymer 
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molecules produces a network polymer that is highly insoluble and infusible. For example, 
the process of vulcanization introduces sulfur chains as crosslinks between two linear 
chains of the polyisoprene : 

There are additional complexities in the polymerization of substituted vinyl monomers 
such as H2C=CRR'. At alternate carbon atoms, there are two possibilities for the arrange
ment of the two R groups. If we draw the carbon chain in the plane perpendicular to the 
plane of the paper� then the atoms attached to any carbon atom are above and below that 
plane. If all of the R groups are above the plane and all the R' groups below, the polymer is 
isotactic (Fig. 35 . 1). If every second R group is above the plane and the alternate one below, 
the polymer is syndiotactic. If the arrangement of the R groups is random, the polymer is 
atactic. Using special catalysts it is possible to synthesize isotactic and syndiotactic poly
mers, a feat first accomplished by G. Natta and K. Ziegler. 

Isotactic polymer 

Syndiotactic polymer 

H H H H H H 
� I � I R I � I R I R I 

C C C C C C � I / I � I / I � I / I � I / I � I / I � I / I � T H T H T H T H T H T H 
R R R' R R' R' 

Atactic polymer 
F i g u re 35.1  
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The primary structure of a polymer describes the way in which the atoms are covalently 
bound within the molecules. There is a secondary structure that describes the conforma
tion of the entire molecule. For example, linear polyethylene in the crystalline solid con
sists of a zigzag carbon skeleton that is planar ; these zigzag chains then pack into the 
crystal. But in polypropylene, which is polyethylene with a methyl group on every second 
carbon atom, the steric effect of the methyl group is to force the molecule into a helical 
configuration instead of a zigzag chain. There are three monomer units in one turn of the 
helix. With very large substituents, the helix enlarges and may incorporate 3 . 5  or 4 monomer 
units per turn. A classic example of the helical secondary structure is the ex-helix exhibited 
by proteins, shown in Fig. 35 .2 . The peptide unit in the protein is 

in which the 

(a) 

o I I  c / "-
C N 

(b) 

I 
H 

F i g u re 35.2 Two possib le  forms of the a lpha  he l i x. The one  on the l eft 
is a left - handed he l i x, the one  o n  the r ight is a r ight -handed he l ix .  The 
a m i n o  ac id res idues have the L-confi g u ration  i n  each case.  ( From L. 
Pau l i ng ,  The Nature of the Chemical Bond, 3d ed . Ithaca, N .Y. : Corne l l  
U n iversity Press, 1 960 . )  



91 8 Po lymers 

atoms lie in one plane. If the molecule is twisted into a spiral the N - H group is in a position 
to form a hydrogen bond with the oxygen atom in the fourth residue preceding it in the 
protein chain. 

In addition to this secondary structure, polymers possess a tertiary structure. In the 
case of proteins, the tertiary structure describes the way in which the helix is folded around 
itself. 

35 .3  P O LY M E R  S O L U TI O N S  

The process of dissolving a polymer is usually a slow one. Frequently-and particularly 
for highly crosslinked network polymers-the addition of a solvent results only in swelling 
as the solvent permeates the polymer matrix. For other polymers solution takes place over 
a prolonged period of time after the first swelling occurs. In general, the portions with 
lower molar mass are more soluble ; this property can be used to separate the polymer into 
fractions of different average molar mass. 

The interactions between solvent and solute are relatively large compared to those 
between smaller molecules. As a result, the behavior of polymer solutions, even when very 
dilute, may be far from ideal. 

The configuration of a polymer in solution depends markedly on the solvent. In a 
" good " solvent a stronger interaction occurs between solvent and polymer than between 
solvent and solvent, or between various segments of the polymer. The polymer stretches 
out in the solution (uncoils), as illustrated in Fig. 35 .3(a). 

(a) (b) 
F i g u re 35.3 Polymer configu rat ions in solvents. (a) U n co i led in a good 
solvent. (b)  Coi led i n  a poor so lvent.  

(a) (b) 

F i g u re 35.4 (a )  Reg ions of crysta l l i n ity for a l i near  polymer.  
(b)  and (c)  show poss ib le  m istakes. 

(c) 
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In a poor solvent, the polymer segments prefer to remain attached to other segments 
of the polymer molecule ; thus while separating from other polymer molecules in the solid, 
the molecule coils upon itself (Fig. 35 .3b). These different conformations have enormous 
influence on the viscosity, for example. The viscosity of a solution of long uncoiled chains is 
very much larger than that of a solution containing the coiled molecules. 

The solid phase of a linear polymer, or one with branches that are not too long, may be 
crystalline. For example, solid linear polyethylene is mainly crystalline, consisting of 
regions in which the linear molecule has been neatly folded as in Fig. 35 .4(a). However, 
such long molecules can easily make a variety of mistakes, and disordered regions appear 
as in Fig. 35 .4(b) and (c). The mistakes do not differ very much in energy from the perfectly 
ordered arrangement and consequently occur frequently. However, since there are ordered 
regions in the solid we can describe it as at least a partly crystalline material. 

35 .4  T H E T H E R M O DY N A M I CS O F  P O LY M E R  S O LUTI O N S  

The equation for the Gibbs energy of mixing of any solution is given by 

�Gmix = L: ni(lli - Iln, 
i 

in which Ilf is the chemical potential of pure component i. If we differentiate this equation 
with respect to nk keeping T, p, and all the other ni constant we obtain 

(O�Gmix) 0 " O(lli - Ili) 
--- = Ilk - Ilk + L..., ni --"---C----'---'-'--onk T, p, ni � k  i onk 

Since the Gibbs-Duhem equation requires L: ni dlli = 0, the sum is zero and we have 

. (O�Gmix) 0 In --- = Ilk - Ilk = R T ak 
onk T, p, ni � k  

(35 . 1) 

For a long time it was thought that if there was no heat of mixing a mixture would 
behave ideally. However, even if the heat of mixing is zero, if there are large differences 
between the molar volumes of the two constituents the mixture will not be ideal. 

By considering the number of arrangements of polymer and solvent molecules on a 
lattice, we can calculate the entropy of the mixture and from that the Gibbs energy (if we 
assume some value for the heat of mixing). A simplified two-dimensional model of a poly
mer molecule arranged on a lattice is shown in Fig. 35 .5 .  We assume that a solvent molecule 

F i g u re 35 . 5  Latt ice model  (schematic, in two d imen
s ions  here) for po lymer molecu l e  i n  a so lut ion .  S ites 
not occup ied by polymer segments are occu p ied by solvent 
molecu les (one per site) . ( From T. L. H i l l ,  Introduction to 
Statistical Mechanics. Read ing ,  M ass. : Add ison -Wesley, 
1 960. )  
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occupies one site while a polymer molecule occupies r sites. The calculation of the number 
of ways of arranging N 1 molecules of solvent and N molecules of polymer having r segments 
yields, after assuming that r � 1, a remarkably simple result for the Gibbs energy of 
mixing : 

AGmix = RT(nl In ¢l + n In ¢). (35.2) 

In this equation, ¢l and ¢ are the volumefractions of solvent and polymer, respectively ; n l 
and n are the corresponding number of moles of solvent and polymer. If the solution were 
ideal, the expression for AGmix would have been 

AGmix = RT[nl In X l + n In xl 

We find that replacing mole fraction by volume fraction in the logarithmic factors is 
sufficient to give us an equation that can begin to represent the behavior of a polymer 
solution. 

To derive the expression for In al i we differentiate Eq. (35.2) with respect to nl , using 
the relation in Eq. (35 . 1 ), and obtain, after dividing by RT, 

(35 .3) 

The volume fractions are defined by 

nl V� nVo ¢l = 
nl V� + nVO and ¢ = 

nl V� + nYc '  (35 .4) 

in which V� and VO are the molar volumes of pure solvent and pure polymer. It is con
venient to define p == VO IV�, the ratio of the molar volumes. Then Eq. (35.4) reduces to 

and ¢ = np 
nl + np (35 . 5) 

Since nl = ntCl - x) and n = ntx, where x is the mole fraction of the polymer and nt is the 
total number of moles, Eq. (35 .5) can also be written as 

1 - x ¢ 1 = --:----,----,-:--1 + (p - l)x 
and ¢ = xp 

1 + (p - l)x 
(35 .6) 

When we use the expressions in Eq. (35 .5) to evaluate the derivatives in Eq. (35 .3), and 
keep in mind that ¢l = 1 - ¢, Eq. (35.3) becomes 

In at = In(1 - ¢) + (1 - �)¢. (35 .7) 

Since p � 1, then lip � 1, and we can write 

In al = In(l - ¢) + ¢ or al = (1 - ¢)e"'. (35 .8) 

If we compare the solvent vapor pressure over the solution, Pl , with that over the pure 
solvent, Pl, we have since al = pdpl, 

P! = ( 1  - ¢)e"', 
Pl 

(35 .9) 

which is Flory's equation for the vapor pressure. Raoult's law for the vapor pressure is, if x 
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is the mole fraction of solute, 
P1 = (1  - x). pi (35 . 10) 

We can rewrite this in terms of ¢ since, using Eq. (35 .6), we find that 1 - x = (1 - ¢)/ 
[1 - (1 - l/p)¢] ; thus, Eq. (35 . 10) becomes 

P1 1 - ¢ 
pi 1 - (1 - l/p)¢ ' (35. 1 1) 

The curves marked a, b, and c in Fig. 35 .6 are plots of this function for different values of p. 
Note that for very large values of p (that is, as p ---t (0), Raoult's law predicts : 

and ¢ = 1 .  (35 . 12) 

Figure 35 .6 also shows the experimental data for the system polystyrene-toluene at three 
different temperatures. Note that there is not even approximate agreement with the 
Raoult's law predictions, neither at p = 1, which is not reasonable, nor at p = 100, which 

0 .9 

O .S  

0 .7 
P I  
P I  

0 .6 

0 . 5  

0 .4 

0 . 3  

0 .2 

0 . 1 
O . 0!c-....".c-:--�----""-;c-....".-'-,.---�----".I...;;-....".c�.,,...,,------, :-'-;:--7' o 

F i g u re 35 .6  Dependence of P 1  /p� on vo lume fract ion of 
polymer.  Cu rves a, b, and c are Raou lt's law, Eq .  (35 . 1 1 ) , 
for p = 1 ,  1 00, and  1 000, respectively. Cu rve d is F lory's 
equat ion,  Eq. (35 .9) . Cu rve e i s  Eq . (35 . 1 4) with w/kT = 0.38.  
The exper imenta l  poi nts are for the system poly
styrene/to luene : 0 ,  25°C ; 6., 60°C ; D ,  80T. (Adapted from 
E. A. G uggenhe im, Mixtures, London : Oxford U n iversity 
Press, 1 952,  Data from Bawn, Freeman,  and  Kama l idd in ,  
Trans, Faraday Soc, 46 : 677 ,  1 950, )  
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still is not reasonable but at least is closer to reality. Flory's equation is substantially 
better, but is by no means perfect. If an adjustable parameter, w, is added to the equation, 
very close agreement with experiment can be obtained. This term can be added to Eq. 
(35 .8) in the form, 

w In a1 = In(1 - cp) + cp + -k cp2. · T  (35. 1 3) 

The parameter, w, represents the excess of the cohesive energy of the two pure liquids over 
that of the mixture. Then 

(35. 14) 

This is shown as curve e in Fig. 35 .6 (w/kT = 0.38). 
To obtain the expression for the osmotic pressure, we use Eq. ( 16. 1 4). To conform to 

the notation of this chapter, we change a to a 1 and VO to Vi ; then n Vi = - RT In a 1 . 

If we expand the logarithm on the right-hand side of Eq. (35 .7) in terms of cp, and add the 
term (w/RT)cp2, we obtain 

1 2 1 3 ( 1) W ,l..2 In a 1 = - cp - "2 cp - "3  cp - . . .  + 1 - P cp + 
RT 'I' , 

In a 1 = - � [1 + G - R
W
T )p2 (�) + 

P3
3 (�r + . .  J 

Using this value for In a 1 in the expression for the osmotic pressure, we obtain 

(35. 1 5) 

(35. 1 6) 

It is usual to express the concentrations of polymer in terms of mass per unit volume, 
cw . If M is the molar mass of the polymer, we have 

� nM cw = V· 

But, by Eq. (35. 5), cp = nVo/V = npVUV; thus, n/V = cp/pV�, and 

� Mcp cp V�cw Cw = � or qp p M 
Using this value of cp/p in Eq. (35. 1 6) yields 

cwRT [1 
(1 W ) p2 V� � p3 V�2 �2 ] n = � + "2 - kT --x;[ Cw + 

3M2 CW + . . .  . 
In general, we can write 

(35. 1 7) 

(35 . 1 8) 

(35 . 1 9) 

(35.20) 

in which r 2 and r 3 are functions of temperature. Equation (35 .20) is analogous to the 
equation for a nonideal gas. In practice the quadratic term is often negligible, and a plot of 
(n/cw) versus Cw extrapolated linearly to Cw = 0 yields RT/M as the intercept (Fig. 35 .7). 
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b.O 
� 

'" S 25 
co 
C!-�� 

20 

15 

13 . 1  

F i g u re 35.1 P lots o f  rr/Cw versus C w  for po lyvi nyl acetates i n  benzene a t  20'C .  
Data a re f rom C .  R .  Masson and H .  W.  Me lv i l le ,  J. Poly. Sci. , 4, 337 ( 1 949) . Cu rves 
a re d rawn us ing  Eq .  (35 .20)  with r 3 = 3q; va l u es for ( rr/cw ) 0 and r 2 were 
ca lcu lated from parameters g iven by T .  G. Fox, J r. ,  P .  J. F lory, and A.  M. B u eche, 
J.A . C.s. 13, 285 ( 1 951 ) .  ( U n its for r 2 a re m 3/ kg . )  

From this intercept we obtain the value of  M:  
RT  
M (35 .21) 

The measurement of colligative properties is one of the classical methods for determin
ing the molar mass of solute. Although all of these properties have been used at one time or 
another to measure the molar mass of a polymer, only the osmotic effect is large enough to 
be generally useful. 

fIiI EXAMPLE 35.1 If we choose a solution containing 5 g of polymer per litre then 
Cw = 5 kg/m 3 ; R T ;;::; 2500 J Imo! at 25 °C. If we assume that M = 25 kg/mol, then by 
Eq. (35 .21) 

(2500 J/mol)(5 kg/m3) n = 
25 kg/mol 

;;::; 500 Pa = 0.005 atm. 

This would correspond to about 4 mmHg or about 50 mm of water. If the solvent were 
less dense than water, the column of solvent would be higher. 
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capillary 

�-CtDml)ariison capillary 

Solvent 

�ij��ij��: End plate 

Membrane 

F ig u re 35.8 A s imp le  osmometer ; ilh = h - he is 
the i nterna l  head corrected for cap i l l a ry r ise.  ( From 
D. P .  Shoemaker, C .  W.  G a rland ,  J. I .  Steinfeld,  J. W. 
N ib ler, Experiments in Physical Chemistry, 4th ed . 
New York : M c G raw- H i l i ,  1 98 1 . )  

Figure 3 5 . 8  shows a simple osmometer that has a semipermeable membrane (a 
cellulose membrane is commonly used) clamped to the end of a wide cylinder from which a 
capillary tube extends. After it is filled, the lower part of the device is immersed in a 
container of solvent, which is itself immersed in a thermostat. Comparison of the liquid 
level in the capillary containing the solution with the level in the capillary immersed in the 
solvent yields the value of the osmotic pressure. 

The measurements are often complicated by diffusion of the lower molar mass species 
through the membrane. As a consequence, the values of M obtained by osmometry may be 
substantially higher than those measured by other methods. We can show that the value of 
M obtained is the number-average molar mass, <M)N . (See Section 35 . 5  and Problem 
35.6.) 

For the boiling point elevation or freezing point depression, we have 

i1HO() 
ln al  = -T2 · R 0 

But, using Eq. (35. 1 8) for cj>, we can express Eq. (35 . 1 5) in the form -0 
In a l  = - � cw(1 + r2 cw + r2 c; + . . .  ). 

Using the value for In a 1 from Eq. (35.22), we have 

() V1RT� _ -2 
Cw = Mi1Ho (1 + r2 cw + r3 cw + . '  .) . 

(35.22) 

(35.23) 

The accuracy in the temperature measurements hardly justifies using the correction 
factor in the brackets. Nonetheless, a plot of ()/cw versus Cw yields an extrapolated value of 
(V1RT�/Mi1HO), from which M can be calculated. Because the effects are very small, 
freezing point depression and boiling point elevation are not often used for molar mass 
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determinations. In any event they cannot be used if M is greater than 10 kg/mol. For 
benzene, for example, if M = 10 kg/mol, then e = 0.003 1 K for a concentration of 
1 g/100 mL = 10 kg/m3 . The precision of measurement is only about ±O.OOI K. 

3 5 . 5  M O LA R  M A S S E S  A N D M O LA R  MASS D I ST R I B UTI O N S  

One ofthe important properties of any polymeric molecule is its molar mass. Furthermore, 
since the polymeric material does not consist of molecules ofthe same length, it is important 
to know the molar mass distribution. To illustrate the typical calculation ofthe distribution 
we choose a linear polymer that might be produced by the condensation of an hydroxy acid 
to produce a polyester. Suppose that we consider the monomer 

whichwe abbreviate to AB to symbolize the two functional end groups . Then, if we look at 
a polymer 

AB-AB-AB- · · ·  A-B, 
1 2 

the bond (-) indicates that the end-group B (a COOH group) is attached through an ester 
linkage to the end-group A (the OH) on another molecule. Then we ask what the prob
ability is that the polymer contains k units .  Let p be the probability that the end-group B is 
esterified, and let us assume that this probability does not depend on how many AB units 
are attached to the AB unit of interest. Then the probability of an ester linkage at position 1 
is p, the probability of an ester linkage at position 2 is also p. The probability that both 
linkages are present is the product of the independent probabilities or pZ . If there are k 
units in the polymer, there are k - 1 ester linkages and the probability is pk - l . However, 
the probability that end-group B is not linked is I - p. Thus, if the molecule is to terminate 
after k - I links, the probability must be l- l (l - p). This probability must be equal to NdN, where Nk is the number of molecules that are k units long and N is the total number 
of molecules. Then the mole fraction, Xk , of kmers, is 

_ Nk _ k - l (l ) _ (l - p)l Xk - N - p - p - p . 
The average value of k is given by 

00 
I kNk 

(k) = _k�_� __ 
If we use N k from Eq. (35 .24), the expression becomes 

00 
(k) = (1 - p) L kpk - l . k � l 

(35.24) 

(35.25) 

The series, L:� o pk = I + P + p2 + . .  " is the series expansion of I /O - p). Thus 

Differentiating both sides yields 

� k 1 
k':/ 

= 
1 - p ' 

I kplc - l = (1 _ p) - Z . k �  1 

(35.26) 

(35 .27) 
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1 

o .4 .6 .8 
p 

Using this result in Eq. (35 .25), we obtain 

1 (k) = -1 -. - p 

F i g u re 35.9 Log (k> versus p.  

(35.28) 

The higher the value of p, the probability of the link, the smaller is the value of 1 - p and 
thus the greater is the value of (k). If (k) = 50, then p = 1 - 1/50 = 0.98 ; if (k) = 100, 
then p = 0.99. It is clear that high degrees of polymerization will exist only when the 
probability of linkage is very near unity (Fig. 35 .9). Even with p = 0.90, (k) is only 10. 

To calculate the total number of monomer units, N 1 , present in all the species we 
multiply N k by k ;  thus 

00 N N1 = I kNk = N(k) = -- . 
k = 1 1 - P 

In terms of monomer units present, since Nk = Npk - 1 (1 - p), we have 

Nk = N1pk - 1 ( 1 _ p)2 . 
The molar mass of a kmer is 

(35.29) 

(35 .30) 

in which M 1 is the molar mass of the repeating unit and Me is the excess mass due to the 
presence of the end groups. When k is large, Me may be neglected. The number-average 
molar mass, (M)N ,  is defined as 

00 
I NkMk 

(M)N = k_=_1-N--

00 00 

I Nk kM 1 + Me I Nk k = 1 k = l  
N 

but 1: Nk = N and 1: kNk = (k)N, so we obtain 

(35 .32) 
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The total mass of this system is given by 

£ NkMk = N<M)N = N 1 (1 - P)<M)N 
k = l NA NA NA ' 

so that the mass fraction of molecules having k units is 

NkMk Wk = -co-:C---

I, NkMk k = l  

N1pk- l(1 - p)2(kMl + Me) 
N1(1 - P)<M)N 

pk - l(l - p)2(kMl + Me) 
Ml + (1 - p)Me 

Neglecting Me ' which is negligible except when <k) is very small, we have 

Wk = kl - 1(1 _ p)2 . (35 .33) 

The mass fraction as a function of k is shown for several values of p in Fig. 35 . 10. The 
mass-average molar mass is defined by 

co 
<M)w = L: wkMk · (35. 34) 

k = l 
Using Eq. (35 .33) for Wk , Eq. (35.30) for Mk , and neglecting Me , we obtain 

co 
<M)w = M1(1 - p)2 I, k2l- 1 . 

k = l  
Equation (35.27) can then be written as 1: kpk = p/( l - p)2 . Differentiating with respect 

0.010 

0 .005 

0 �--�--��--����--������--�400 k 
F igure 35.1 0 M ass fract ion d istribut ions ca lcu l ated from Eq .  (35 .33)  for 

severa l  va l ues of p. 
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to p, we get 

, 

� k2 k - l = 
1 + P 

L. P 3 · k = l (1 - p) 

Introducing this result in the expression for <M)w , we find 

From this we can calculate the ratio 

<M)w 
<M)N 

= 1 + p. 

(35 .35) 

(35. 36) 

(35 .37) 

Since p >:::: 1, we conclude that the mass-average molar mass is twice the number-average 
molar mass. 

Determination of the molar mass distribution in a polymer sample was formerly a 
tedious task. For example, consider a solution of polymer in a solvent. If a precipitant that 
decreases the polymer's solubility is added, some polymer precipitates out ; the material 
having the highest molar mass precipitates first . Removal of the precipitated polymer and 
addition of more precipitant causes another precipitate to be formed. In this way, the 
dissolved polymer is separated into fractions, whose molar masses can then be determined. 
A comparison of the mass fraction versus size determined in this manner agrees reasonably 
well with the hypothesis underlying Eq. (35 .33) : that the probability of forming an ester 
linka�e does not depend on how many links have already been formed. Figure 3 5. 1 1  shows 
a molar mass distribution so determined, compared to the calculation from Eq. (35 . 33). 

The molar mass distribution can also be determined by gel permeation chromato
graphy. In this method a solution of a polymer is forced through a gel that contains a 

o 10 20 30 40 50 60 

40 Mw/(kg/mol) 

F i g u re 35. 1 1  Mola r  mass d i str i but ion i n  ny lon .  Cu rves a re ca lcu lated 
from Eq. (35.33 ) .  D ata are from G. B. Taylor, J.A . C.S. 69, 639 ( 1 947 ) .  
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network of pores of various sizes. Smaller molecules diffuse into the network with greater 
ease than larger molecules. Consequently, the larger molecules pass through the column 
more quickly than do the smaller ones, which become trapped in the network and require 
more time to become disentangled. This method is considerably more convenient than the 
classical precipitation method described. 

The molar mass distribution can also be determined by ultracentrifugation, which we 
will describe later. 

35 . 6  M ET H O D S  O F  M EAS U R I N G  M O LA R  M A S S E S  

35 . S . 1  E nd - G ro u p  Ana lys is  

In  addition to  the measurement of  colligative properties for the determination of  the 
molar mass of a polymer discussed in Section 35 .4, end -group analysis is a classical method 
that can be used for low-molar-mass polymers. If the molar mass is not too high 
( < � 25 000), and if the molecule has reactive end groups that can be combined with 
another reagent, the average molar mass can be determined chemically. For example, 
suppose that the end group is a carboxyl group acidic enough to be titrated with NaOH. 
If nk moles of NaOH is needed to titrate the kmer, then the total moles of NaOH required 
to titrate the mixture will be nb . 

00 Nk N nb = I - = k = l NA NA ' 

since each mole of polymer requires one mole of NaOH. The total mass of polymer in the 
sample is 

w = f NkMk = !'!.- <M)N 
k= l NA NA 

and the number-average molar mass is 

where both w and nb are measured quantities. 

* 35 . S . 2  l i g ht S catter i ng 

(35 .38) 

If a beam of light passes through a solution of suspended particles the light is scattered ; 
this phenomenon is called Rayleigh scattering. From the theory of scattering we can 
calculate the molar mass of the particle and obtain some idea about its shape. First, we 
consider the scattering by a particle that is small compared to the wavelength of the light. 
A diagram of the experiment is shown in Fig. 35 . 12. We pass a beam of monochromatic 
light into the cell and measure the intensity of the scattered light as a function of the 
scattering angle and as a function of the wavelength. The filter selects the wavelength to be 
used ; the detector can be moved through an angle centered on the 90° position so that any 
dissymmetry can be measured. The scattering for large particles is not symmetric about the 
90° angle. 

Whenever an electrical charge is accelerated, it radiates energy. If the oscillating 
electric field of a light beam acts on a charge, the charge oscillates, is accelerated, and 
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/.. Slits 

� � 
Light trap 

Lens 
Filter 

F i g u re 35.1 2 L ight scatter ing  a pparatus (schematic ) . 

radiates a light beam of the same frequency. This oscillating charge is equivalent to an 
oscillating dipole moment, a charge q displaced through a distance x. 

Consider a charge q at the origin of the coordinate system in Fig. 35 . 1 3 .  The incident 
light beam moves from left to right along the z-axis ; we assume that it is polarized and that 
its electric field vector oscillates in the x direction. We observe at point P, looking along the 
line from P to the origin, o. The component of the oscillating dipole moment in the plane 
perpendicular to the line of sight produces the oscillating electric field at P. This field, E. , 
is given by 

Es = qa sin f3 
4nEo c2r ' (35 .39) 

. in which q is the charge that is accelerated, a is the magnitude of the acceleration vector, 
sin f3 is the component of a on the plane perpendicular to the line of sight, c is the velocity 
of light, r is the distance of P from the origin, and f3 is the angle between the x-axis and 
OP. The electric field vector of the scattered beam oscillates in the plane containing the 
x-axis and the line of sight, OP. If the incident electric field displaces the charge q by a 
distance x, the induced dipole moment, j1., is 

j1. = qx = (lE" , 

x 

p 

y 

z 

(35.40) 

F i g u re 35. 1 3 G eometry for l i g ht 
scatteri ng derivat ion .  
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in which a is the polarizability of the molecule. Then 

If we write 
Ex = E� cos wt, 

in which w is the angular frequency, then using Eq. (35.41) we have 

a 0 
x = - Ex cos wt. q 

The acceleration is given by 

dZx dZ (a ) a = dtZ = dtZ q E� cos wt = 

Then 

a =  q 

a 
- - wZE� cos wt. q 

Using this value for a in Eq. (35 .39) yields 

awz Ex sin f3 naEx sin f3 E = = --�-s 4nto cZr to rAz 

In the second writing we set w/c = 2nv/c = 2n/A. 

(35 .41) 

(35.42) 

(35 .43) 

(35.44) 

(35.45) 

The rate at which energy passes in unit time through unit area perpendicular to the 
direction of propagation is the power passing through unit area (watts/mZ). This is the 
intensity of the beam. The intensity is proportional to the average of the square of the 
amplitude of the oscillating electrical field vector according to the equation 

and 

Z (na sin f3) Z Z Ip = to c<Es ) = to C to rAz <Ex), 

(34.46) 

(35.47) 

in which I x is the intensity of the incoming beam, I p is the intensity scattered along the ray 
OP. The quantity <E;) is the average of the square of the electric field vector. In the second 
writing of Eq. (35.47) we have replaced the value of Es by its equal from Eq. (35.45). The 
only quantity of the right-hand side of Eq. (35 .47) subject to averaging is Ex ' Combining 
these last two equations yields 

Ip = lx(to�:z r sinz f3. (35.48) 

If the incoming light beam were not polarized but also had a component Ey in the 
y direction, there would be an additional contribution to the scattered intensity along OP 
given by 

Iy = IY(tonr:Z) sinz }" (35 .49) 

in which }' is the angle between the y-axis and the ray OP. The total scattered intensity, IB , is 
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the sum 

and 
(35. 50) 

(35.5 1 )  

The intensity of  the incident beam i s  10 = I x + I y .  I f  I x = I y '  then 10 = 21 x .  When we 
use these relations, the equation for Ie reduces to 

1 1W. · 2 · 2 
( ) 2 

Ie = 210 fo rll? (sm [3 + sm y). (35.52) 

The angles [3, y, and 8 are the angles between the ray OP and the X-, y-, and z-axis, re
spectively. The cosines of these angles are the direction cosines of the line 0 P and satisfy the 
relation 

cos2 [3 + cos2 Y + cos2 8 = 1 .  

Using the trigonometric identities, cos2 [3 = 1 - sin2 [3 and cos2 y = 1 - sin2 y in  this 
equation and rearranging, we obtain 

sin2 [3 + sin2 y = 1 + cos2 8. 

Using this result in Eq. (35.52), we have 

1 
( nr:t. ) 2 

2 Ie = 210 fo rA2 (1 + cos 8). (35 .53) 

This is the flux through unit area of surface at the end of the ray OP that lies at an angle 8 
from the z-axis. If dO. is the differential solid angle, then the area element is dA = r2 dO. 
(Fig. 35 . 14), and the total radiation through dA is 

Ie dA = r2Ie dO.. 

Dividing by dO. we obtain r2Ie , which is the total flux through unit solid angle : 

2 1 nr:t. . 
2 ( ) 2 

r Ie = 210 fo A2 (l + cos 8). (35.54) 

It is important to note that thfs quantity does not depend on the distance of P from the 

rd() 

r sin ()drp 

drp 

dA = r 2 sin () d() drp 
= r 2dfl 

z 

F i g u re 35. 1 4 G eometry for a rea of spher ica l  cap .  
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scattering center. This expression is appropriate for the scattering of one molecule. We 
multiply this by N IV = N, the number of molecules in unit volume, to obtain the scattering 
from unit volume of the system. The Rayleigh ratio is defined by 

Using Eq. (35 . 54) we obtain 

r2IeN Re = --10 

Re = � (::r � (1 + cos2 8) 

(35 .55) 

(35. 56) 

The Rayleigh ratio is the fraction of the incident energy that is scattered from unit volume 
of solution per unit solid angle at an angle 8 to the direction of propagation. 

Note that that fraction scattered is inversely proportional to the fourth power of the 
wavelength. This means that the intensity of scattered blue light (short wavelength) is much 
higher than that of scattered red light (long wavelength). This accounts for the blue sky 
during the day and a red sunset in the evening (particularly if there is some, but not too 
much, fine dust in the air). At sunset we look at the sun through a long section of the 
atmosphere ; the reduction in intensity of the blue light due to scattering is much greater 
(roughly 16 times greater) than that of the red light ; the red comes through, and the sun 
appears to be red. In looking at a portion of the sky at an angle to the sun we see the 
scattered light, which is more blue than red. 

In the light scattering experiment, by measuring the intensity of the incident beam, 10 , 
and the scattered beam, Ie , we obtain the Rayleigh ratio . Before this equation can be used 
to determine the molar mass we must have a relation between rx and the molar mass. We 
obtain it by using Eq. (26. 14), but we replace Er by n2, the square of the refractive index and 
note that the polarizability is the sum of two contributions, No rxo from the solvent and N rx 
from the solute ; that is, we rewrite Eq. (26 . 14) in the form 

n2 - 1 No rxo + Nrx 
n2 + 2 3Eo 

Ordinarily n2 � 1 ,  so we can set n2 + 2 � 3 ;  then 

2 No rxo + Nrx n = 1 + ----'----'---Eo 
Differentiating with respect to Cw where N = N A cwlM, we find 

2n !!!!:.. = � dN = rxN A • 
dcw Eo dcw Eo M 

In the limit as Cw = 0, n = no , the refractive index of the solvent, and 

(35. 57) 

(35 .58) 

(35. 59) 

We have taken the limiting slope of n versus Cw since Cw is very small. Using this result in the 
Rayleigh ratio, Eq. (35 .56), we find 

2 2 ( dn ) 2 M Cw 2 Re = 2n no -
d- --4 (1 + cos 8). 
Cw 0 N AA. 

(35 .60) 
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We define a scattering constant, K, as 

K == 
2n2n� (�) 2 

NAA dcw 0 
and Eq. 35.60 becomes 

(35 .61) 

(35 .62) 

Since the molar mass is not uniform we should replace Mew by 2: Mk ck . But, since Ck = 

Wk Cw , we find L Mk ck = L Mkwk Cw ' Since <M)w = L wkMb it follows that L Mk ck = 

<M)wcw ' Consequently, it is clear that this method measures the mass-average molar 
mass. The constant K consists of factors that are known or measurable, such as no , A, and 
(dn/dcw)o · 

If the polymer particles are large enough to be comparable to the wavelength of the 
light, the scattering no longer is symmetric around e = 90°, and a factor pee) must be 
introduced. This factor accounts for the interference of the light scattered from different 
parts of the large molecule, an effect which depends on the shape of the molecule. Some 
conclusions about the shape of the molecule can be reached, if the measurements are made 
with polarized light and the change in the polarization of the scattered beam is measured. 

Another use of the scattering formula is in the calculation of the turbidity of a solution. 
The method is similar to that of measuring the absorbance of a solution. The intensity of 
light is measured after it is passed through a dilute solution of a polymeric material ; the 
wavelength used must not be absorbed by any component ofthe solution. Thus the decrease 
in intensity is due entirely to the light being scattered away (Fig. 35 . 1 5). 

The turbidity, T, is defined by 

-M dI 
T =  lim -- = 

dx = O 1l1x 1dx 
Integration of this equation yields 

(35.63) 

(35.64) 

an equation which is analogous to that involving the absorbance of a solution. The 
scattering effect is so small that it is not possible, as a practical matter, to measure the 
diminution in intensity of the transmitted beam. However, we can relate the turbidity 
to the Rayleigh ratio and measure it by measuring the intensity of the scattered light 
at an angle such as 90°. 

Consider the cubical volume element (enclosed by the dashed lines in Fig. 35 . 1 5) 
having an edge length l1x and a volume, (l1X)3 . The beam entering the left-hand face and 
that leaving the right-hand face have intensities 1 and 1 + l11, respectively. Since the 
intensity is the energy flow per second per square metre (watts/metre2) the total energy 

Filter Cell 

� I 

Source Detector 

F i g u re 35. 1 5 Apparatus for measu r ing turb id ity. 
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fluxes into and out of the cubical element are the intensities multiplied by the area of the 
face. 

energy flux in = I(!1X)2 

energy flux out = (I + M)(!1X)2 
(35.65) 
(35.66) 

The energy scattered by the volume element per unit solid angle is IRe multiplied by the 
volume 

energy scattered/steradian = IReC!1x)3 

Using Re from Eq. (35.62) this becomes 

energy scattered/steradian = IKMcw(1 + cos2 e)(!1x) 3 

(35.67) 

If we multiply this quantity by the element of solid angle, dO. = sin e de d¢ steradians, 
and integrate over all values of e and ¢, we obtain the total scattered energy. The scattered 
energy is equal to the difference between the energy flux in and the energy flux out. Thus 

I(!1X)2 - (I + !1I)(!1X)2 = IKMcw(!1X)3 1'( 1  + cos2 e) sin e de f" d¢ (35.68) 

The integral over e is equal to i and that over ¢ is equal to 2n. Then, after dividing by 
I(!1X)3 , we obtain 

(35.69) 

Comparing this with Eq. (35 .63), we find 

(35.70) 

which can also be written, in view of Eqs. (35.62) and (35.56), 

(35.71 ) 

or 
16nRe r = -,:-:-,----____=,.---,:-:-3(1 + cos2 e) 

(35.72) 

Bear in mind that from a measurement of Re we can calculate r, or from a measurement of r 
we can obtain Rel(l + cos2 e). Because the size of the particles may be comparable to the 
wavelength of light, we must use a " nonideal " equation such as 

The basis for this equation is in the various interactions between the polymer molecules, 
which are similar to the interactions between the molecules of a nonideal gas. The value of 
r is measured as a function of Cw and cw/r plotted as a function of cw ' The intercept at 
Cw = 0 yields the value of the mass-average molar mass : 

3 
16nK<M)w ' (35.73) 
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* 3 5 . 6 . 3  Sed i mentati o n ; the  U lt racentr i fuge  

Consider a particle of  mass m falling in  a gravity field through a viscous medium. The 
gravitational force is opposed by the inertial force, ma = m(dv/dt), and the frictional force, 
which is proportional to the velocity of the particle. Balancing these forces we have 

or 

dv m dt + fv = mg (35.74) 

dv f 
- = g - - v. dt m (35 .75) 

If there were no friction, dv/dt = g, and the velocity, v, would increase linearly with time. 
If we now introduce the termfv, we find that this term increases as the velocity increases 
but that, in turn, decreases dv/dt. Ultimately v reaches a value large enough that the velo
city no longer changes with time. This is the terminal velocity of the particle, Ve ' and is 
obtained from the equation by setting dv/dt = O. This behavior is shown in Fig. 3 5. 1 6 ;  
we  can write 

mg Ve = j ' (35.76) 

If we could measure Ve andf, we would have a method of determining m. In the ordinary 
gravity field Ve is far too small to be measurable, even for macromolecules. However, the 
sedimentation velocity of a macromolecule can be measured in the ultracentrifuge. 

The ultracentrifuge has a rotor that can be driven at speeds of the order of 1000 
revolutions per second. If a tube containing a solution of macromolecules is placed in 
this rotor, the centrifugal force, F, acting on the molecule is 

mvl F = -
r 

, (35 .77) 

in which m is the mass and r is the distance of the molecule from the axis of rotation. If 
v is the number of revolutions per second, the angular velocity is w = 2nv and the linear 
velocity is v = wr. Then the centrifugal force becomes 

F = mw2r 
If the specific volume (the volume per unit mass) of the molecule is V, the volume displaced 
by the molecule is mv and the mass of the solvent displaced is mvp, if p is the density of 

v 

v mg e = -
f 

F i g u re 35.1 6 Velocity of a partic le  
subject to frictiona l  reta rdation .  
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the solvent. Thus the effective mass of the particle suspended in the solvent is m - mvp = 
m(l - vp). The centrifugal force acting on the particle is F = m(l - vp)w2r. Setting this 
equal to the frictional force, we obtain 

dr m(l - vp)w2r =f dt ' (35.78) 

Sirice the particle moves in the radial direction, the velocity is dr/dt. If we assume that f 
is independent of r, we can write 

1 dr m(l - vp) 
w2r dt f = s. (35 .79) 

In the first approximation we assume that f does not depend on the concentration. Then 
s is a constant called the sedimentation constant. The value of s is obtained by integrating 
Eq. (35 .79) between (r 1 ' t 1) and (r2 ' t2) ' Then 

or 
In(r2/r 1) s = 2 . W (t2 - t1) 

(35.80) 

The cell in the rotor is sector shaped (Fig. 35 . 1 7). As the rotor spins, the macromolecule 
moves outward leaving the pure solvent behind. A moving boundary is established be
tween the solution and the solvent. The position of the boundary can be detected by the 
difference in refractive index between the two parts of the cell. Using measurements of 
the positions r 1 and r 2 at times t 1 and t 2 , we can calculate the value of s from Eq. (35 .80). 
Alternatively, if In r is plotted against t, we can obtain the value of s from the slope. 

The molar mass can be obtained from s, using Eq. (35.79): 

M = NA fs . 

(1 - vp) 

Axis of rotation 

F i g u re 35. 1 7 Sector-shaped ce l l  for u ltracentrifuge .  

(35 .8 1 ) 
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The difficulty is that the frictional coefficient, j, may not be known. If the particles are 
spherical, then by Stokes's law, j = 6n'1a, in which '1 is the coefficient of viscosity of the 
solvent and a is the radius of the macromolecule. The problem then reduces to that of 
determining the radius of the macromolecule. 

It is possible to establish a relation between the frictional coefficient, 1, and the dif
fusion coefficient of the macromolecule. Consider a solution containing the macromole
cules in equilibrium in a gravity field acting in the negative z direction. The molecules are 
moving downward with the terminal velocity, Ve = mg I j. By the general law of transport, 
Eq. (30. 1 1), the number of molecules moving through unit area in unit time is the number 
per unit volume, N, times the velocity. Thus 

. 
_ mgN 

Jdown = NVe = j .  
When the system is in sedimentation equilibrium, this downward flow due to gravity is 
balanced by the upward diffusion flow given by Fick's law, Eq. (30. 5), 

aN 
jup = - D 7); ' 

in which D is the diffusion coefficient of the macromolecule. Setting the two flows equal, 
we obtain 

mgN _ D aN j - - 7); . 

This equation can be integrated directly to yield 

N = No e -mgz/Df. 

But in a gravity field the Boltzmann distribution, Eq. (2.44), requires that 

N = No e - mgz/kT .  

Comparison of these two equations shows that 

D = kT 
j

. 

(35 .82) 

(35 .83) 

This is the Stokes-Einstein equation, which relates the diffusion coefficient and the fric
tional coefficient. Although we have derived this relation using a gravity field, it is correct 
for any conservative field. We derived this equation by a different route in Chapter 3 1 ; 
see Eq. (3 1 .6 1 ). 

If we asSume that the particle is spherical, then by Stokes's law, j = 6n'1a, and 

kT 
D = - . 

6n'1a 

We can estimate a, the radius of the particle, from a knowledge of the diffusion coefficient. 
If the particle is not spherical, the frictional coefficient is larger than that given by the 
Stokes's law expression ; the nonspherical particles exert a frictional effect larger than that 
exerted by an equivalent spherical particle. 

Replacingj in Eq. (35. 8 1 )  by the Stokes-Einstein value we obtain 

M =  
RTs 

D(l - vp) 
(35 .84) 
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This is the Svedberg equation for the molar mass. If an independent value of D is available, 
the measurement of s suffices to determine M. Later we will show that the value of D/s 
can be obtained from an ultracentrifugation experiment. 

If we consider the movement of particles in the centrifugal field through an element 
of the cell between positions r and r + dr, then we have for the flow through unit area in 
unit time in the radial direction at the position r :  

- aN j = vrN - D - .  
or 

The velocity Vr is the radial velocity of the particle due to the centrifugal field (Fig. 35 . 17). 
Thus, by the general law of transport, Eq. (30. 1 1), the flux is vrN. By Eq. (35 .79), Vr = 
dr/dt = OJ2sr, so that the expression for j becomes 

. 2 - aN ] = OJ srN - D a;:- . (35 .85) 

The second term ,- D(oN/or) is the diffusion flow in the radial direction. The boundary 
conditions require that the flow be zero at the top of the solution (at the meniscus) and 
at the bottom. Setting j = 0 in Eq. (35 .85), we have 

2 - (ON) 
OJ sr m N m = D Tr m 

and 

in which the subscripts m and b designate the values at the meniscus and at the bottom of 
the cell, respectively. Since we are interested in siD, these equations should be written in 
the form 

OJ2S 1 (ON) 1 (ON) 
D = 

rmNm Tr m 
= 

rbNb Tr b· 
(35 .86) 

From the usual optical patterns produced, both N and aN/or can be obtained. Since rm 
and rb are easily measured, siD can be calculated using Eq. (35 .86). Then M can be obtained 
from the Svedberg equation. The conditions, Eq. (35 .86), must be correct at all times ; 
however, when the system reaches a steady state, that is when it is in sedimentation 
equilibrium, the flow must be zero everywhere so that 

2 S 1 aN 
OJ 15 = rN a, (35.87) 

is correct for all values of r. This experiment may require two or three days to establish 
sedimentation equilibrium. At equilibrium, we can calculate siD and, therefore, M, by 
integrating Eq. (35 .87). Replacing dN/N by dc/c, we obtain : 

which yields 

lC2 dc OJ2S 1r2 - =  - r dr, 
c, c D r, 

2 
I 

C2 OJ S 
( 2 2) n - = - r2 - r1 c 1 2D 

or, using the Svedberg equation for siD, 

M = 2RT In(c2/c1 ) 
OJ2(l - vp) (r� - ri) " 

(35 .88) 

(35.89) 
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This equation yields the mass-average molar mass. We can derive it from thermodynamics 
exclusively, using the Boltzmann distribution for the centrifugal potential field. It can be 
shown that the ratio Dis depends on concentration, because of non ideality in the solutions, 
through a relation similar to Eq. (35.20). 

D 
s (35.90) 

If we plot Dis against N and extrapolate to N = 0, we obtain the molar mass 

(35 .91)  

35.6 .4 V iscosity M easu rements 

The presence of a polymer molecule in a solvent ordinarily results in a relatively large 
increase in viscosity of the solution even at low concentrations. This effect is strongly 
dependent on the concentration and on the solvent. In a poor solvent the long chain 
molecule is for the most part coiled upon itself; in a good solvent the molecule may be 
largely uncoiled and stretched out. Both configurations produce large changes in the 
viscosity of the solution. As the molar mass increases, the effect on the viscosity increases. 
The viscosity measurement is probably the simplest way to obtain a value for the molar 
mass of a macromolecule. 

The viscosity of the solution and that of the pure solvent are measured in a precision 
capillary viscometer. The specific viscosity 1]sp is defined as _ 1]solution - 1]solvent _ _ 1 1]sp - - 1]r , 

1]solvent 
(35 .92) 

in which the relative viscosity, 1]r , is the ratio of the viscosity of the solution to the viscosity 
of the pure solvent. The specific viscosity is the relative contribution of the polymer to the 
viscosity of the solution. 

If we divide 1]sp by the concentration of polymer, cw , we obtain a quantity that in
creases with concentration. Measurements of 1] are made as a function of concentration 
and 1]sp/cw is plotted versus concentration. The curve is approximately linear and is ex
trapolated to Cw = 0 to obtain the intrinsic viscosity, [1]] .  

[1]J = lim (1]�p) . 
cvv = 0 Cw 

(35 .93) 

Thus 

(�:) = [1]J + bew , (35 .94) 

in which b is a constant. It is found empirically that the intrinsic viscosity depends on the 
molar mass according to the formula 

(35 .95) 

We determine the values of the empirical constants K and a by plotting 10gl o [1]J 
versus lOg l O M for a given polymer-solvent pair, using measurements on fractions having 
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known values of M. When we know K and a for the polymer-solvent pair, we can easily 
determine the molar mass of any sample of polymer from the measured value of the in
trinsic viscosity. The unit commonly used for Cw in these equations is g/lOO mL = g/dL. 

Q U ESTI O N S  

35.1 Describe what is meant by primary, secondary, and tertiary structure of a polymer. 
35.2 Why should the cohesive energy term in Eq. (35 . 14) depend on the square of rjJ ?  
35. 3  Use Eq. (35 . 24) to argue why very high linkage probability is required for high degrees of poly

merization. 
35.4  Give a short qualitative argument for the A. - 4 dependence of Rayleigh scattering by noting (a) 

the dependence of the scattered intensity on the scattered field and (b) the scattered field depend
ence on the charge acceleration induced by the incident field. 

35.5  Diffusion is driven by a concentration gradient ; sedimentation is driven by a centrifugal field . 
Why should the transport coefficient ratio siD depend only on nontransport quantities ? 

35.6 Describe how the transition from a poor to a good solvent should affect the diffusion constant of 
a polymer. 

P R O B LE M S  

35.1 If the number-average molar mass of a polystyrene sample is 45 kg/mol, what is the probability 
that a given monomeric unit will be an end group ? 

35.2 Consider a polymer mixture composed of 5 molecules of molar mass 1 kg/mol, 5 molecules of 
molar mass 2 kg/mol, 5 molecules of molar mass 3 kg/mol, and 5 molecules of molar mass 
4 kg/mol. 
a) Calculate the number-average molar mass. 
b) Calculate the mass-average molar mass. 

35.3 Using 0.903 g/cm3 for the density of polystyrene, a molar mass of 50 kg/mol, and 0 .867 g/cm3 
for the density of toluene, calculate the entropy of mixing based on Eq. (35 .2) for values of 
rjJ = 0, 0.2, 0.4, 0 .6 , 0 .8 ,  and 1 .0 .  Sketch �Smix versus rjJ. To what values of the mole fraction do 
these values of rjJ correspond ? 

35.4 Calculate the osmotic pressure of a solution of 1 . 5  g of bovine serum albumin in 500 mL of 
water at 25 DC ; M = 66.5 kg/mol. 

35.5 A solution of polystyrene in toluene at 25 DC exhibits the following osmotic pressures : 

cw/(g/ lOO cm3) 0 . 1 55 0.256 0.293 0 .380 0 .538 

n/Pa 16 28 32 46 76 

Plot n/cw versus Cw and determine the value of the average molar mass from the value of n/cw 
extrapolated to Cw = O. Using data from Problem 35 .3 ,  calculate w. 

35.6 In dilute solutions the osmotic pressure is given by n = (LNk/NA)(RT/ V) in which LNk is the 
total number of molecules. Show that in view of Eq. (35 .3 1), the definition of <M)N,  that we can 
write n = (wRT/V)/<M)N where w is the total mass and <M)N is the number-average molar 
mass. 
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35.7 Calculate the relative vapor pressure of a solution consisting of 2 g of polystyrene (M = 50 
kg/mol) and 100 g of toluene . The density of polystyrene is 0 . 903 g/cm3 and that of toluene is 
0 . 867 g/cm3 . Compare the predictions of Raoult 's law, Flory's equation, and Flory's equation 
modified by the addition of the energy parameter, Eq. (35 . 14). Assume that w/kT = 0.38 .  
Repeat the calculation for a solution having 1> = 0.50. 

35.8 A 1 . 105 g sample of a polyester requires 10.80 mL of 0 .0 10 1 5  mol/L NaOH to titrate the end 
groups. What is the average molar mass of the polyester ? 

35.9 In a polyanhydride (a condensation polymer of a dicarboxylic acid) the end-group titration 
requires 36 .72 mL of 0 .008964 mol/L NaOH for 1 .625 g of polymer. What is the average molar 
mass of the polymer ? 

35.10 The viscosities of polystyrene solutions in benzene at 25 °C are 

cw/(kg/m3) 2 1 .4 10.7 5 .35 

l1/mPa s 1 . 35  0.932 0.757 

Calculate the intrinsic viscosity and the molar mass of the polymer . For benzene, 11 = 0 .606 
mPa s. For this system the constants for [11] = KM" are K = 1 .71 x 10 - 3 m 3/kg and a = 0.74. 

35.1 1  The intrinsic viscosity of a solution of polyisobutylene in cyclohexane is 0 .0248 m3/kg. If 
K = 3.3 x 10- 3 m3/kg and a = 0.70, calculate the molar mass of the polymer. 

35.12 A measurement of the intrinsic viscosities of polymer solutions containing fractions of poly
isobutylene with known molar masses dissolved in diisobutylene yielded the data : 

M/(kg/mol) 6.2 10.4 124 856 

[11]/(m3/kg) 0.00963 0 .0134 0.0655 0.225 

Calculate K and a for this polymer. 
35.13 Sketch the fraction of the light scattered from a polymer solution as a function of e . 
35.14 Compare the scattered intensity of a light beam having A. = 540 nm and one for which 

A. = 750 nm in the same polymer-solvent system. Assume that dn/dcw does not depend on A.. 
35.15 For a solution of polystyrene in methylethyl ketone, (dn/dcw)o = 0.220 mL/g at 25 °C and 

a wavelength of 546 nm. The refractive index of methylethyl ketone is 1 . 377. Calculate the 
scattering constant for this solution and the molar mass of the polystyrene, if the Rayleigh 
ratio at 90° is 0.0942 m - 1 for a solution containing 3 .56 g of polystyrene in 100 mL of solution. 

35.16 At 25 °C the refractive index of benzene is 1 .498 .  A solution of polymethylmethacry1ate in 
benzene has (dn/dcw)o = 0.01 1 0  mL/g at 25 °C, and a wavelength of 546 nm. Calculate the 
scattering constant and the Rayleigh ratio at 90° if the molar mass is 2050 kg/mol and the solution 
contains 12 .47 g of polymer in 100 mL of solution. 

35.17 A 1 .22 g sample of polystyrene is dissolved in 100 mL of methylethyl ketone at 25 °C. The 
intensity of a 546 nm light beam is decreased to 0 .9907 of the incident intensity in a turbidity 
measurement in which the cell length is 1 .00 cm. Calculate the turbidity, r,  and the molar mass 
of the polymer. The scattering constant is 3 .73 x 10 - 5 m2 mol/kg2 . 
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35.18 At 25 °C for polystyrene in methylethyl ketone we have (dn/dcw)o = 0.23 1 mL/g at A = 436 nm. 
The refractive index of the methylethyl ketone is 1 . 377 .  
a) Calculate the scattering constant for this solution and compare it with that in Problem 35 . 1 7 .  
b )  What would be  the turbidity of  the solution in  Problem 35 . 1 7, i f  the wavelength used were 

A = 436 nm instead of 546 nm? 
35.19 The Rayleigh ratio at 45° is 0 . 14 1  m - 1 for a solution of polystyrene in methylethyl ketone, at 

25 °C and 546 nm wavelength. 

a) Calculate the decrease in intensity of a 546 nm light beam in a 1 .00 cm cell . 
b) If the solution contains 2 . 1 4  g of polymer in 100 mL what is the molar mass of the poly

styrene ? (Use data from Problem 35 . 1 8.) 
35.20 At 20 °C, the protein, y-globulin, has a sedimentation constant of 7 .75 x 1 0 - 1 3 s, a diffusion 

coefficient of 4 .80 x 1 0 - 1 1  m2 s - 1 in water and a specific volume of 0 . 739 cm3/g. The density 
of water is 0 .998 g/cm3 . 
a) Calculate the molar mass of y-globulin. 
b) Estimate the radius of the y-globulin, assuming that it is spherical . For water, 

11 = 1 .002 X 1 0 - 3 Pa s at 20 °C. 
35.21 If, at 20 DC, the sedimentation constant for a globular (roughly spherical) protein is 

3 . 50 x 1 0 - 1 3 s, 
a) what is the radial velocity of the particle in a centrifuge turning at 50 000 rpm, at a distance 

of 6 cm from the axis ? 
b) What length of time would it take for the particle to move from r = 6 .0 cm to r = 7 .0  cm? 
c) The specific volume of the protein is 0 .73 1 cm3/g and the density of water is 0 .998 g/cm3 . 

What is the frictional coefficient, if M = 42.62 kg/mol. 
d) Calculate the diffusion coefficient . 

35.22 In an ultracentrifuge rotating at 975 revolutions per second, the boundary moves from 6 . 1 87 cm 
to 6 .297 cm in 1 50 minutes .  Calculate the sedimentation constant. 

35 .23 In an ultracentrifugation experiment D/s = 128 m2/s2 is obtained for canine serum albumin 
at 20 °C. Calculate the molar mass, if the specific volume of this protein is 0 . 729 cm3/g and the 
density of water is 0 .998 g/cm3 . 

35 .24 At 20 °C, a polymer having a molar mass of 1 70 kg/mol and a specific volume of 0 .773 cm3/g is 
centrifuged in water, p = 0 .998 g/cm3 . What is the relative concentration at r = 7 cm compared 
to r = 6 cm, if the centrifuge is turning at 60 000 revolutions per minute ? 

35.25 Compare the result in Problem 35 .24 with the relative concentrations of the same polymer at 
heights of 7 cm and 6 cm in a gravity field having 9 = 9 .80 m/s2 (t = 20 °C) . 
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S o m e  U sefu l M at h e mat i cs 

A I . 1  F U N CTI O N  A N D D E R IVATIVE 

The symbolf(x) signifies thatf i s  a function of  x. To say thatf is a function of  x means 
that if a value of x is chosen, this value determines a corresponding value of the function. 
The x is called the independent variable ; f is called the dependent variable. 

The volume of a given mass of liquid depends on the temperature. Translating this 
statement into mathematics, we say that the volume is a function of temperature, or simply 
write the symbol V(t). 

Since the value of f depends on the value of x, if the value of x changes, the value of f 
will change. Consequently, it is of interest to ask how rapidly f changes with a change 
in x. This information about the function is given by the derivative of the function with 
respect to x. 

The derivative is the rate of change of the value of the function with change in the 
value of x. It should be noted that in general the derivative is also a function of x. To 
emphasize this aspect, the symbolf'(x) is often used for the derivative, and we write 

df , 

dx = f (x). 

If the derivative is positive, the value of the function increases with the value of x ;  if the 
derivative is negative, the value of the function decreases as x increases. If the derivative 
is zero, the curve of the function has a horizontal tangent ; the function has a maximum 
. or a minimum value. The fundamental definition of the derivative 

df = lim N dx 4X--+ O  Ax 
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leads to the geometric interpretation of the derivative as the slope of the tangent to the 
curve at any point. 

If we ask what change in f accompanies the change in x from Xl to x2 , the value of 
the derivative provides the answer. From the identity, 

we can write 

df df 
dx dx' 

df df= dx dx. 

This equation says that the change in the value of f, df, is equal to the rate of change with 
respect to x, df Idx, multiplied by dx, the change in x. If a finite change is made in x from 
Xl to x2 , then the total change inf is obtained by integration :  

Jh _ IX2 df df - -;T dx, 
f1 Xl X IX2 f2 - fl = f'(x) dx, Xl where f2 and fl are the values of f corresponding to X2 and Xl ' 

AI . 2  T H E I NTEG R A L  

a. The integral i s  the limit o f  a sum. In  the preceding paragraph, the total change in  f 
was found by adding together (that is, integrating) all of the small changes in the interval 
between Xl and x2 . 

b. The indefinite integral S g(x) dx always has a constant of integration associated with 
it. For example : Evaluate the integral S(l/x) dx. A table of integrals gives In X as the value 
of the integral ; the integration constant C must be added to this, so we obtain 

f ' l l ;;; dx = In X + c. 

c. The definite integral S� g(x) dx does not have a constant of integration associated 
with it. If from a table of integrals we find that 

J g(x) dx = G(x) + C, then f9(X) dX = G(b) - G(a). 

The definite integral is a function only of the limits a and b and of any parameters other 
than the variable of integration which may be contained in the integrand. For example, 
the integral S� g(x, ex) dx is a function only of a, b, and ex, and is not afunction ofx. 

do The integral of a function can be represented graphically as an area. The integral S� g(x) dx is equal to the area included between the curve of the function g(x) and the x-axis 
and between the lines X = a, and x = b. 

A I . 3  T H E M EA N  VA LU E T H EO R E M  

The mean value of any function of x over the interval, (a, b), is given by 

1 ib <f) = b _ a a 
f(x) dx. 



Fu nct ions of M o re Than One Var iab le  A-3 

A I . 4  TAY L O R 'S T H E O R E M  

If we do not know the analytical form of a function, but know the values of its derivatives 
at some point, let us say at x = 0, then it is often possible to express the function as an 
infinite series. Assume that the functionf(x) can be expressed as a series : 

a2 2 a3 3 f(x) = ao + a1 x + -x + -x + . . .  
2 !  3 !  

. 

By differentiating, we obtain 

f'( ) a3 2 x = a1 + a2x + - x + . . .  
2 !  ' 

fl/(x) = a2 + a3 x + " ' , 

I"'(X) = a3 + . .  ' . 

At x = 0 these expressions reduce to 

f(O) = ao , 1'(0) = a1 , 1" (0) = a2 , f lll(O) = a3 , 

Thus, the values of the unknown coefficients in the series are expressed in terms of the 
values of the derivatives of the function at x = 0 ;  the series becomes 

f(x) = f(O) + 1'(0) + 1
" (0) 

x2 + 
flll(O) 

x3 + . . .  
2 !  3 !  ' (A 1 . 1) 

which is Taylor's theorem. Not all functions can be expressed as a series in this way, but 
this expansion is often used for those functions that do behave properly. Usually, only 
the first two terms of the infinite series will be needed ; the rest will be neglected. Some 
common and useful series are given in Appendix IV. 

A I . 5  F U N CTI O N S  O F  M O R E  T H A N  O N E  VA R I A B L E 

We frequently use functions of two variables ;  the molar volume of a gas, for example, 
depends on temperature and pressure, V = V(T,p). Written in this way, Tand p are the 
independent variables, and V is the dependent variable. If we mentally assign a constant 
value to the pressure, the volume becomes a function of the temperature only. We calcu
late the derivative of this function in the same way we calculate the derivative of any 
function of one variable, but we write this derivative with a curly dee, o. Similarly, if we 
imagine that the temperature is constant, the volume becomes a function of the pressure 
only, and again we can form the derivative using the usual rules for a function of one 
variable. Thus the function, VeT, p), has two first derivatives. These are called partial 
derivatives and are written 

and 

The subscript outside the parentheses in each of these symbols indicates the variable that 
is kept constant in the differentiation. If we ask how the molar volume changes if the tem
perature changes slightly at constant pressure, the answer is given by 

dV = G�) pdT. 
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The change in volume with change in pressure at constant temperature is given by 

- (OY) dV = op T
dp. 

If both temperature and pressure change, then the total change in volume is the sum of 
the change due to temperature and the change due to pressure : 

dY = (��tdT + (�:tdP ' 

This is called the total differential of the function. Any function of two variables f(x, y) has 
a total differential df given by 

A I . 6  SO LUTI O N S  O F  E Q .  (4 .27) 

Equation (4.27) can be written in the form 

Af(z) = f(x)f(y), 

where z = x + y. We differentiate this equation with respect to x :  

A d��) (!:) = f'(x)f(y) , 

and then with respect to y :  

But oz/ox = o(x + y)/ox = 1 ,  and also oz/oy = 1 ,  so these two equations become 

Af'(z) = f'(x)f(y), Af'(z) = f(x)f'(y). 

(AL2) 

The left-hand sides are the same, so f'(x)f(y) = f'(y)f(x). Dividing by f(x)f(y), this 
becomes 

f'(x) f'(y) 
f(x) f(y) ' 

The left-hand side of this equation is apparently a function only of x, while the right-hand 
side does not depend on x but only on y. This is possible only if each side of the equation 
is a constant, [3. Thus 

f'(x) . df(x) 
f(x) = [3 and therefore f(x) = [3 dx. 

Integrating, we obtain In f(x) = [3x + In A, and therefore, f(x) = A exp ([3x), which is 
the solution of the functional equation, Eq. (4.27). 
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AI . 7  T H E M ET H O D  O F  L EAST S Q U A R ES 

It  is often desirable to fit a set of data points or a set of derived quantities calculated from 
experimental data to a mathematical function containing parameters that can be adjusted 
so that the resulting curve is a " best " fit of the data. The least-squares method is a system
atic way of determining the values of the parameters that results in a best fit of the data 
by a particular function. 

In principle the method can be used for any kind of function ; in practice we find that 
unless the function is a polynomial, the amount of numerical work required is prohibi
tive. For this reason we restrict our consideration here to polynomial functions. 

Suppose that we have a set of N data points, (Xi ' Yi), that we wish to approximate by 
a curve of the form 

Y = a + bx + ex2 + . . . . 
The deviation of the experimental value of Y from the calculated value is di , where 

di = Yi - (Yi)calc ' 
Since the calculated value of Y is obtained from Eq. (AI.3), we have 

di = Yi - (a + bXi + exf + . . .  ). 

(AI.3) 

(AlA) 

(AI .5) 

If the function is a good representation of the data and the errors are random, di will 
be negative as often as it is positive and the sum of the di over all the data points will be 
near zero. 

A better way to measure the closeness of fit is to square the di and then sum dt. Now the 
positive and negative deviations do not cancel each other. This sum of df is a quantity 
that indicates how closely the curve fits the data. We define a2, the variance, as 

a2 = � i df 
N i = l  

(AI.6) 

The smaller the value of a2 , the better the curve fits the data. Since a2 depends on the 
constants : a, b, e, . . .  , we choose these constants so that a2 is minimized. Thus the value 
of the sum of squares is a least value ; hence the name, least-squares method. 

Using Eq. (AI. 5) in Eq. (AI.6), we obtain 

2 1 � 2 2 a = - L., (Y · - a - bx . - ex . )  N i = l 
' 

" 
. (AI.7) 

To minimize this expression, we differentiate a2 with respect to a, then with respect to b, 
and so on. (Note : It is understood in all that follows that all the sums are from i = 1 to 
i = N.) 

oa2 1 
Ta = 

N I 2(Yi - a - bXi - exf) ( - 1) ;  

oa2 1 
Tb = 

N I 2(Yi - a - bXi - exf) ( - Xi) ;  

oa2 1 
I 2 2 - = - 2(y . - a - bx · - ex . ) ( - x . ) oe N ' ' " 

. 
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If we set each of these derivatives equal to zero, then divide by ( -2IN), the conditions for 
the minimum are 

I (Yi - a - bXi - exf) = 0 ;  

I (Yi - a - bXi - exf)Xi = 0 ;  
" (y . - a - bx . - ex2)x2 = 0 f..J I I I I • 

(AI.S) 

These equations can be solved explicitly for a, b, and e. We will do only the straight-line 
case here. 

For the straight line, we set e = 0 and use only the first two equations, which can be 
written as 

I Yi - a I 1 - b I Xi = 0 
and 

I XiYi - a I Xi - b I xf = O. 

Remembering that 1:f= 1 1 = N, we can solve these two equations for a and b to yield 

and 

b = 
N I XiYi - (I xi) (I Yi) 

N I xf - (I Xi)2 

(AI.9) 

(All 0) 

To use these equations we have to construct the quantities 1: Xi ; L Yi ; L Xi Yi ; and 
L xr Fortunately, many of the new hand calculators have a linear regression program 
built into them that calculates a and b from Eqs. (AI.9) and (AI. 1O) if we simply key 
in the data properly. Some calculators do not have the linear regression program ; instead 
they have a stafistical function that calculates these sums and stores them in accessible 
registers. In this case the sums can be recalled from the registers and used in Eqs. (AI.9) 
and (AI . lO) to calculate a and b. (A lot of time can be saved by reading the instruction 
booklet for your calculator !) 

These equations can also be written in terms of the average values of the various 
quantities L Xi = N (x) ; L X? = N (X2) ;  and so on. Then 

and 

(X2 )(y) - (x)(xy) 
a =  (X2 ) _ (X)2 

b = 
(xy) - (x)(y) 
(X2 ) _ (X)2 

The probable errors in a and b are given by Xa and Xb . 

(All I) 

(AU2) 

where r = 0.6745 . . . J N (J2 I(N - 2) .  The value of (J2 can be obtained by using Eq. (AI. 5) 
to calculate di , then squaring and summing, or from the relation 

(AI .  1 3) 
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AI . S . 1  Vectors 

Vectors and M atr ices A-7 

In three dimensions we describe a vector as a quantity having magnitude and direction. 
A vector can be written as a sum of three terms ; each term is a scalar quantity multiplied 
by a unit vector that is in the direction of one of three mutually perpendicular axes. In 
cartesian coordinates, for example, the vector a is written 

(AI. 14) 

in which i ,  j, and k are unit vectors in the x, y, and z directions respectively, and ax , ay , 
and az are the scalar quantities, the components of the vector. 

The scalar product of two vectors, a and b, is written a . b and is defined as 

(AI . 1 S) 

It is a scalar quantity, of course. From this definition, it follows that the scalar product 
of two orthogonal vectors (perpendicular vectors) is zero. For example, let a = a) + 
(0) j + (O)k, and b = (O)i + by j + (O)k. Then a is parallel to the x-axis and b is parallel 
to the y-axis ; a and b are orthogonal to each other. Then by Eq. (AI. 1 S) for the scalar 
product, we have 

a ·  b = ax(O) + (O)by + (0) (0) = 0 

The scalar product of a vector with itself is equal to the square of the length of the vector : 

(AU 6) 
The length of the vector is 

(AU7) 

These expressions are not limited to 3-dimensional vectors but can be written gener
ally for n-dimensional vectors : 

i = 1 ( n )1/2 l a l = i�1 af . (AI . l S) 

A 1 . 8 . 2  M atr ices 

A matrix is an array of quantities, most commonly a rectangular or square array. For 
example, we might have [ax ay az] ' 
This matrix is a 1 x 3 matrix, having one row and three columns. It is also called a row 
vector because its elements can be thought of as the components of a three-dimensional 
vector .  We could also write the components of a vector as a column, 

This is a 3 x 1 matrix, having three rows and one column. It is also called a column vector. 
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The matrix product of a row vector by a column vector has the same form as the scalar 
product of the two vectors. 

The result of this matrix multiplication is a single quantity (a scalar), which is the sole 
element in a 1 x 1 matrix. 

Any matrix can be regarded as consisting of a set of row vectors and/or a set of column 
vectors ; for example, consider the matrices A and B, 

The position of the element in the matrix is indicated by two subscripts : The first describes 
the row number ; the second describes the column number. 

The matrix A is made up of two row vectors or three (two-dimensional) column 
vectors, while B is made up of three row vectors or two column vectors. The matrix 
product of A and B is a matrix having elements that are the scalar products between the 
vectors which compose A and B. Thus ] [bl l  b 1 2] [ a1 2 a1 3  b2 1 b22 = 

C l l  
a22 a2 3 b b C2 1 3 1  3 2 

The scalar product of the first row vector of A with first column vector of B yields the 
element in the first row and first column of the product matrix, C. Thus 

C l l  = al l b l l  + a1 2 b2 1 + a1 3 b3 1 · 
Similarly, the product between the first row of A and the second column of B yields 
the element for the first row and the second column bf the product matrix, 

C l 2 = al l b 1 2 + al 2 b22 + a1 3 b3 2 · 
For the element in the ith row and kth column of the product matrix, we have 

3 
Cik = I aijbjk . j = 1 

(AU9) 

Clearly, for this operation to make sense, the number of columns in A must be equal to 
the number of rows in B ; if this condition is not met, the product AB is not defined. Thus, 
if A is an m x n matrix (m rows, n columns) and B is a p x q matrix (p rows, q columns) 
the product, AB, is defined only if n = p. The product matrix is an m x q matrix. In the 
same way, the product BA is defined only if q = m. The product matrix is a p x n matrix. 

The character of a square matrix, X(A), is the sum of the elements on the main diagonal, 
n 

X(A) = I aii (AI.20) 
i = l 

The character of a rectangular (not square) matrix is not defined. 
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A 1 . 8 . 3  Symmetry O perat i o ns as M atr ices 

I N T E R C H A N G ES 

In Section 23. 15 .2 we used matrices to represent the symmetry operations of the group. 
These matrices are quite easy to construct. Consider the operations in the group, C2v' 
In Eq. (23 .34) we summarized the effects of the operations on the coordinates of a point. 
For example, for the operator C2, we have 

C2(x, y, z) = ( - x, - y, z). 
We can write this as a matrix multiplication : 

What elements must appear in the top row if x is to be replaced by -x?  Writing the 
product of the top row vector with the column vector we obtain 

al l x + a1 2 y + a1 3 z = -x. 
Thus al l  = - 1 ; a1 2 = 0 ;  a1 3  = O. After doing one or two products by this method, we 
soon learn to do it by inspection. The complete matrix is 

n 0 m�] � [= :] - 1  
0 

So the operator, C2 , can be represented by the matrix, [ - 1  0 �] C2 = � - 1  
0 

In the same way, 

a, [ � ] � 

[ -� ] a, � [ �  0 n so that - 1  
0 

Since the group multiplication table requires that C2 0"v = O"� , it must be that 

O"� = 

R OTATIO N S  

[ -�1 o - 1  
o 

o - 1  
o 

0] [ - 1  
o = 0 1 0 

o 
1 
o 

The matrix that describes the transformation of a two-dimensional vector under rotation 
through an angle cP can be developed by using the Argand diagram (Fig. ALl). The 
point (x, y), when subjected to a counterclockwise rotation through the angle cP, is trans
formed into the point (x', y'). How are the coordinates (x', y') related to (x, y) ? Since the 
length of the vector from the origin is the same in both cases, we can write 

x + iy = rew and x' + iy' = rei(o + q,l. 
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1m 

X, Y 

Real F igure A I - 1  

Combining these to eliminate rei8, we find that 

x' + iy' = (x + iy)ei'" = (x + iy) (cos ¢ + i sin ¢) 

x' + iy' = X cos ¢ + y( - sin ¢) + i(x sin ¢ + Y cos ¢). 
Setting real and imaginary parts equal on both sides of the equation, we obtain the two 
relations 

x' = x cos ¢ + y( - sin ¢) 
and 

y '  = x sin ¢ + Y cos ¢, 

which in matrix notation becomes 

[XI] = [c�s ¢ 
y' sm ¢ 

- sin ¢ ] [x] = C [x] . cos ¢ y '" y 

Thus for the operator, C"" counterclockwise rotation through the angle ¢ we have 

C = [cos ¢ - sin ¢ ] 
'" sin ¢ cos ¢ . 

This matrix was used in Section 23 . 1 5.2 for C3 , for which ¢ = i- 'It. 



A P P E N D I X " 

S o m e  F u n d a m e nta l s  
of E l ectrostat i cs 

A I 1 . 1  C O U LO M B 'S LAW 

Consider a charge, q, at the origin of the coordinate system and a charge, q', at a point P, 
which is a distance r from the origin. The force acting between the two charges in vacuum 
is given by Coulomb's law, 

qq' F = --
41tfo r2 · (AII. 1)  

This says that the force is proportional to the product of the charges and inversely pro
portional to the square of the radius. The proportionality constant in the SI system is 
defined as 1/41tfo , where fo is called the permittivity of vacuum. By definition, 

(exactly), (AII.2) 

in which c = 2.99792458 X lOB mis, the speed of light in a vacuum. Introducing this 
value for c, we find 

1 
-
4 = 8.98755 179 x 109 newton meter2 coulomb - 2 
1tfo 

A I 1 . 2  T H E E LE CT R I C  F I E L D  

The electric field, E, at any point i s  defined as the force acting on  a unit positive charge at 
that point. In terms of the charges described in Section (AII. 1 ), E = F/q', or 

E = -
q-

41tfo r2 · (AII.3) 
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The field due to a charge is directed radially : If q is positive, the field is positive and is 
directed outwardly along the radius ; if q is negative, the field is directed inwardly toward 
the charge. 

If several charges, qj , are present, the field is the vector sum of the field produced at P 
by each of the charges. We can write this as 

E = _1_ "\' qj ej 
4 L.. 2 ' nEo j rj 

(AlI.4) 

where rj is the distance between point P and the position of the charge, qj ' and cj is a unit 
vector in the direction from the charge qj to point P. This is the principle of superposition. 
(In this particular expression, we have emphasized the vector character of E by printing 
it in bold face.) 

AI 1 . 3  T H E E L E CT R I C  P OTE NTIAL 

The electric potential, ¢,  at any point i s  the work required to  move a unit positive charge 
from infinite distance to the point in question. Since E is the force acting on unit positive 
charge, we can write 

¢ = L E( - dr) = L ( - E)dr . (AII5) 

For an example, we take E from Eq. (AII.3) and find 

¢ _ f' q dr - q - -
00 4nEo r2 - 4nEo r 

(All. 6) 

From Eq. (All 5), it follows that E = - o¢lor. Thus, if we know the potential, we can obtain 
the radial component of the field by differentiation with respect to r. More generally, we 
can write 

E = x 
o¢ 
ax ' E = z 

o¢ 
oz (AII.7) 

The components of the field are obtained by differentiating the potential with respect to 
the coordinates. 

By the principle of superposition, the potential at any point is the sum of the po
tentials produced by all the charges. Thus 

¢ = I �· 
j 4nEo rj 

(AII.8) 

Since this formula involves only the addition of scalar quantities, it is easier to construct 
than the sum in Eq. (AlI.4). After the potential has been calculated by this formula, the 
field component in any desired direction can be calculated by differentiating with respect 
to the coordinate ; use Eq. (AII.7). 

A I 1 .4 TH E F l U X  

We divert our attention temporarily t o  consider the flow of an incompressible fluid having 
a velocity v through a surface, S (Fig. AH. la). To begin, we assume that the velocity vector 
is perpendicular to the surface. Then in a time interval L1t, all the fluid in the cylinder of 



da 

v 

v tlt 

(a) (b) 

F igu re A I I . 1  

The F l ux  A-1 3  

Potato shape 

length v ilt, will pass through the element of surface, da. The flow through the element da 
is v f..t da. The flux is defined as the flow per unit time, so the flux is v da. Clearly, if the 
flow were tangential to the surface, no fluid would pass through the surface. Thus, in the 
general case for which the velocity vector is not perpendicular to the surface, the normal 
component of the velocity, vn , determines the flux through the surface. The total flux is 
obtained by integrating the product Vn da over the entire surface. (The integration over 
the surface is symbolized by an S written adjacent to the integral sign.) Thus we obtain for 
the flux, 

Flux = Lvn da . . (AII.9) 

We can define the flux in any vector field in the same way. For the electric field vector 
we can write for the flux of E, 

Flux = LEn da (AIUO) 

Suppose that we wish to calculate the flux through the surface of a sphere of radius r, 
which has a charge q at its center. The field at the surface of the sphere is given by Eq. 
(All. 3). Since the field is directed radially, En = E. Also the field is constant on the surface 
of the sphere ; consequently, we can remove it from the integral and obtain 

Flux = !i. 
to 

This is Gauss's law. 

(AIl . 1 1 )  

The important point about the result in Eq. (AIU 1) is that the flux through the surface 
of a sphere is independent of the size of the sphere. Suppose we consider two concentric 
spheres having radii r1 and r2 with a charge q at their common center (Fig. AIUb). By 
Eq. (AIl . I I), the flux out of sphere 1 and the flux out of sphere 2 are both equal to q/to . This 
means that the flux is conserved ; what flows out of the small sphere also flows out of the 
big sphere. But this implies that the flux does not depend on the shape of the surface. 
Imagine a wrinkled, potato-shaped surface that lies entirely within the annular space 
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between the two spheres. The flux through this surface must also be q/fo . But then it 
follows that the charge q does not have to be at the center of the enclosure. (The potato's 
center is difficult to define.) Equation (AIll 1) is correct if the charge is anywhere inside the 
surface. Beyond that it follows that several charges could be inside the surface ; from the 
superposition law, Eq. (AlI.4), we would obtain Gauss's law in the form 

Flux = Q , 
fo 

(AlI. 12) 

where Q is the algebraic sum of the charges within the surface without regard to their 
locations. The charge may even be continuously distributed. If p is the charge density, 
the charge per unit volume, then 

Q = f/ dv. (AIll3) 

The integration is over the volume enclosed by the surface. The final form of Gauss's law is 

(AIll4) 

in which it is understood that S is any closed surface. 
Note that the net flux from the annulus defined by the two spheres is zero. What flows 

in at r 1 flows out again at r2 • This is consonant with applying Gauss's law directly to the 
annulus. Since there is no charge within it, q = 0 and the flux is zero. 

A I 1 . 5  T H E P O I S S O N  E Q U ATI O N  

Next we calculate the flux through a small cubical surface. Consider first the flux in the 
x direction, through the faces located at x + Llx, and at x (Fig. AII.2)� The x component of 
the field vector has the value Ex at x, and Ex + (8Ex/8x)Llx at x + Llx. Then the flux out 
of the cube in the x direction is the x component of E multiplied by the area of the face, 

z j-, 
/ / / 

/ 

I 
I 

)--�  
/ l1y 

X 1L---I1x-----"x + I1x 

F i g u re AI 1 . 2  
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�y �z. Adding the fluxes through the surfaces at x and x + �x, we have 

A similar argument shows that the fluxes in the y and z directions are given by 

3E 
(Flux)y = -

y �x �y �z ; 3y and 

The total flux out of this small cube is the sum of the three terms 

(3Ex 3Ey 3Ez)� V 3x + 3y + 3z ' 

where we have set �x �y �z = � V, the volume of the cube. If we integrate this expression 
over the entire volume we obtain the total flux : 

Flux = J (3Ex 
+ 

3Ey + 
3Ez)dV. v 3x 3y 3z 

Using Eqs. (AII. l2) and (AII . 1 3), we have 

J (3Ex + 
3Ey + 3Ez)dV = I !!.. dV. v 3x 3y 3z Jv to 

(AIUS) 

(All. 1 6) 

Equation (All. 16) can be correct only if the integrands on the two sides are equal ; then, 

3Ex 3Ey 3Ez P 
- + - + - = -. 3x 3y 3z to 

If we replace Ex , Ey , and Ez by their values from Eq. (All7), we obtain 

32¢ 32¢ 32¢ P - + - + - = - -3x2 3y2 3z2 to 

(AII. l 7) 

(AIU8) 

This is Poisson's equation, which relates the electric potential to the charge density in the 
space. The Laplacian operator, V2, is defined by 

32 32 32 V2 = 3x2 + 3y2 + 3z2 ' 

so that we can write the Poisson equation in the form 

(AII . 19) 

This equation combines the two laws of electrostatics : Gauss's law and the fact that E is 
derivable from a scalar potential through Eq. (AII.7). 

In a spherically symmetric situation, such as that in the Debye-Hiickel model 
described in Section 16.7, the potential is a function only of r and the Poisson equation, 
Eq. (AII . 1 9), becomes 

p (AII.20) 



A-H i Some F undamentals of E lectrostat ics 

In Section 26.2 we showed that in the presence of a dielectric the vacuum equations 
apply if the field-producing charge, q, is replaced by q/tr . This is equivalent to replacing 
to by t = tr to . The t is the permittivity of the medium ; tr is the relative permittivity of the 
medium, the dielectric constant. This result is correct for electrically isotropic media such 
as liquids and gases, but is only crudely applicable to anisotropic materials (most solids). 

You will find a very clear discussion of this entire subject in R. P. Feynman, R. B. 
Leighton, and M. Sands, The Feynman Lectures on Physics. Reading, Mass. : Addison
Wesley, 1964. Volume II, Chapters 4, 5, 10, and 1 1 . 
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T h e  I nte r n at i o n a l  Syste m 
of U n i ts ; 
L e  Systeme International 
d'Unites; 
S I  

A I I I . 1  T H E S I  BAS E Q U ANTITI ES A N D U N ITS 

A physical quantity is a product of a numerical value (a pure number) and a unit. 

* 

The seven dimensionally independent base units in the S1 are given in Table AIl!. 1 . 
We will not have occasion to use luminous intensity. 

Tab le  AI I 1 . 1  

Base physica l  quant it ies a n d  u n its 

Symbol Name Symbol 
for of for 

Physical quantity quantity SI unit SI unit 

length I metre m 
mass m kilogram kg 
time t second s 
electric current I ampere A 
thermodynamic temperature T kelvin K 
amount of substance n mole mol 
luminous intensity Iv candela cd 

The quotations in Appendix III are from Pure and Applied Chemistry, 51 : 1-4 1  1 979. The remaining parts 
follow the contents of this pUblication closely. Published with the permission of IUPAC. Symbols, units, 
and nomenclature recommendations issued periodically by lUP AC are published in the journal Pure and 
Applied Chemistry, available from Pergamon Press, Oxford. 
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AI I 1 .2 D E F I N ITI O N S  O F  T H E SI BAS E U N ITS 

metre : The metre is the length equal to 1 650 763.73 wavelengths in vacuum of the radiation corre
sponding to the transition between the levels 2P I O  and 5ds o f  the krypton-86 atom. 

kilogram : The kilogram is the unit of mass ; it is equal to the mass of the international prototype of the 
kilogram. 

second : The second is the duration of 9 192 631  770 periods of the radiation corresponding to the 
transition between the two hyperfine levels of the ground state of the caesium- 1 33 atom. 

ampere : The ampere is that constant current which, if maintained in two straight parallel conductors 
of infinite length, of negligible cross-section, and placed 1 metre apart in vacuum, would produce 
between these conductors a force equal to 2 x 10 - 7 newton per metre of length. 

kelvin : The kelvin, unit of thermodynamic temperature, is the fraction 1/273 . 1 6  of the thermodynamic 
temperature of the triple point of water . 

candela : The candela is the luminous intensity, in the perpendicular direction, of a surface of 1/600 000 
square metre of a black body at the temperature of freezing platinum under a pressure of 10 1  325 
newtons per square metre . 

mole : The mole is the amount of substance of a system which contains as many elementary entities 
as there are atoms in 0 .012 kilograms of carbon-12 . When the mole is used, the elementary entities must 
be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such 
particles . 

A I I 1 . 3 D E R I V E D P H YS I C A L  Q U A NTITI E S  

All other physical quantities are regarded a s  being derived from, and a s  having dimensions derived 
from, the seven independent base physical quantities by definitions involving only multiplication, 
division, differentiation, and/or integration. 

For example, the velocity of a particle is defined by v = ds/dt ; the velocity has the 
dimension, length/time (l/t) ; the SI unit is metre per second (m/s) . 

Table AIII.2 lists a number of common derived quantities and their units ; these units 
do not have special names. Table AIII. 3  lists a number of common derived quantities 
whose units have special names. 

Ta b le  A I I I . 2  
5 1  der ived u n its without spec ia l  names 

Symbol Name 
for of 

Physical quantity quantity SI unit 

area A square metre 
volume V cubic metre 
density p kilogram per cubic metre 
velocity u,v,w,c metre per second 
concentration* C mole per cubic metre 
electric field strength E volt per metre 

* For concentration in mol/L = mol/dm3 we use e. Thus, c = l OOOe. 

Symbol 
for 

SI unit 

m2 
m3 
kg m - 3 
� S - l 
mol m - 3 
V m- 1 



Tab le  A I I 1 . 3  

S I  P refixes A-1 9 

S peci a l  names and symbols for certa i n  S I  der ived u n its 

Name Symbol Definition 
of for of 

Physical quantity SI unit SI unit SI unit 

force newton N kg m S - 2 
pressure = force/area pascal Pa N m- 2 = kg m- 1 S - 2 
energy joule J N m = kg m2 S - 2 
power = energy/tirp.e watt W J s - 1 = kg m2 s- 3 
electric charge coulomb C A s 
electric potential difference volt V J C- 1 = kg m2 s - 3 A - 1 
electric resistance ohm n V A - 1 = kg m2 s - 3 A - 2 
electric conductance siemens S A V- 1 = kg- 1 m- 2 S3 A2 
electric capacitance farad F C V- 1 = kg- 1 m- 2 S4 A2 
magnetic flux weber Wb V s = kg m2 s - 2 A- 1 
magnetic flux density tesla T Wb m- 2 = kg S - 2 A - 1 
frequency hertz Hz S - l 

AI I 1 .4 S I  P R E F IXES 

To designate multiples and submultiples of  the base unit, we  use a standard prefix to  the 
symbol for the unit. These prefixes are listed in Table AUI.4. 

Examples : 1 km = 1 03 m ;  I ns = 1 0 - 9  s .  

Note that the base unit for mass, 1 kg, i s  already prefixed. We do not add a second prefix, 
but rather use a single prefix on the unit gram. Thus we use : ng, not pkg ; mg, not Jlkg ; 
Mg, not kkg. When we take the power or root of a prefixed unit, the entire unit is raised to 
the power. 

examples :  1 dm3 means 1 (dm)3, not 1 d(m3) ;  

Submultiple Prefix 

10 - 1 deci 
1 0 - 2 centi 
10 - 3 milli 
1 0 - 6 micro 
10- 9 nano 
1 0 - 1 2 pico 
1 0 - 1 5 femto 
1 0 - 1 8 atto 

Table  A I I I . 4  

S I  prefixes 

Symbol 

d 
c 
m 
/-I 
n 
P 
f 
a 

Multiple Prefix Symbol 

1 0  deca da 
1 02 hecto h 
1 03 kilo k 
1 06 mega M 
109 giga G 
101 2 tera T 
1 01 5 peta P 
1 01 8 exa E 
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A I I L 5  S O M E  G RA M M ATI CAL R U LES 

A 1 I 1 . 5 . 1  P r i nt i n g  of Symbols  for  U n its a n d  P ref ixes 

The symbols for the unit and any prefix are both printed in roman type with no space 
between them. The symbol for the unit is followed by a period only if it ends a sentence 
and is never plural . Thus 

10 kg, not 10 kg. , and not 1 0  kgs . 

Symbols for a unit derived from a proper name are capitalized, but the name of the unit i s  
not capitalized . 

examples : 10 volts is symbolized by 10 V ;  100 joules is symbolized by 100 J. 

Ai l I . S . 2  SY M B O LS FO R D E R IV E D  Q U A NTITI ES 

A product of  two different units may be  written in  the following ways : N m or N  x m 
or N . m. In this book we use the first method, simply putting a space between the symbols. 

A quotient may be written as kJ /mol or kJ mol - 1 or in any other way that is not 
ambiguous . More than one solidus (/) should not be used in an expression unless paren
theses are included to prevent ambiguity : write (m/s)/(V/m) , not mis/Vim. 

A 1 I 1 . 5 . 3  Ta b l e  H ea d i ngs a n d  G ra p h  la be ls  

The entries in the tables in this book are all pure numbers . The table heading contains the 
quotient of the physical quantity divided by the unit. For example, in Table AIV. 1 ,  
the second column heading i s  !1H'}/kJ mol- I . We obtain the value for !1H'} by setting 
the table heading equal to the pure number in the table ; for 03(g) we find !1H'}/kJ mol- 1 
= 142.7 ; therefore !1H'} = 142.7 kJ mol- 1 = 142.7 kJ/mol. 

In Table 7 . 1 ,  values of the constants in the expression, Cp/ R = a + bT + CT2 + " ' , 
are tabulated . The third column heading is b/ l 0 - 3 K- 1 ; to obtain the value of b for 
oxygen we set the number in the table equal to the column heading : b/ l0 - 3 K - 1 

= 1 . 637 1 ; 
then b = l . 6371 X 10- 3 K - 1 . Note that this table heading could also be written as : 
1000blK - 1 , or 1000b K, or even (God forbid !) b kK. By an appropriate choice of the table 
heading, the entries are presented in a convenient form. 

The same usage has been followed in labeling the coordinate axes on graphs ; in a plot 
of pressure against temperature, the vertical axis might be labeled piMPa, and the 
horizontal axis T IK. 

AI I 1 . 6 EQUATI O N S  WITH D I M E N S I O N A L  P R O B LE M S  

The relation between the Celsius temperature, t, and the thermodynamic temperature, T, 
provides an illustration of the quantity calculus .  Heretofore we have commonly written 

T = t + To , 
where To = 273 . 1 5  K. But, as it stands, this equation poses a dimensional problem. The 
unit for t is °c while the unit for T is K. Strictly speaking we should write 

T/K = ttc + To/K = ttc + 273 . 1 5 . 
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Each term in this statement is a pure number and the difficulty (such as it is) vanishes. 
Then we could write for t, 

t = (T/K - 273 . 1 5)OC 

Since 1 °C = 1 K (exactly) this difficulty is as much imagined as real, but the point should 
be kept in mind . 

Equation ( 1 1 . 50) is another example of a dimensional difficulty . Formerly, it was 
customary to write the relation between the pressure equilibrium constant and the con
centration equilibrium constant as 

K = K (RT)dV p c ' 
which is dimensionally nonsensical . The current Eq. ( 1 1 . 50) gives two correct ways to 
write the equation ; namely, 

Kp = K
C( 1 0 1 . 3�:J/molrv = KcCO.08206 T/K)dV . 

Both of these ways make sense dimensionally . The presence of the awkward numerical 
factor is the price we pay for using atmospheres and mol/L as units of concentration ! 

AI I 1 .7 O N E  SYM B O L- O N E  Q U A N TITY 

As a general rule the symbol for a physical quantity should not be different for different 
units of the quantity. Thus, m should be the mass, not the number of kilograms or the 
number of grams ; I should be the length, not the number of metres or the number of feet. 

I have deliberately violated this rule in using two different symbols for the volume 
concentration. The traditional symbol for the volume concentration in units of mol per 
litre is c. This is a non-SI unit in the sense that it is not derived directly from the base units, 
but involves a numerical factor as well. It is an SI unit in the sense that it involves legitimate 
SI units for amount of substance (mol) and volume (dm3) .  As a laboratory unit of con
centration c is going to be with us for a long time . Rather than use this symbol for the SI 
unit of concentration derived simply from the base units, mol/m3 , I have introduced the 
symbol c for the SI base unit concentration. The use of c in the equations avoids both 
cumbersome numerical factors and confusion with the moles-per-litre concentration. 
Similarly, I have used N for number of molecules per cubic metre . 



A P P E N D I X I V  

Quantity 

Gas constant 
Zero of the Celsius scale 
Standard atmosphere 
Standard molar volume of 

ideal gas 
Avogadro constant 
Boltzmann constant 
Standard acceleration of 

gravity 
Elementary charge 
Faraday constant 
Speed of light in vacuum 
Planck constant 

Rest mass of electron 
Rest mass of proton 
Rest mass of neutron 
Atomic mass unit 

Ta b le  AIV.1  

Fundamenta l consta nts 

Symbol and equivalences 

R 
To 
Po 

Vo = RTo/Po 
NA 
k = R/NA 

9 
e 
F =  NAe 
c 
h 
Ii = h/2n 
m 
mp 
mn 
1 u = 1 0 - 3 kg mol - 1/NA 

Value 

8 . 3 1 441 (26) J K - 1 mol - 1 
273 . 1 5  K exactly 
1 .0 1 325 x 105 Pa exactly 

22.41 383(70) X 1 0 - 3 m3 mol - 1 
6 .022045(3 1) x 1 02 3 mol - 1 
1 . 380662(44) x 1 0- 2 3 J K - 1 

9 . 80665 m S
- 2 exactly 

1 .602 1 892(46) x 1 0 - 1 9  C 
96484.56(27) C mol - 1 
2 .99792458(1) x 108 m S

- l 

6 .6261 76(36) x 1 0 - 34 J s 
1 .0545887(57) X 1 0 - 34 J s 
9 . 1 09534(47) X 1 0 - 3 1 kg 
1 . 6726485(86) X 1 0 - 2 7 kg 
1 . 6749543(86) X 1 0 - 2 7 kg 
1 .6605655(86) X 1 0 - 2 7 kg 



Ta b le  AIV.1  ( Continued) 

Constants A-23 

less freq uently used consta nts a n d  composite q u a nt it ies 

Permeability of vacuum 
Permittivity of vacuum 

Gravitational constant 
Rydberg constant 
Bohr radius 
Hartree energy 
Bohr magneton 
Nuclear magneton 
Electron magnetic moment 
Lande 9 factor for free 

electron 
Proton gyromagnetic ratio 

110 
fo = 1 /l1oc2 
4n£0 
1/4n£0 
G 
Roo = me4 /8E6h3 c 
ao = 4nEoh2/me2 
Eh = 2hcRoo = e2/4nEoao 
I1B = eh/2m 
I1N = eh/2mp 
l1e 

4n x 10- 7 V S2 C - 1  m - 1 exactly 
8 . 8541 8782(5) x 1 0 - 1 2  C V - 1 m- 1 
1 . 1 1265006(6) x 1 0 - 1 0 C2 N- 1 m- 2 
8 .987551 8(5) x 1 09 N m2 C - 2  
6. 6720(27) x 1 0:-- 1 1  m3 kg- 1 S - 2  
1 .097373 1 77(83) X 1 0 7  m- 1 
5 .291 7706(44) x 10- 1 1  m 
4 .3598 14(24) x 1 0 - 1 8  J 
9 .274078(36) X 1 0 - 24 J r 1 
5 .050824(20) x 1 0 - 2 7  J T- 1 
9 .284832(36) X 1 0 - 24 J T- 1 

2.0023 193 1 34(70) 
2 .675 1987(75) x 108 S - l T- 1 

From Pure and Applied Chemistry, 51 : 1 , 1979. Printed by permission. The number in parentheses is the estimated 
uncertainty of the last figure(s) of the value. This estimate is three times the standard deviation. 

Tab l e  AIV.2 

M athematica l constants and ser ies 

n = 3 . 14 1 59265 . .  . 
e = 2 . 7 1 828 1 8  . .  . 
In x = 2. 302585 . . .  log1 0x 

x3 x5 x7 
sin x = x - - + - - - + 

3 !  5 !  7 !  

x2 X4 x6 
cos X = 1 - - + - - - + 

2 !  4 !  6 !  

In(1 + x) = x - tx2 + tx3 - ±x4 + . . .  
( 1  + X) - l = 1 - x + x2 - x3 + . .  . 
(1 - X) - l = I + x + x2 + x3 + . .  . 
( I - X) - 2 = 1 + 2x + 3x2 + 4x3 + . . .  

(all x) 

(all x) 

(all x) 

x2 < I 
x2 < 1 
x2 < 1 
x2 < 1 



Substance 

O(g) 
°z(g) 
°3(g) 
H(g) 
Hig) 
OH(g) 
Hz°(l) 
HzO(g) 
HzOz(l) 
F(g) 
Fz(g) 
HF(g) . 
C1(g) 
Clz(g) 
HCl(g) 
Br(g) 
Brz (l) 
Brig) 
HBr(g) 
leg) 
lic) 
Iz (g) 
HI(g) 
S(c, rhombic) 
S( c, monoclinic) 
S(g) 

A P P E N D I X V 

C h e m i ca l  T h e rmodyn a m i c 
P ro pe rt i es at 2 98 . 1 5 K 

Tab l e  AV. 1  

tlH'}lkJ mol- 1 tlG'}lkJ mol- 1 SO IJ K- 1 mol- 1 C;/J K - 1 mol - 1 

249 . 1 7  23 1 . 75 160 .946 2 1 . 9 1  
0 0 205 .037 29 . 35  

142 .7  163 .2  238 . 82 39 .20 
� 203 .26 1 14 .604 20.786 

0 0 1 30 . 570 28 . 82 
38 .95 34.23 1 83 . 64 29.89 

- 285 . 830 - 237 . 1 78 69.950 75 .291 
- 24 1 . 8 14 - 228 .589 188 . 724 33 . 577 
- 1 87 .78 - 120.42 109 .6 89 . 1  

79 .39 61 . 92 158 . 640 22. 74 
0 0 202 .685 3 1 .30 

- 273 .30 - 275 .40 173 .665 29. 1 3  
12 1 . 302 105 .70 165 .076 2 1 . 84 

0 0 222.965 33 .9 1  
- 92 . 3 1  - 95.299 1 86 .786 29 . 1  
1 1 1 . 86 82.429 174.904 20 .79 

0 0 1 52 .210 75 .69 
30 .91 3 . 1 4  245 . 350 36 .02 

- 36 .38 - 53 .43 198 . 585  29. 14 
106. 762 70.28 180 .673 20. 79 

0 0 1 1 6 . 1 39 54.44 
62.421 19 .36 260. 567 36 .9 
26 .36 1 . 72 206.480 29. 16  
0 0 32.054 22 .6  
0 . 33  

276.98 238 .27 167 . 7 1 5  23 . 67 



Substance 

SOig) 
S03(g) 
H2S(g) 
H2S04(l) 
N(g) 
N2(g) 
NO(g) 
�(g) 
N2O(g) 
N203(g) 
N204(g) 
N2OS (g) 
NH3(g) 
HN03(l) 
NOCl(g) 
NH4Cl(c) 
peg) 
P2(g) 
P4(c, a, white) 
P4(g) 
PCI3 (g) 
PCls (g) 
C(c, graphite) 
C(c, diamond) 
C(g) 
CO(g) 
COig) 
CH4(g) 
HCHO(g) 
CH3OH(l) 
C2H2 (g) 
C2H4(g) 
C2H6(g) 
CH3COOH(I) 
C2HsOH(I) 
C6H6(g) 
Si(c) 
Si(g) 
Si02(c, a-quartz) 
SiH4(g) 
SiF4(g) 
Pb(c) 
PbO(c, red) 
Pb02(c) 
PbS(c) 
PbS04(c) 
Al(c) 
Al203 (c, a-corundum) 
Zn(c) 
Zn(g) 
ZnO(c) 

Chemica l  Thermodyn a m i c  P ropert ies at 298. 1 5  K A-25 

Tab l e  AV. 1  ( Continued) 

liHjjkJ mol- 1 6.GjjkJ mol- 1 sop K - 1 mol- 1 C�/J K- 1 mol- 1 

- 296. 8 1  - 300. 1 9  248 . 1 1  39 .9 
- 395 .7  - 37 1 . 1  256 .6 50 .7 
- 20 .6  - 33 . 6  205 .7  34.2 

- 8 1 3 .99 - 690. 1 0  1 56 .90 1 38 .9  
472 .68 455 . 57 1 53 . 1 89 20.79 

0 0 1 9 1 . 502 29. 1 2  
90.25 86 .57 2 1 0 .65 29. 84 
33 . 1 8  5 1 . 30  240 .0 37 .2 
82 .0 1 04.2 2 19 . 7  38 .45 
83 . 7  1 39 .4 3 1 2.2 65 .6 
9 . 1 6  97. 8 . 304.2 77 .3 

1 1  1 1 5  356 85 
- 45 .94 - 16 .5  192 .67 35 . 1 

- 1 74. 1 - 80 . 8  1 55 . 6  109 .9 
5 1 .7 66. 1 26 1 . 6 44.69 

- 3 14 .4 - 203 .0 94 .6 84. 1 
3 1 6 . 5  278 . 3  1 63 .085 20.79 
144.0 104 2 1 8 . 0 1  32.0 

0 0 1 64.4 95 .36 
58 .9  24. 5  279 .9  67. 1 5  

- 287 - 268 3 1 1 . 7 7 1 . 8  
- 375 - 305 364 .5 1 12 . 8  

0 0 5 . 74 8 . 53  
1 . 897 2 . 900 2 . 38  6 . 12  

7 1 6 .67 671 .29 1 57 .988 20.84 
- fro:S:r - 1 37 . 1 5  1 97 . 556 29. 1 2  
- 393 . 5 1  - 394.36 2 1 3 . 677 37 . 1 1  
-14 .8  - 50 .8  1 86 . 1 5  3 5 . 3 1  .. - .  

- 1 17 - 1 1 3 2 1 8 . 7  35 .4 
- 238 . 7  - 1 66 .4 127 82 

226 .7  209 .2 200 . 8  43 .9  
52. 3  68 . 1  2 19 . 5  43 . 6  

- 84 .7 - 32.9 229 . 5  52. 6  
- 485 - 390 1 60 1 24 
- 277 . 7  - 174.9 1 6 1  1 1 1 . 5  

82.93 1 29 .66 26.92 85 .29 
0 0 1 8 . 8 1  20 

450 41 1 1 67 . 870 22.25 
- 9 10 .7  - 856.7 4 1 .46 44.4 

34 57 204 .5  42. 8  
- 1 614 .95 - 1 572. 7  282.65 73 .6  

0 0 64. 80 26.4 
- 219 .0  - 1 88 .9  66 .5  45 . 8  
- 277 - 2 1 7 .4 68 . 6  64. 6  
- 100 - 99 9 1  49 . 5  
- 9 19 .94 - 8 1 3 .2 148 .49 103 .2 1  

0 0 28 . 35  24.4 
- 1 675 .7  - 1 582 50.92 79.0 

0 0 41 . 63 25.4 
1 30 .42 95 . 1 8  1 60 .875 20 .79 

- 350.46 - 3 1 8 . 3  43 . 64 40. 3  



A-26 Chemical  Thermodyna m i c  P ropert ies at 298 . 1 5 K 

Tab l e  AV. 1  (Continued) 

Substance l1Hj/kJ mol- 1 l1Gj/kJ mol- 1 

Hg(l) 0 0 
Hg(g) 6 1 . 3 8  3 1 . 85  
HgO(c, red) - 90.8 - 58.56 
Cu(c) 0 0 
CuO(c) - 1 57 - 1 30 
Cu2O(c) - 169 - 146 
Ag(c) 0 0 
Ag2O(e) - 3 1 .0 - 1 1 .2 
AgCl(e) - 127 .070 - 109 .80 
Ag2S(e ,  IX) - 32 .6  - 40 .7  
Fe(e, IX) 0 0 
FeO .94 70(C, wustite) - 266.3 - 245 . 1  
Fe203(C, hematite) - 824.2 - 742.2 
Fe304(e, magnetite) - 1 1 1 8 - 10 1 5  
FeS(e, IX) - 100 - 1OD.4 
FeSz Ce, pyrite) - 1 78 - 1 67 
Ti(e) 0 0 
Ti02(e, rutile) - 945 - 890 
TiCI4(l) - 803 - 737 
Mg(e) 0 0 I 
MgO(e) - 60 1 . 5  - 569.4 
MgC03(c) - 1096 - 10 12  
Ca(e) 0 0 
CaO(c) - 635 .09 - 604.0 
Ca(OHlz(e) - 986 . 1 - 898 .6  
CaC2(e) - 60 - 65 
CaC03(c, calcite) - 1206.9  - 1 128 .8  
SrO(e) - 592 - 562 
SrC03(e) - 1220 - 1 140 
BaO(c) - 554 - 525 
BaC03(e) - 12 1 6  - 1 1 38 
Na2O(e) -414.2 - 375 .5  
NaOH(e) - 425 . 6 1  - 379. 53  
NaF(c) - 573 .65 - 543 . 5 1  
NaCl(e) - 41 1 . 1 5  - 384. 1 5  
NaBr(e) - 361 .06 - 348 .98 
NaI(e) - 287 .8 - 286 . 1 
Na2S04(c) - 1 387 . 1 - 1270.2 
Na2S04 . I OHzO - 4327 .3  - 3647.4 
NaN03(e) -467.9 - 367. 1 
KF(c) - 567.3 - 537 .8  
KCl(e) - 436 .75 - 409.2 
KCI03 (e) - 397 .7 - 296 . 3  
KCI04(e) - 432.8 - 303 .2 
KEr(e) - 393 .80 - 380. 7 
KI(e) - 327.90 - 324.89  

g :  gas ; 1 :  liquid ; c :  crystal. 

SOfJ K- 1 mol- 1 C;/J K - 1 mol- 1 

75 .90 27.98 
1 74. 860 20. 79 
70.3 44. 1 
33 . 1 5  24.43 
42. 6  42. 3  
93 . 1 63 .6  
42 .55 25 . 35  

12 1  65 .9  
96 .23 50. 8  

144.0 76 .5 
27 .3  25 . 1 
57 . 5  48 . 1  
87 .4 103 . 8  

146 143 .4 
60 . 3  50 . 5  
52.9 62.2 

30 .6 25 .0 
50 . 3  55 .0 

252. 3 145 .2 
32.68 24.9  
26.95 37 .2 
66 75 . 5  
4 1 . 6  25 .3  
38 . 1 42. 8  
83 .4 87 . 5  
70.0 62. 7  
93 8 1 . 9  
54 45. 0  
97 8 1 .4 
70.4 47.8  

1 12 85 .4 
75 . 1  69. 1 
64.45 59 . 5  
5 1 . 5  46. 9  
72 . 1  50 . 5  
86 .8 5 1 .4 
98 . 5  52. 1 

149.6 128 .2 
592 
1 1 6 . 5  92. 9  
66 .6 49. 0  
82.6 5 1 . 3  

143 100 .2 
1 5 1  1 1 2 .4 
95 .9 52. 3  

1 06 .3  52 . 9  



Chemica l  Thermodynamic  P ropert ies at 298. 1 5  K A-27 

The values in Table A V. l were calculated from the data in D. D. Wagman, 
W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm, Selected Values of 
Chemical Thermodynamic Properties, NBS Technical Notes 270-3, 4, 5, 6, 7, and 8 .  

To obtain the values in joules, the tabulated values in calories were multiplied by 
4 . 1 84. The product was then rounded to avoid giving the impression of an accuracy higher 
than the original entries would justify. For example, the NBS entry for the entropy of 
HgO(red) is 1 6 . 80 callK mol ; then 16 . 80 x 4. 1 84 = 70 .29 1  J/K mol. This has been 
rounded to 70 .3  J/K mol rather than to 70.29 . Consequently, the values may indeed be 
known to a higher degree of accuracy than the values given here indicate . 

A few values are taken from CODATA Bulletin No. 28, Recommended Key Values 
of Thermodynamics, 1 977. 



A P P E N D I X V I  

G ro u p C h a ra cter  Ta b l es 

C2V E C2 O"v(XZ) o"�(yZ) 

al Z x2 , y2 , z2 
a2 1 - 1  - 1 Rz xy 
b i - 1  1 - 1  x, Ry XZ 
b2 - 1  - 1  1 y, Rx yz 

C3v E 2C3 30"v 

al 1 z x2 + y2 , Z2 
a2 1 - 1  Rz 
e 2 - 1  0 (x, y)(Rx , Ry) (x2 - y2 , xy)(xz, yz) 

C2h E C2 O"h 

ag 1 1 1 Rz x2 , y2 , Z2 , xy 
bg 1 - 1  1 - 1  Rx , Ry xz, yz 
au 1 1 - 1  - 1  z 
bu 1 - 1  - 1  1 x, y 



G ro u p  Character Ta b l es A-29 

DZh E Cz(z) Cz(y) CAx) (J(xy) (J(xz) (J(yz) 

ag 1 xZ, yZ, ZZ 
bi g 1 - 1  - 1  1 - 1  - 1  Rz xy 
bzg - 1  1 - 1  - 1  1 - 1  Ry XZ 
b3!1 - 1  - 1  1 - 1  - 1  1 Rx yz 
au 1 1 - 1  - 1  - 1  - 1  
b l u 1 - 1  - 1  - 1  - 1  1 Z 
bzu - 1  - 1  - 1  - 1  y 
b 3u - 1  - 1  - 1  1 - 1  x 

D3h E 2C3 3Cz (Jh 2S3 3(Jv 

a� 1 1 XZ + yZ, ZZ 
a; 1 - 1  1 - 1  Rz 
e' 2 - 1  0 2 - 1  0 (x, y) (XZ _ yZ , xy) 
a; - 1  - 1  - 1  
a; 1 - 1  - 1  - 1  1 Z 
e" 2 - 1  0 - 2  1 0 (Rx ' Ry) (xz, yz) 



A P P E N D IX V I I  

Answers to P rob lems 

Note 1 .  Significant figures. In those problems in which nominal values of variables are 
assigned to illustrate a calculation, I have decided (quite arbitrarily) to record the numerical 
answers to three significant figures unless there is some obvious reason in a particular 
problem to do otherwise. For example, " What volume does one mole of an ideal gas 
occupy at 2 atm pressure and 20 °C ? "  The answer is given as 12.0 L. The " one mole," the 
" 2  atm," and the " 20 °C " are nominal values given to illustrate the use of the ideal gas 
law. They may be taken as exact in the calculation. I see no need to write 1 .00 mole, 
2.00 atm, and 20.0 °C every time such a calculation is proposed. On the other hand, 
if the statement of the problem implies a measurement, then the rules for significant 
figures must be observed. For example, " A  sample of methane is confined under a pressure 
of 745 mmHg at a temperature of 22.0 °C in a volume of 175 mL. What is the mass of the 
gas, assuming ideal behavior ? "  The answer is 0. 1 1 3  g, but this time three figures are 
recorded because of the three significant figures in 1 75 mL. The student should be alert to 
instances in which the number of significant figures decreases as often happens in sub
tractions . I have tried to specify the data carefully in such problems so that there is no 
ambiguity in the calculation. 

Note 2. All the problems were worked using a continuous-memory, programmable 
calculator ; all the fundamental constants were stored in the calculator to their full 
accuracy. Thus, the value of R used was always 8 . 3 1 44 1  J/K mol, that of NA was always 
6 .022045 x 102 3/mol, and Twas always calculated as T = 273 . 1 5  + t. As a consequence, 
the answers in the book may show trivial differences in the last recorded figure from the 
values calculated using R = 8 . 3 1  J/K mol, To = 273 K, and NA = 6.02 x 102 3/mol. I 
trust thl!! no one will lose any sleep over that. 



Answers to Problems A31 

Note 3. In those problems in which quantities are determined from the slope and/or 
intercept of a straight line plot, the slope and intercept were calculated using a least-squares 
fit of the data (the preprogrammed linear-regression program in the calculator) . 

Chapter 2 

2 .1  449 DC 2.2 300 mol ; 9 .6 kg 2.3 892 . 1  J1.g 2.4 (a) 8 1 8. 3  J1.g (b) 142.2 cm3 
2.5 " R "  = 10 . 1 325 JjK mol ; " N;' '' = 7.339 x 102 3j"mol " ; " MH"  = 1 .228 g/"mol " ; 

" Mo "  = 19 .50 gj"mol " 
2.6 � = l/T 2.7 K = l/p 2.8 (8p/8T)v = rx/K 
2.9 (p/atm, mol %) (a) H2 : 6. 1 5, 94.2 % ;  02 : 0 .38, 5 .8 % ; p,/atm = 6.53 

(b) N2 : 0.440, 53 .3 %; 02 : 0.385, 46.7 % ;  p,/atm = 0.825 
(c) CH4 : 0.769, 5 1 . 5 % ; NH3 : 0.724, 48 .5 % ; p,/atm = 1 .493 
(d) H2 : 6. 1 5, 97.3 % ;  C12 : 0 . 1 7, 2.7 % ;  p,/atm = 6.32 

2.10 (p/atm : N2 , O2 , Ar) 0.762, 0.205, 0.0098 ; (Xi : N2 , O2 , Ar, H20) 0 .762, 0.205, 0.0098, 0 .023 
2.1 1  (a) 69 % N2 , 1 8 % °2 , 0.88 % Ar, 12 % H20 

(b) 12.2 L (c) 0.993 
2.12 30 L 2.13 20 % °2 , 80 % H2 2.14 (a) 98 .0 % N2 , 2.0 % H20 (b) 10.2 L 
2.15 10 .3 mol % H2 2.16 0.747 N2 , 0. 10 1 02 , 0.086 H20, 0.058 CO2 , 0 .010 Ar 
2.17 59.9 % butane 2.18 1 54.7 g/mol 
2.19 (a) 5 .64 g/mol (b) 56.4 g/mol (c) 56.4 kg/mol (d) polymers 
2.20 633 Torr ; 462 Torr 
2.21 (a) 5.8 x 1 0- 20 m (b) Yes. The potatoes try to get as close to the bottom as possible. 
2.22 + 0.024 atm 
2.23 (pJatm) N2 : 2.44 x 10- 3 ; CO2 : 0.0701 x 1 0- 3 ; p,/atm = 2 .51 x 10- 3 ; XN2 = 0.972 

(b) 1 . 1 0  x 106 mol 
2.24 (p/atm : 50 km, 100 km ; mol % :  50 km, 100 km) 

N2 : (3.06 x 1 0- 3, 1 .20 x 10- 5 ; 89.0 %, 87.7 %) 
O2 : (3 .73 x 10- 4, 6.66 x 10- 7 ; 10 .8 %, 4.86 %) 
Ar : (3 .44 x 10- 6 , 1 .27 x 1 0- 9 ; 0 . 1 00 %, 0.00930 %) 
CO2 : (5 .0 x 10- 8 , 8.2 x 10- 1 2 ; 0 .0014 %, 6.0 x 1 0- 5 %) 
Ne : (3.3 x 1 0- 7, 6. 1  x 10- 9 ; 0.0097 %, 0.045 %) 
He : (2. 3  x 1 0- 6, 1 .0 x 10- 6 ; 0.066 %, 7.5 %) 
ptotaJatm : 50 km : 3 .44 x 10- 3 ; 100 km : 1 .37  x 1 0- 5  

2.25 0.924 Co 2.26 (a) 3 8  em (b) 9 .71  x 10- 4 mol/L (c) 1 .94 x 1 0- 4 mol 
2.27 C'OP = 0.098 mOl/m3, Co = 0. 1 02 mol/m3 
2.28 (a) 65.2 kg/mol (b) 6 .36 g (c) 0.244 mol/m3 2.29 1 .4 1  km 2.30 53 
2.32 (a) Pi = ciRT  (b) If r; = nJnl ' then PI = p/(l + 1:r;) ;  p; = r ip/(l + 1:r;) 
2.34 1 0  km, 0 .8 1 ; 1 5  km, 0.73 
2.35 (a) N = No AR T/Mg, where A = earth's area, No = number of molecules/m3 at ground level 

(c) 5.27 x 1 01 8 kg 
2.36 (a) <x;) = (x?/M;)!1:x?/M; (b) N2 : 0 .804 ; 02 : 0. 189 ; Ar : 0.007 
2.37 Z = (RT/Mg)ln 2 
2.38 [(V/n)!(L/mol) : rxo o rx = OJ 2 atm : 1 3 .7, 12.2 ; 1 atm : 28.6, 24.5 ; ! atm : 60.3, 48.9 
2.39 Z = 1 + rx; as p .... 0, rx .... 1 and Z .... 2 ; N204 becomes 2N02 . 

Chapter 3 

3.1 12. 1 cm3/mol 3.2 a = 0.0 1 8  Pa m6/moI2, b = 2.0 X 10- 5 m3/mol 
3.3 a = 0.212 Pa m6/moI2 , b = 1 .89 X 10- 5 m3/mol, R = 5 . 1 5  J/K mol ; 

a = 0.553 Pa m6/moI2 , b = 3 .04 X 10- 5 m3/mol, Ve = 9 . 1 3  X 1 0- 5 m3/mol 
3.4 a = 3Pe V:Te ; b = tve ; R = 8Pe Ve/Te 3.5 a = e2Pe V: ; b = rile; R = !e2Pe Ve/Te 
3.6 (a) 0.520 L/mol (b) 0 . 195 L/mol (c) 0. 146 L/mol 
3.7 From 100 DC to 25 DC, P decreases thirty-fold, l/T increases by only 1 .2. 



A32 Answers to Problems 

3.8 (p/atm, Z) ; 200 K: ( 100, 0.5 1 3) ;  (200, 0.270) ; (400, 0.954) ; (600, 3 .9 1 ) ; (800, 10 .0 1 ) ;  ( 1 000, 20. 1 2) ; 
1 000 K :  ( 100, 1 .02 1 8 ) ;  (200, 1 .0500) ; (400, 1 . 1 288) ; (600, 1 .244) ; (800, 1 .401 ) ;  ( 1 000, 1 .608). 

3.9 0. 1942 L/moi 3.10 B-B : 0.2673 L/mol ;  vdW : 0.3 8 1 8  L/moi 
3. 1 1  (B-B ; vdW) ; O2 : (399.5 K, 522 K) ; CO2 : (867.8 K, 1026 K) 
3.12 (a) 7.9 14  x 1 O - 5 m3/mol (b) 3 1 1 . 3 atm 
3.13 rx = ( I/T)[ l  + (2a/R T2)(p/R T)]/[ l  + (b - a/R T2)(p/R T)] ; TB = (a/Rb) I /2 
3.15 ( - dp/p) = (Mg/ZR T) dz ; in(p/po) + B(p - Po) = - Mgz/R T 
3.18 T = 2a/Rb ; (8Z/8P) max = b2/4a 

Chapter 4 

4.1 (m/s ; 300 K, 500 K) ; c,ms : 484, 624 ; <c) : 446, 575 ; cmp : 395, 5 1 0 ;  speeds of H2 are four times 
greater. 

4.2 (a) <co,) = 440 m/s ; <CO,)/<CCCl) = 2. 1 9  (b) 6.07 x 10- 2 1  l ;  same K.E. 
4.3 (a) 3 .74 kl/mol, 6.24 kJ/mo! (b) 6.2 1 x 1 0 - 2 1  J 4.4 3.24 x 1 0 - 1 0  m/s ; 98 yr 
4.5 1 0  km ; 12 km 4.6 96.6 K ;  0.00925 4.7 (3 - 8/n) I /2(k T/m) I /2 4.8 GY/2kT 
4 .9  (a) <t) = (2m/nkT) I /2 (b) ( 1 - 2/n) I /2(m/kT) I /2 (c) 0 .333  4.10 0.3 10  4.11  tkT 

4.12 kT :  0.572 ; 2kT: 0.262 ; 5kT: 0.01 8 ;  10kT: 1 .62 x 1 0 - 4  4.13 0.766 4.14 0.676 
4.15 (a) 9.48 x 1 0 - 2 2  (b) 3.0 x 1 0 - 304 (c) 0. 1 96 (d) 4.33 x 1 0 - 1 4  
4 . 16  0.0661 ; 0. 198 ; 0.3 14 4 . 17  (CjR)(o(al = 3 .059 ; 3 . 307 ; 3 .396 
4.18 [BS ' (Cu/R)vib] : (3 .360 kK, 0.00 1 6 1 8) ; ( 1 .890 kK, 0.07 1 14) ; (954. 1 K, 0.4536) ; (954. 1 K, 0.4536) 
4.19 2.58 x 10 1 3 Hz 4.20 0.04540 ; 0. 1 707 ; 0.7241 ; 0.9207 ; 0.9638 
4.21 Cu/R : 3 .0274 ; 3 .2256 ; 3 .9363 ; 5 .0399 4.22 (a) 0.229 (b) 1 .024 x 1 0 - 9  
4.23 0.083 1  4.24 0.693 1 ;  447 K 

Chapter 5 

5.1 46 atm 5.3 32.2 kJ/moi 5.4 Pro = 1 .450 X 106 atm ; P2 9 8  = 0.028 1 9  atm 
5.5 l/T = ( I/To) + (Mai,gz/Qvap Ta) ; 94 °C 5.9 1 1 8 . 1  kJ/moi ;  1 1 77 K 

5.10 a = rxo ; b = t(rx' + rx�) ; c = t(rx" + 3rx'rxo + rx6) 

Chapter 6 

6.1 400 k] 6.2 0.098 J 6.3 1 2  kJ 6.4 (a) 3 1  % (b) None 
6.5 (a) ( t, t') : (0, 0) ; (25, 2.52) ; (50, 1 1 . 7) ; (75, 37 .6) ; ( l 00, 100) 

(b) (p/mmHg, t' ) : (40, 0.40) ; ( 1 00, 2.6) ; (400, 19 .7) ; (760, 46.5) 
6.6 t' = t[ 1 + bet - 100)/(a + 100b)] 6.7 409.83 

Chapter 7 

7.1 (a) - 30.3 K (b) O K  (c) 10. 1  K 7.2 1 2.6 J/K 7.3 Q = W =  4 kJ ; L'1U = L'1H = 0 
7.4 (a) Q = W =  8 .22 kl ; L'1U  = L'1H = 0 (b) Q = W =  - 8 .22 kJ ; L'1U = L'1H = 0 
7.5 Q =  W =  - 20.3 kl ; L'1U  = L'1H = 0  
7.6 W<ev = nR T !n( V2/Vl ) + n2(RTb - a)[( l/VI ) - (ljV2)] 
7.7 Q = 2746 l/mo! ; W  = 2727 l/mol ; L'1U = 1 8 . 5  limo! ; L'1H = 3 1 .7 l/mo! 
7.S Qp = L'1H = - 1 559 limo! ; W = - 624 l/moi ;  L'1U = - 935 l/mol 
7.9 Qv = L'1U = 1 560 l/moi ;  W = 0 ;  L'1H = 2 1 80 l/moi 

7.10 L'1U = 9.4 kl/mol ;  L'1H = 1 1 .9 kl/mo! 
7. 1 1  (a) W =  830 1/mo! (b) Q = - 1250 1/mo! ; L'1U  = - 2080 J/moi ; L'1H = - 29 1O J/mol 
7.12 (a) W = 105 mJ (b) Qp = L'1H = 20.90 kl ; L'1U = 20.90 kl 
7.13 Case J :  T2 = 1 380 K; Q = 0; L'1U = - W = 1 3 .5  kl/mo! ; L'1H = 22.4 kl/mo! ;  

Case 2 :  T2 = 1071  K ;  Q = 0 ;  L'1 U  = - W = 1 6.0 kl/mo! ;  L'1H = 22.4 kl/mo!. 
For n moles, T2 is the same ; W, L'1U, and L'1H are n times larger. 

7.14 Case J :  T2 = 754 K ;  Q = 0 ;  L'1U = - W = 5.66 kl/mo! ;  L'1H = 9 .44 kl/mo!. 
Case 2 :  T2 = 579 K; Q = 0; L'1U = - W = 5.80 kl/mo! ; L'1H = 8 . 1 2  kl/mo! 

7.15 Case J :  T2 = 192 K ;  Q = 0; L'1U = - W = - 1 .35 kl/mo! ; L'1H = - 2.24 kl/mo! .  
Case 2 :  T2 = 223 K;  Q = 0 ;  L'1 U  = - W = - 1 .60 kl/mo! ; L'1H = - 2.24 kl/mo! 



Answers to Problems A33 

7. 16  Case 1 :  T2 = 1 1 9  K; Q = 0; �U = - W = - 2.26 kl/mol ; �H = - 3.76 kl/mo!. 
Case 2 :  T2 = 155 K ;  Q = 0; �U = - W = - 3.01 kl/mol ; �H = - 4.22 kl/mol 

7. 1 7  Tl = 202 K ;  Q = 0; �U = - W = - 1 .20 kl/mol ; �H = - 2.00 kl/mol 
7.18 Q = 0; �U = - W = - 208 l/mol ; �H = - 29 1 1/mol 
7.1 9  T2 = 235 K ;  Q = 0 ;  �U  = - W = - 1 .21 kJ/mol ; �H = - 1 .69 l/mol 
7.20 (a) 1 1 0.5 kPa (b) 1 07.9 kPa 7.21 1 .66 
7.22 Q = 0; �U = - W = 624 l/mol ; �H = 873 l/mol 
7.23 pz = 452 kPa ; Q = 0 ;  �U = - W = 6.24 kl/mol ; �H = 8.73 kl/mol 
7.24 (a) �U = �H = 0 ;  Q = W = 1 . 69 kl/mol 

(b) W = 0; Qv = �U = 1 .00 kl/mol ; �H = 1 .66 kl/mol 
(a) + (b) : Q = 2.69 kl/mol ; W = 1 .69 kl/mol ; �U = 1 .00 kl/mol ; �H = 1 .66 kl/mol 

7.25 (a) �U = �H = 0 ;  Q = W = 0.50 kl/mol 
(b) W = 0; Qv = �U = - 1 .04 kl/mol ; �H = - 1 .46 kl/mol 
(a) + (b) : Qv = - 0.54 kl/mol ; W = 0.50 kl/mol ; �U = - 1 .04 kl/mol ; �H = - 1 .46 kl/mol 

7.26 (a) M = (nRT/gh)(1 - P2/P , ) (b) M' = (nRT/gh)[(pdpz) - lJ 
(e) M' - M = (nRT/gh)(p, - P2)2/p ,P2 
(d) M = 1 .27 Mg; M' = 2.54 Mg ; M' - M = 1 .27 Mg 

7.27 (a) W = RT[2 - (P'/p , ) - (pz/P')J (b) P' = (p ,Pz) ' /z (e) Wmax = 2RT[1 - (P2/P ,)' /2J 
7.28 - 9004 l/mol 
7.29 (a) Qp = �H = 6 195.3 l/mol ;  W = 1662.9 l/mol ; �U = 4532.4 l/mol 

(b) Qv = �U = 4532.4 l/mol ;  W = 0 ; �H = 6195 .3 l/mol 
7.30 - 3.54 kl/mol 7.31 490 atm 7.32 60 atm 
7.33 Q = 0 ; W =  2400 1/mol ; �U = - 2400 J/mol ; �H = - 2900 J/mol 
7.34 3.47 kl/mol 
7.35 (a) - 285.4 kl/mol (b) - 562.0 kl/mol (e) 142 kl/mol (d) 1 72.45 kl/mol 

(e) - 128.2 kl/mol (f) - 85 1 . 5 kl/mol (g) - 179.06 kl/mol (h) - 128 kl/mol 
(i) 178 .3 kl/mol 

7.36 (a) - 287.9 kl/mol (b) - 558 .3 kl/mol (e) 144 kl/mol (d) 1 69.97 kl/mol 
(e) - 120.8 kl/mol (f) - 85 1 . 5 kl/mol (g) - 1 76.58 kl/mol (h) - 1 30 kl/mol 
(i) 175 .8 kl/mol 

7.37 (a) 49.07 kl/mol (b) - 63 1 . 12 kl/mol 7.38 - 59.8 kl/mol 
7.39 (a) - 5635 kl/mol (b) - 2232 kl/mol (el 1 195 1/K 
7.40 (a) - 1 366.9 kl/mol (b) - 277.6 kl/mol 
7.41 FeO : - 266.3 kl/mol ; FeZ0 3 :  - 824.2 kl/mol 
7.42 (a) - 937 kl/mol (b) - 933  kl/mol 7.43 H2S :  - 20.6 kl/mol ; FeS2 : - 178 kl/mol 
7.44 - 180 kl/mol 
7.45 (a) 44.016 kl/mol (b) 2.479 kl/mol (e) 41 .537 kl/mol (d) 40.887 kl/mol 
7.46 - 45.98 kl/mol 7.47 1 32.86 kl/mol 7.48 - 223 .91 kl/mol 7,49 - 53 .87 kl/mol 
7.50 298 K :  - 1255.5 kl/mol ;  1000 K :  - 1259.8 kl/mol 7.51 - 812.2 kl/mol 
7.52 (a) - 73 kl/mol (b) - 804 kl/mol 7.53 - 57. 1 8  kl/mol 
7.54 - 61.9 kl/mol ;  - 68.3 kl/mol 
7.55 [nAq ; �Hs/(kl/mol)] : ( 1 ; - 27.80) ; (2 ; - 41 .45) ; (4 ; - 53 .89) ; ( 10 ; - 66.54) ; (20 ; - 70.93) ; 

( 100 ;  - 73 .65) ; (co ; - 95.28) 
7.56 t�H/(kl/mol) ; �U/(kl/mol)J (a) (428.22 ; 425.74) (b) (926.98 ; 922.02) 

(e) (498.76 ; 496.28) 
7.57 SiF : 596 kl/mol ; SiC! : 398 kl/mol ; CF : 490 kl/mol ; NF : 279 kl/mol ; OF : 215 kl/mol ; 

�c: HF : 568 kl/mol 
r 7.58 (il) 41 5.9 kl/m-ol (b) 330.6 kl/mol (e) 589.3 kl/mol (d) 8 10.8 kl/mol 
7:59 302.4 kl/mol 7.60 (a) 7500 K (b) 2900 K (e) 5100 K 7.61 27 units 
7.62 6.9 min 7.63 For �P = 10 atm, �H = 1 8 .2 l/mol ; For �T = 10 K, �H = 753 l/mol 
7.64 3.78 DC 
7.65 (a) 1 .667 (b) 1 .286 (e) 1 . 1 67 (d) )iAr = 1 .667 ; )iN2 = 1 .400 ; )iI2 = 1 .292 ; )iH20 = 1 .329 

(e) )i = 1 



A34 Answers to Problems 

Chapter 8 

8.1  (a) Reverse Carnot engine ; make Wcomp == 0 
(b) Forward Carnot engine ; make Q2 . comp = 0 

8.2 0.251 
8.3 (a) 62.7 % (b) 4 1 .9 % less 5 %  other losses = 37 % (c) 1 1 9 Mg/hr 

(d) 36 200 Ml1min (e) 9.2 °C 
8.4 (a) 80 % (b) 1 500 K 8.5 6.2 m2 8.6 640 W 8.7 0.24 hp 8.8 457 g/min 
8.9 0.52 hp 8.10 255 K 8.11  2.79 m2 

8.12 (a) 9.9 (b) 0.69 
(c) Case (a) : Furnace supplies 0.08 1 of energy supplied by heat pump per unit of fossil fuel 

consumed. Heat pump is more economical. Case (b) : Furnace supplies 1 . 1 6  of energy 
supplied by heat pump. Furnace is more economical. 

8.13 (a) 2.2 (b) 7.5 % 8.14 High temp : 23.0 ; Low temp : 10.0 
8.15 I] = 36.0 ; EER = 128 
8.16 (a) t = 373. 1 5(1 - TI273 . 1 5) (b) t = T - 273 . 1 5  
8.17 (a) - R ln 2 = - 5.76 1IK mol (b) - R ln 2  (c) + R ln 2  

(d) R In 2 =1= 0 ;  note that �Sl > Q dT 

Chapter 9 

9.1 (a) 13 . 7  11K mol (b) 22.8 11K mol (c) three times larger in each case 
9.2 (a) 47.948 11K mol (b) 178 .540 11K mol 9.3 13 .2 11K mol 
9.4 (a) 1 1 .71 11K mol (b) 40.06 11K mol 9.S 25.00 11K mol 9.6 8 1 . 5  11K mol 
9.7 (a) 1 .03 11K mol S (b) 3 . 14 11K mol S (c) 8 .2 11K m�l Ss ; 25. 1 11K mol Ss  
9.8 (a) 23.488 11K mol (b) 154.443 11K mol 9.9 216 . 127 11K mol 

9.10 (a) 99.89 11K mol (b) 18 .47 kJ/mol 9. 1 1  33 .77 J/K mol 
9.12 �H = 2849.5 J/mol ; �S = 8.8934 J/K mol 
9.13 (a) 5.763 J/K mol (b) 28.82 J/K mol 
9.14 16.02 1 J/K mol 9.15 1 0. 1  J/K mol 
9.16 Q = 487 J/mol ; �U = 187 Ilmol ; �H = 3 12  llmol ; �S = 6.78 11K mol 
9.17 Q = 2747 llmol ; W = 2728 llmol ; �U = 18 . 5  llmol ;  �H = 3 1 .7 Ilmol ; �S = 9 . 1 52 11K mol 
9.18 QI(J/mol) WI(J/mol) �UI(J/mol) �H(J/mol) �S/(IIK mol) (QIT)/(J/K mol) 

(a) 1250 0 1250 2080 2.39 
(b) 2080 830 1250 2080 5.98 
(c) 1730 1 730 0 0 5 .77 5.77 
(d) 1250 1250 0 0 5 .77 4. 17  
(e) 0 0 0 0 5 . 77  0 
(f) 0 748 - 748 - 1250 1 . 1 2  0 
(g) 0 910  - 9 10 - 1 520 0 0 

9.19 16.49 11K mol 9.20 y = 0.00063276 l1K2 mol ; a = 0.00007222 l1K4 mol 
9.21 26.80 11K mol 9.22 (a) - 0.377 11K mol (b) - 0.369 11K mol 
9.23 - 0.0355 J/K mol ; -0.0355 11K mol 9.24 (8S18p)y = - Va 9.25 �T = - 1 .49 K 
9.27 Final state : 1 1 .2 g ice and 38 .8 g liquid H20 at 0 °C ; �H = 0 ;  �S = 0.50 11K 
9.28 (a) 0.28 g ;  om 11K mol (b) 0.77 g ;  0.02 J/K (c) 34 g ;  0.6 11K (d) 123 g ;  1 . 6  11K 
9.29 (a) All liquid at 64.0 °C (b) 23 11K 9.30 (a) 1 08 g (b) 1 44 11K 
9.31 (a) 1 5  (b) 1 5  (c) ! 9.32 (a) 10 (b) 1 (c) 2 ;  �S = k in 2 
9.33 (a) N� (b) NcCNe - 1)(Ne - 2) . . .  [Ne - (N - I)J = Ne !j(Ne - N) ! (c) 0.4927 
9.34 18 .27 11K mol 
9.35 [xa , Smj(J/K mol)] :  (0, 0) ; (0.2, 4. 16) ; (0.4, 5.60) ; (0.5 ,  5 .76) ; (0.6, 5 .60) ; (0.8 ,  4. 1 6) ;  ( 1 .0, 0) 

Chapter 10 

10 . 1  a/V2 10.3 5.29 llmol ; 120 llmol 
10.4 (a) (8S18 V)y = RI(V - b) (b) �S = R In[(V2 - b)/(Vl - b)J (c) �SvdW > �Sjd 
10.5 (8UI8V)y = 2a1TV2 ; (8UI8 V)y = [aIV(v - b)Je - a/RTV 



10.6 p = T(8p/8T)v ; p = Tf(V) 
10.9 (a) !1H = - 2.48 kl/mol ; !1S = - 38.9 I/K mol 

(b) !1H = - 1 .75 kJ/mol ; !1S = - 38.6 J/K mol 
(c) For both cases : !1Hid = 0; !1Sid = - 38.3 J/K mol 

Answers to Probl ems A35 

10.10 !1H = - 4. 1 20 kJ/mol ; !1S = - 55.946 J/K mol 10.12 CpflJT = (2a/RT) - b 
10.14 - 3.44 kJ/mol 
10 .15 (a) ,4 = ,4°(T) - RTln(V/VO ) (b) A = ,40 - RTln[(V - b)/(V° - b)] - [a/V) - a/Va)] 
10.16 - 8 .03 kJ/moi 
10.17 !1G = RTln(p/pO) + (b - a/RT)(p - pO) where pO = 1 atm 10.18 - 7.92 kJ/mol 
10.19 (a) 5 .74 kJ/mol (b) 16 J/mol (c) 6.4 J/mol (d) 24 J/mol 
10.20 ln f = in p + (b - a/R T)(p/RT) 10.23 Set cross derivatives equal. 
10.26 PI( <is Ta ; - 3 .55 l/atm 
10.29 (a) S = SeCT) - R In p ; V = RT/p ; H = flO(T) + TSO(T) = WeT) ; U(T) = WeT) - R T  = 

UO(T) 
(b) S = S eC T) - R(ln p) - ap/R T2 ; V = (RT/p) + b - (a/RT) ;  H = WeT) + 

[b - (2a/R T)]p where WeT) = fl O(T) + TSO(T) ;  [J = W - RT - (ap/RT) = 

[J0(T) - ap/R T 

Chapter 1 1
. 

1 1 .2 [p/atm, fl/(kJ/mol)] : (t, - 1 8.2) ; (2, "':' 14.8) ; ( 10, - 10.8) ; (100, - 5 . 1 )  
1 1 .3 (a) - 34.4 kJ (b) - 47.3 kJ (c) - 12.9 kJ 
1 1 .4 (a) 1 8 .7 J/K (b) - 5.58 kJ 

(c) and (d) (�/moi, !1Gmix/kJ, G/kJ) ; (0, - 5.58 , - 5.58) ; (0.2, - 7.57, - 14. 17) ;  
(0.4, - 7. 8 1 ,  - 21 .0) ; (0.6, - 6.97, - 26.8) ; (0.8 ,  - 4.90, - 3 1 .3) ; ( 1 .0, 0, - 33 .0) 

(e) �e = 0.939 mol ; G = - 33.2 kJ 
1 1 .5 (a) !1Gmix = 12R TH In t + [(8 - n)/12] In[(8 � n)/12] + (n/12) In(n/12)} (b) n = 4 mol 

(c) - 2.74 kJ/mol 
1 1 .7 (a) G = flH2(g) + 1l12(g) + �!1Go + 2RT[ln p + (1 - �) ln t(l - �) + On �] 

(b) G = flH2(g) + flI2(8) + �!1Go + RT[(1 - �) In(1 - �) + 20n 2� - (1 + �) in(1 + �) + 
(l + �) ln p] 

1 1 .8 Kp = 1 12.9 ; XHI = 0.842 ; the same at 10 atm 
1 1 .9 (a) 1 . 6  x 10- 5 ; 1 .6 X 10- 4 (b) 1 atm : 0.999969 ; 10 atm : 0.99969 

(c) Kx = 6.2 x 10- 4 ; Kc = 1.5 X 10- 3 
1 1 . 10  (a) 6 .6 x 10- 5 8 (c) Kx = 3 .3 x ,10- 5 7 ; Kc = 1 . 6  x 10- 5 6 
1 1 . 1 1  5.09 x 10- 3 ; 2 .36 x 10 - 3 �(a) 0. 186  (b) 0.378 (c) 0. 186 1 1 .13 1 . 3  x 10- 6 
1 1 .14 (a) !1Go = 37 kJ/moi ; !1W = 88 kJ/mol (b) 19 (c) 1 atm : 0.975 ; 5 atm : 0.890 
1 1 . 15 (a) 1 .906 x 10 - 2 5 (b) 0.06667 (c) 1 300 K 1 1 .16 (a) 6.89 x 10- 1 5 (b) 1350 K 
1 1 .17 - 1 1 . 1  kJ/mol 

� (a) 0.982 (b) !1W = 88.9 kJ/mol ; !1Go = - 2.49 kJ/moi ;  !1So = 175 .7  J/K mol 
11.19 (a) 0.64 (b) 3.0 kJ/moi 1 1 .20 (a) 0 .14 (b) 2.0 x 10- 1 8 (c) 101 kJ/moi 
1 1 .21 (a) 0.379 ; 1 .28 (b) !1G�oo = 5.65 kJ/mol ; !1Gsoo = - 1 .64 kJ/mol ;  11H0 = 56 .7  kJ/moi 
1 1 .22 (a) 1 .40, - 2.80 kJ/mol (b) - 29.72 kJ/mol 1 1 .23 5 .7 kJ/mol 
1 1 .24 (a) 8 .6 x 1 0 - 6 (b) 3.2 x 1 0 - 6 (c) (Kx)5 atm = 5(Kx) l atm 
11 .25 40. 888 kJ/mol 1 1 .26 3.23 kJ/mol 
1 1 .27 (a) - 1 9.0 kJ/mol ; 0.765 kJ/moi ; - 22.6 J/K mol (b) 0.474 
1 1 .28 (a) 0.6841 ; 0. 5 198 (b) - 12.78 kl/mol ; - 21 .42 J/K moi (c) - 6.40 kJ/mol 
1 1 .29 MgC03 : 570 K ;  CaC03 : 1 1 10 K ;  SrC03 : 1400 K ;  BaC03 : 1 600 K 
1 1 .30 (a) 52.20 kJ/moi (b) 555 K (c) 0. 160 Torr (d) 0.0421 Torr (e) 24.29 kJ/moi 
1 1 .31 (298 . 1 5  K - 548 K) : !1Go/(kJ/moi) = - 369.43 + 0 .1 530 (T/K - 298 . 1 5) 

(548 K - 693 K) : !1Go/(kJ/mol) = - 33 1 .2 + O. I 1 1 (T/K - 548) 
(693 K - 1029 K) : !1Go/(kJ/mol) = - 3 15 . 1  + 0. 122(T/K - 693) 
(1029 K - 1 180 K) : !1Go/(kJ/moi) = - 274. 1 - 0.0039(T/K - 1029) 
(1 180 K - T) : !1Go/(kJ/mol) = - 274.7 + 0.00934(T/K - 1 1 80) 



A36 Answers to Prob l ems 

1 1 .32 (a) 2.30 x 10- 5 atm 
(b) In Kp = 1Q 950. 1/T - 0. 185  In T +  1 .242 x 10- 3 T +  0.051 X 105/T2 - 12.486 ; 
LlW /(1 /mol) = - 91  044 - 1 .54 In T + 10 .33 x 10 - 3 T2 - 0.84 X 105/T; 
Llso/(J/K mol) = - 1 05.35 - 1 .54 In T + 20.66 X 1 0 - 3 T - 0.42 X 1 05/T2 

1 1 .33 (a) 460.3 K 
(b) logl o Kp = - 1691 . 5/T - 0.9047 1og1 0 T + 6.084 ; 
LlHo/(J/mol) = 32 384 - 7.522 T; 
LlSo /(J/K mol) = 108.96 - 17.32 logl o T 

1 1 .34 The ratio, 02/C02 ' is constant ; there is relatively less CO at higher pressures. 

(a) 600 K 
1000 K 

(b) 600 K 
1000 K 

(c) 1000 K 
1 1 .35 A/G 

O2 CO CO2 
3 .92 x 10- 3 3  0. 121 99.88 
6.25 x 10- 20 68.4 3 1 .6 
3.99 x 10- 3 3  0 . 130 99.87 
6.16 x 10- 20 7 1 .2 28.8 
1 . 41  x 10- 1 9 34.0 66.0 

B/G C/G D/G E/G F/G 
(a) 9 .86 x 10- 8 1 . 50 x 10- 6 4. 12 x 10- 6 2.49 x 10- 5 4.60 X 10- 7 2.03 X 10 -4 
(b) No. 

A B C D E F G 
(c) mol % :  9 .86 x 10- 6 1 . 50 X 10-4 4. 12 X 10- 4 2.49 X 10- 3 4.60 X 10- 5 0.0203 99.98 
(d) mol %: 0.0870 0.414 0.623 1 . 79 0. 1 10 5.28 9 1 . 70 

11 .36 (a) ( T/K ;  p/atm) : (900 ; 1 .2 x 1 0 - 9) ;  (1 200 ; 3 .8 x 1 0 - 5) 
(b) (T/K ; p/atm) : (900 ; 2. 1 x 1 0- 1 3) ;  ( 1 200 ; 5. 1 x 1 0 - 9) 
(c) At no temperature. 

1 1 .37 (a) 201 .2 kl/mol ; 489.0 kl/mol 
(b) 900 K :  2.27 x 10- 1 3 ; 0.00271 ; 0.9973 ; 1200 K :  5.25 x 10- 9 ; 0. 1 1 7 ;  0 .883 

1 1 .38 (c) The entropy is independent of z; Hi = H�(T) + Mi gz 
1 1 .40 (c) ( T/K ; Cp/R) : (200 ; 9.68) ; (240 ;  14.08 ) ;  (280 ; 2 1 . 56) ; (320 ; 85.23 ) ;  (330 ; 90.75) ; 

(360 ; 59.68) ; (400 ; 19 . 1 3 ) ;  (440 ; 10 .87) ; (480 ; 9 .39)(500 ; 9 . 1 7) 
H.41 (a) 1 .0 x 10- 1 6 ; 1 .6 x 10- 7 (b) 1 .9  x 102 5 ; 7.8 x 10 1 3 

(c) For (a) : 2.0 x 10- 8 ; 8 .0 x 10- 4 ; For (b) : 1 - 1 . 1  x 10- 1 3 ; 1 - 5.6 X 10- 8 
1 1 .42 LlGmix is greater for reaction 2. 1 1 .43 300 

Chapter 12 

12.1 76 kl/mol 12.2 60.8 DC 
12.3 (a) 29.8 kl/mol (b) 34 °C ; 29 °C (c) 97.4 l/K mol (d) 861 1/mol 
12.4 (a) 94.3 °C (b) 1 34 . 1  °c 12.5 0.03 128 atm = 3 169 Pa 
12.6 1 1 62 K ; 101 .4 kl/mol ; 87.3 l/K mol 
12.7 (a) 48.5 kl/mol ;  489 K; 99.2 l/K mol (b) 7.65 mmHg = 1020 Pa 

(c) LlHsub = 71 .0 kl/mol ; LlHfus = 22.5 kl/mol (d) T < 226.3  K 
12.8 (a) 384 K ;  1 0.8 kPa (b) 45. 1 kl/mol ; 98.9 1/K mol (c) 1 9 . 1 1 kllmol 
12.9 22.8 kllmol ; 239 K 

12.10 (a) liT = ( liTo) + Mairgh/TaLlHvap , where To is b.p. at 1 atm (b) 86 °C (c) 25 °C 
12 . 11  (a) In p = 10.8(1 - Tb/T) (b) 12 kPa 12.12 S8 : 1 1 7  1/K mol ; P 4 : 90.0 1/K mol 
12.14 d in c/dT = (LlHvap - R T)/R T2 = Ll Uvap/R T2 
12.15 (a) Po/R Tb '  Po = 1 atm (b) In(THITo) = (LlHvap/R)[(l/Tb) - (lITH)] 

(c) (TH/K ; Tb/K) ; (50 ; 59.0) ; (100 ; 109.9) ; (200 ; 205.8) ; (300 ; 297.5) ; (400 ; 386.7) 
(d) [Substance : TH/K ; LlSHi(J/K mol) ;  LlST/(J/K mol)] ; (Ar : 77.4 ; 84.2, 74.7) ; 

(0
2 : 80.3 ; 85.0 ; 75.6) ; (CH4 : 101 .8 ; 80.4 ; 73 .3) ; (Kr : 1 10. 1 ; 82.0 ; 75.3) ; 

(Xe : 1 56.9 ; 80. 6 ;  76.6) ; (CS2 : 324.3 ; 82.6 ; 83 .8) Note : (LlSH) = 82.5 ± 1 .9  l/K mol ; 
(LlST) = 76.6 ± 3 .7  I/K mol 

12.16 1 .50 GPa = 14800 atm 12.17 (a) 0.36 °C (b) 3400 atm (c) - 24 °C 



Answers to Prob lems A37 

12.18 1 19 °C ; Possible range from 83 °c to 277 °c 
12.21 0.017  mmHg = 2.3 Pa 

Chapter 13 

12.19 1 3  °c 12.20 Rhombic 

13.1 (a) 60 g/mol (b) 333 g 13.2 428 g 13.3 . 0.0099 ; 0.0050 ; 0.00010 13.4 (d) M 
13.5 9.986 kPa 13.6 242 g/mol ;  about twice the expected value 13.7 3.577 K kg/mol 
13.8 (x, T/K) ; (1 .0, 273) ; (0.8, 252) ; (0.6, 229) ; (0.4, 203) ; (0.2, 170) 
13.9 (vol % ;  T/K) ;  (0 ; 273) ;  (20 ; 265) ; (40 ; 254) ; (60 ; 238) ; (80 ; 208) 

13.10 m >  0.59 moljkg 13. 1 1  a = Kf ; b = - tMKll + 2(Kf/MTo) - (I1Cp/R)(Kf/MTo)l] 
13.12 3 .8 K ;  0.Q1 8 ;  470 kPa ; 250 g/mol 13.13 Kb/(K kg/mo!) ; 1 .730 ; 2.63 1 ; 3 .77 ; 0. 1 88 ; 2 .391 
13.14 At 1 atm let Kb = Kg ; Tb = To ;  Then, Kb(P) = Kb'/[ l - (R To/Mivap) ln p] l ; 

[P/mmHg ; Kb/(K kg/mol] : (760 ; 0.5 1 30) ; (750 ; 0.5 120) ; (740 ; 0.5 109) 
13.15 (a) 0.250 (b) 0.534 13.16 (a) 0.236 (b) 90.8 g 11/100 g hexane 
13.17 19 . 1  kJ/mol ; 80.0 °c 13.18 250 kPa 13.19 3 .75 m ;  36.7 kPa 13.20 62.0 kg/mol 
13.21 (a) x = (1 - eV2)j(1 + eVo - eV2) 

Chapter 14 
14.1 (a) 60.44 mmHg (b) Yb = 0.68 17  (c) 44.25 mmHg (d) Xb  = 0. 1 7 1 8  

(e) 56.42 mmHg ; X b  = 0.3433 ; Yb = 0.6268 
14.2 27.3 mol % 14.3 (a) 0.560 (b) 0.884 
14.4 (a) 25 mmHg ; XEtCl = 0.50 (b) XEtCl = 0.61 14.5 PA = 2 atm ; p� = 0.5 atm 
14.6 Xl = [(P�P2)1 /1 - P2]/(P� - P2) ;  P = (P'lP2) 1 /1 
14.9 If X I is overall mole fraction of 1, then Pupper = X lP'l + (1 - X I )P2 ; l/Plower = 

(X l/P! ) + (1 - X d/P2 ' 
14.10 b = benzene ; t = toluene ; 

. (a) exp( - 11S�ap/R) = Xb exp( - TOb l1S�ap/R T) + (1 - xb) exp( - TOt I1S�ap/R T) 
(b) Xb = 0.401 

14.12 (a) P = (1 - Xl)P� + Kh Xl (b) l/p = (Ydp!) + (1 - Y l )jKh 
14.13 1 .7 1  cm3 ; 17 . 1  cm3 ; N1/01 = 2.02 14.14 - 1 3.9 kJ/mol 14.15 380 cm3 
14.16 (a) m/(moljkg) : 0.0346 ; 0.0265 (b) 0.776 ; 0.594 
14.17 (gas ; 0:) ; (He ; 0.0097) ; (Ne ; 0.0097) ; (Ar ; 0.03 1 3) ;  (Kr ; 0.0507) ; (Xe ; 0. 101) 
14.18 (a) 0.036 (b) (l atm ; 0.0373) ; (4 atm ; 0.0776) 14.19 0 .33 
14.20 (a) 10.6 cm3 (b) 5.09 cm3 (c) As n --+ 00, 2.71 cm3 14.21 - 608.44 kJ/mol 
14.22 - 9.957 kJ/mol 14.23 - 17 . 124 kJ/mol 

Chapter 15 
15.1 (a) 730 mmHg (b) � 92 °c (c) 4. 1 3  g ;  4. 14 g 
15.2 (a) 129.7 g ;  50.3 g (b) 3.99 mol ; 2.41 mol 15.3 0.858 ; 249 °C 
15.4 (b) [mass % Cu ; trC (idea!)] ;  (0 ; 660) ; (20 ; 597) ; (40 ; 5 1 7) ; (60 ; 474) ; (80 ; 696) ; (100 ;  1083) 
15.5 � - 13 °c 15.6 15 % 15.7 62 % 
15.8 XNi = 0.90 ; xCu = 0.079 ; XNi = 0.921 T =  1 694 K 
15.9 In Liq, or 0:, or f3 :  F = 2. In (Liq + 0:), or (Liq + f3), or (0: + f3) : F = 1. On abe : F = O. 

15.10 In aCBe :  F = 2 ; in Aab, or bed, or Ade : F = 1 ; in Abd : F = O. 
15. 1 1  (a) K1COis) + soln on de ; then K1C03(S) + soln d + soln b; then soln be + soln de ; 

then one soln. 
(b) KZC03(s) + soln on ab ; then K1C03(S) + soln b + soln d ;  K1C03(S) + soln on de ; 

one soln in region between e and B. 
15.12 (a) In sin, F = 2 ;  In sin + Na1S04 , or sin + hydrate, or Na1S04 + hydrate, or ice + 

hydrate : F = 1 ;  at e and along be, F = O. 
(b) At 25 °C : solid hydrate precipitates, when sin disappears, NaZS04 appears, hydrate 

slowly decomposes ; finally we are left with NaZS04 only. At 35 °C : anhydrous salt 
precipitates ; liquid evaporates, finally we have NaZS04 only. 
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15.13 At b, FezCI6 . 12 HlO precipitates ; at c system looks dry. Between c and d liquid forms in 
equilibrium with FelC!6 ' 1 2HzO ;  between d and e system is entirely liquid. FezC16 · 7 HzO 
precipitates at e ;  at f system looks dry ; liquid appears between f and g ;  between 9 and h 
system is entirely liquid ; FelC16 · 5 H20 precipitates at h ; system goes dry at i ; 
FezCI6 . 5 HlO and FezCI6 . 4 HzO are present to vertical line, then anhydrous Fe2CI6 
appears ; at } we have a mixture of FezC16 · 4HzO and FezC16 . 

Chapter 16 

16.1 (a) 0.998 1 8 ;  0.99633 ;  0.99055 ; 0.9802 ; 0.9690 ; 0.9564 
(b) 0.99998 ; 0.99992 ; 0.99947 ; 0.9979 ; 0.995.1 ; 0.9909 (d) 1 .24 

16.2 (a ;  y) ;  (0.061 ; 1 .03) ; (0. 1 35 ;  1 . 10) ; (0.21 1 ;  1 . 14) 
16.3 (a ;  y) ;  (0.9382 ; 0.997) ; (0.8688 ;  0.99 1 ) ;  (0.7994 ; 0.98 1) 
16.4 (a) 1 .000 ; 0.959 ; 0 .898 (b) 1 .000 ; 1 .038 ; 1 .074 (c) 1 77 J/mol 
16.5 (a) Ilf is 11 of pure i (b) RT ln Yi = w(l - Xi)Z (c) 1 . 140 ; 1 .0763 ; 1 .0332 ; 1 .00820 ; 1 .000 
16.6 (al ; Yl) :  (0.0986 ; 0.986) ; (0. 1 9 6 ;  0.9 8 1 ) 
16.7 0.0 1 49 ;  0.0209 ; 0.0322 ; 0.0437 ; 0.0583 ; 0.0832 ; 0. 1 077 
16.8 (a ± ; a) : (a) 0.0769 ; 0.0059 1 (b) 0.0421 ; 7.44 x 1O� 5 (c) 0.01 6 ; 2.6 x 1O�4 

(d) 0.075 ; 3 .2 x 1O� 5 (e) 0.0089 ; 5 .7 x 1O� 1 1  
16.9 (a) [ml(mol/kg)] : 0.0794 ; 0.05 ; 0.05 ; 0. 1 14 (b) [Icl(moljkg)] : 0. 1 5 ;  0.05 ; 0.20 ; 0.30 

16.10 HCI : 0.988 ; 0.964 ; CaClz : 0.960 ; 0.879 ; ZnS04 : 0.910, 0.743 16. 1 1  3.0 nm ; 0.30 nm 
16.12 (a) 0.736 (b) 1 .68/x 
16.13 (mlmoljkg) ; 100a ; 100ao) ;  (0.01 ; 4. 1 8 ;  4.09) ; (0. 10 ;  1 . 3 7 ;  1 . 3 1 ) ;  ( 1 .0 ;  4.5 1 ; 4. 18)  
16 .14 0.0202 ; 0.0346 ; 0. 149 16.15 105 s :  1 .29 ; 1 . 38 ; 1 . 56 ; 1 .84 
16.16 (a) 2 .5 x 1O� 5 (b) 1 .6 x 1O� 5 

Chapter 17 

17.1 (a) - 1 .473 V; not spontaneous (b) -0.3 1 2  V; not spontaneous (c) 1 .344 V ;  spontaneous 
17.2 (a) 1 .56 x 1 0 � 5 3 (b) 5.25 x I O �  1 0 (c) 2.64 X 1 044 
17.3 (a) 1 . 54 x 103 7 (b) 8.0 x 101 6 (c) 1 X 1O� 3 (d) 8.7 x 1040 (e) 5 x 1046 

(f) 1 . 7  x 1O�  8 
17.4 (a) Niz03(S) + Fe(s) --> 2NiO(s) + FeO(s) (b) Independent of aKOH (c) 1 100 kJ/kg 
17.5 (a) 0.38 (b) PbOz(s) + Pb(s) + 4 H +  + 2 S0�� --> 2 PbS04(s) + 2 Hz0(l) ; yes 

(c) 4 15  kJ/mol PbOz (d) J' = 2.041 + 0.05916 10g1 0 a (e) 605.4 kJ/kg 
17.6 (a) Fe2 + + 2 Hg(l) + SO�� --> Fe(s) + HgZS04(s) 

(b) - 1 . 1 14 V ; 2. 1 x 1O� 36 ; 2.036 kJ/mol 
17.7 (a) 1 . 8  x 1O� 4 (b) 0.029 
17.8 (a) 10 (b) 0. 1 0  (c) 8 . 1 x 1 O � 5 ; 4.0 X 1 0 � 3 ; 0. 1 6 ;  0.50 ; 0.9 1 ; 0.998 ; 0.99996 
17.9 (a) K = 2.8 X 106 (b) - 37 kllmol 

17. 10  (a) 0.799 V; 0.740 V ; 0.68 1 V ; 0.622 V (b) 0.324 V (c) - 0. 1 5 1  V 
17.1 1  ¢IV :  0.298 ; 0.339 ; 0.399 ; 0.458 ; 0.5 1 0 ;  0.562 ; 0.621 ; 0.68 1 ;  0.722 
17.12 (a) (po < 0 (b) cjJ0 < -0.414 V (c) Basic solution 
17.13 (a) cjJ0 > 0.401 V (b) cjJ0 > 1 .229 V (c) cjJ0 > 0.8 1 5  (d) Acid Soln. 
17.14 Na + :  -261 .9 kJ/mol ; Pb2 + :  - 24.3 kJ/mol ; Ag+ : 77. 10 kJ/mol 17.15 - 10.5 kllmol 
17.16 - 13 1 . 1  kJ/mol 
17.17 J'0 = 0.22238 V ; [ml(moljkg) ; Y ± ] : (0.00l ,  0.965) ; (0.01 ; 0.905) ; (0. 1 ;  0.796) ; (1 . 0 ;  0.809) ; 

(3 ; 1 . 3 1 6) 
17.18 0.075 V ; 0. 1 56 V ;  0. 190 V 
17.19 (a) [t;oC ;  �G/(kJ/mol) ; �S/(lIK mol) ; �HI(kJ/mol)] : (0 ; - 369.993 ; 10.83 ; - 367.036) ; 

(25 ; - 370.394 ; 21 .25 ; - 364.060) (b) 0. 1 3 1  
17.20 0. 1 7 1  17.21 0.78 
17.22 2AgCI(s) + Hz(f = 1 )  --> 2Ag(s) + 2 HCI(aq, m = 0. 1 ) ;  �G = - 66.785 kJ/mo! ; 

�S = - 59.886 J/K mol ; �H = - 86 . 137  kJ/mol 



17.23 (a) H2(p = 1 atm) -> H2(p = 0.5 atm) ; Iff = 8.90 mV 
(b) Zn2 + (a = 0. 1 )  -> Zn2 + (a = 0.01 ) ; Iff = 29.6 mV 

17.24 0.826 1 ; 1 1 . 1  m V 17.25 � 2 x 10- 1 2 

Answers to Problems A39 

17.26 (a) and (c) WO. I mol ; Iff/V ; i1G/i1Gtotal] ;  (0 ; 1 . 100 ; 0) ; (0.5 ; 1 .086 ; 0.505) ; 
(0.9 ; 1 .062 ; 0.903) ; (0.99 ; 1 .032 ; 0.9906) ; (0.999 ; 1 .002 ; 0.9991 ) ; (0.9999 ; 0.973 ; 0.9999) 

17.27 (a) (f; Iff/V) :  (0.01 ; 0.653) ; (0. 1 ; 0.7 14) ;  (0. 3 ; 0.749) ; (0. 5 ; 0.77 1) ; (0.7 ; 0.793) ; (0.9 ; 0.827) ; 
(0.99 ; 0.889) 

(b) (v/mL ;  Iff/V) :  (40 ; 0.735) ; (49.0 ; 0.67 1 ) ; (49.9 ; 0.6 1 1) ; (49.99 ; 0.552) ; (50.00 ; 0.36) ; 
(50.0 1 ; 0.26) ; (50. 1 ;  0.23) ; (5 1 .0 ;  0.20) ; (60 ; 0. 17) 

Chapter 18 
18.1  2. 1 8  J 18.2 2. 1 1  J ;  - 3 1 5  J 18.3 (a) ro = 3y/i1Hvap(1 - T/To) ;  same (b) 0.44 nm 
18.4 0. 108 N/m 18.5 1 .46 cm 18.6 1 .49 mm 18.7 5 x 10- 5 cm 
18.8 55 .50 mN/m ; 48.90 mN/m; 41 . 10  mN/m 18.9 288 Pa 18.10 0.0273 N/m 

18. 1 1  r1 ; i1p = 12 Pa ; r2 ; i1p = 6 Pa ; film radius = 2 cm ; centered in smaller bubble 
18. 12 Smaller bubble gets smaller, larger gets larger, until smaller bubble has radius equal to that of 

the larger bubble. 
18.13 (a) 67 mJ/m2 (b) 57.70 mJ/m2 for benzene ; 145.50 mJ/m2 for water (c) 9 mN/m 
18.14 (a) - 23 .9 mN/m (b) 77.6 mJ/m2 
18.15 [b/l1m ; (To - T)/K] : ( 10 ;  0.01 3) ; ( 1 ; 0. 1 3) ; (0. 1 ; 1 . 3 ) ; (0.01 ; 13 ) ; (0.001 ; 1 30) 
18.16 (b/l1m ; x/xo) ; ( 1 ; 1 .066) ; (0. 1 ; 1 .9) ; (0.0 1 ; 590) 18.17 p/kPa ; 1 1 .75 ; 14.24 ; 97.5 
18.18 [ttC ;  g"/(mJ/mol) ;  s"/(I1J/K mol) ; u "/(mJ/mol) : (0 ; 75 .5 ; 246 ; 143) ; (30 ; 68.2 ; 242 ; 142) ; 

(60 ; 6 1 .0 ;  238 ; 140) ; (90 ; 53 .9 ; 233 ; 1 3 8) ;  ( 120 ;  47.0 ; 228 ; 1 36) ;  ( 1 50 ; 40.3 ; 222 ; 1 34) ; 
( 1 80 ;  33 .7 ; 2 1 5 ; 1 3 1 ) ; (210 ;  27.4 ; 208 ; 128) ; (240 ; 21 . 3 ; 199 ; 124) ; (270 ; 1 5 .4 ; 189 ; 1 1 8) ; 
(300 ; 9.95 ; 1 76 ;  1 1 1) ;  (330 ; 4.95 ; 1 56 ;  99) ; (360 ; 0.763 ; 1 14 ;  73 .2) ; (368 ; 0 ;  0 ;  0) 

18.19 2.7 mm 18.20 8 1  g 
18.21 (a) k = 0.71 7  cm3 ; l/n = 0.567 (b) 0.292 ; 0.453 ; 0 .554 ; 0.623 ; 8 1  m2/g 
18.22 (a) (p/mmHg ; 8) ; (20 ; 0.604) ; (50 ; 0.792) ; ( 100 ; 0.884) ; (200 ; 0.938) ; (300 ; 0.958) 

(b) 12,000 m2 
18.23 (a) 27.66 cm3/g (b) 3 3 1  m2/g 

(c) 10 kPa ; 0.562 ; 0.054 ; 0.0053 ;  0.378 ; 20 kPa ; 0.634 ; 0. 123 ; 0.024 ; 0.21 3  
(d) 0.436 ; 0.607 ; 530 m2/g 

18.25 (a) 2.75 11mol/m2 (b) 3 .65 11mol/m2 1 8.26 Water : no change ; Hg : forms a balL 

Chapter 19 
19.1 u/(J/m3) :  7 .57 x 10- 8 ; 6. 1 3  x 10- 6 ; 7 .57 x 10-4 
19.2 (a) 5.29 x 10- 6 (b) 7 .54 x 10- 3 19.3 (a) 1 .64 x 10- 5  (b) 0 . 107 (c) 0.458 
19.4 (a) 9 .660 x 10- 6 m (b) 5.796 x 10- 6 m 19.5 4830 K 
19.6 (a) 4.59 J/s (b) 219  K 19.7 4.52 x 102 6 J/s ; 5.03 x 106 Mg 
19.9 (a) 1.21 x 101 5 S - 1 (b) 650 km/s 

19.10 (a) 656. 1 1  nm (b) 1 .05 x 10- 34 kg m2/s (c) 2 188  km/s 
19. 1 1  (a) 1 50 V (b) 7.27 x 106 m/s 19.12 0.08 1 9  V 19 6.63 x 10- 3 1 m 
19.15 2.41 x 10- 2 1 J 

Chapter 20 
20.4 x2(d2/dx2) - (d2/dx2)(X2) = - 2 - 4x(d/dx) 
20.5 Mz Mx - MxMz = ihMy ; MyMz - Mz My = ihMx ; M2Mx = MxM2 ; M2My = My M2 
20.6 6 20.7 9 20.8 -� 20.9 Po(x) = A; P1(x) = yix ;  P2(x) = A(t - �X2) 

Chapter 21 
21.1  t if n is even ; t + ( - 1)(n - l )/2/nn if n is odd. 21.2 6.0 x 1O- 32 J ; golf balls ; n =  1.6 x 107 
21.3 54.8 11m 21.4 � 2.0 x 10- 30 m 21.5 <x2) = {P(n + t) : i1x = /3(n + 1)1 /2 ; /32 = hv/k 
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21 .6 (p�) = (n + t)(h2/{J2) ; (Px) = 0; I1px = (n + W /2(h/fJ) 21.7 I1Pxl1x = (2n + 1)(h/4n) 
21 .8 (Ekin) = ten + t)hv ; ( V) = ten + t)hv ; (n ;  (Ekin) ; ( Vkin) )(0 ; ihv ; ihv) ; ( 1 ; ihv ;  ihv) , 
21 .9 I1Ekin = thv[ten2 + n + 1)r/2 ; n = 0 ;  I1Ekin = teW /2hv ; n = 1, I1Ekin = thV(W /2 

21 .12  (Energy, degeneracy) : (3, 1 ) ;  (6, 3) ; (9, 3) ; ( 1 1 ,  3) ; ( 12, 1 ) ; (14, 6) ; ( 1 7, 3) ; (19, 3) 
21.13 (a) 4.657 x 1O- 4s kg m2 ; 1 .491 x 10- 34 kg m2/s ; 2 .388 x 10- 2 1 J 

(b) 1 .938 x 1O- 46 kg m2 ; 1 .491 x 10- 34 kg m2/s ; 5 .739 x 1O- 23 J 

Chapter 22 

22.1 (a) (k ; A/nm) ; Lyman : (2 ; 121 . 502) ; (3 ; 102. 5 1 8) ; (4 ; 97.202) ; Balmer : (3 ; 656. 1 12) ; 
(4 ; 486.009) ; (5 ; 433.937) ; Paschen : (4 ; 1874.61) ; (5 ; 1281 .47) ; (6 ; 1093.52) 

(b) (00 ; 9 1 . 1 27) ; (00 ;  364.507) ; (00 ; 820. 140) 
22.3 (a) 2.66 ao (b) 9. 1 3  ao (c) 7.99 ao (d) 19.44 ao 
22.5 Is 2s 2p 3s 

(a) (r) � ao 6 ao 5 ao 227 ao 
(b) « 1" - (r»2) i a5 6 a5 5 a5 91 a5 

22.6 (a) « P,.) ; (p;) ; I1p,) :  Is :  (0 ; h2/a5 ; h/ao) ;  2s : (0 ; h2/4a5 ; h/2ao) ;  
2p : (0 ; h2/12a5 ;  h/2j3ao) ;  3s :  (0 ; h2/9a5 ; h/3ao) 

(b) (state ; I1p, · l1r) :  [ Is ;  j3(h/4n)] ;  [2s ; j6(h/4n)] ;  [2p ; J5/3(h/4n)] ;  [3s ;  Jli (h/4n)] 
22.7 (state ; ( V>/E,, ; (Ekin)/E,,) : ( Is ;  - 1 ; t) ; (2s ; -i; t) ; (2p ; -i; t) ; (3s ; -t; ls) 
22.8 [state ; (F)/(E,,/ao)] ;  (Is ;  - 2) ; (2s ; -i) ;  (2p ; - l2) ;  (3s ; - l7) 
22.9 (a) (state ; (Ero,)/E,, ;  (Ekin/E,,) ; (Ero,)/(Ekin» : (2p ;  l2 ; t ;  i) ; (3p ; ll ;  ls ; �) ; (3d ; is ; ls ; !) 

(b) (state ; m ; fraction) : (p ; 0 ; 0) ; (p ; 1 ;  t) ; (d ; 0 ;  0) ; (d ; 1 ;  i) ;  (d ; 2 ; i) 
22.10  [state ; (I)/,ua5] ;  ( Is ;  3) ; (2s ; 42) ; (2p ; 30) ; (3s ; 207) ; (3p ;  1 80) ; (3d ; 126) 
22.1 1  (electron : ,uz/,uB) : (s :  ± 1 ) ; (P : 0, ± 1 ,  ± 2) ; (d : 0, ± 1 ,  ± 2, ± 3) ; (f : 0, ± 1 ,  ± 2, ± 3, ± 4) 

Chapter 23 

23.2 a), a4 , and a2 + a3 are symmetric ; a2 - a3 is antisymmetric. 
23.4 tetrahedral 
23.8 E 

E E C3 
C3 C3 C3 
C3 C3 E 
a�l ) a�l ) af) 
a�2) a�2) a�3) 
a�3) a�3) a�l ) 

23.9 al : X I ; X2 + X3 ;  
b2 : X2 - X3 

23.10 al : Xl + X2 ; X3 ; X6 ; X7 ; X IO  
b2 : Xl - X2 ; Xs ; X9 

23.1 1  al : XI ; X4 ; XS + X6 ; X9 - XIO ; XU + X1 2 

23.3 (b) ; (c) 

a2 : X7 - Xs b l : X2 ; X7 + Xs b2 : X3 ; XS - X6 ; X9 + XIO ; XI I  - Xl 2 
23.12  ag : Xl + X2 + X3 + X4 ; Xs + X6 ; Xu - X1 2 b2g :  X7 - Xs 

b3g :  Xl - X2 - X3 + X4 ; X9 - XIO  bl u :  Xl + X2 - X3 - X4 ; X5 - X6 ; Xu + X12 
b2u :  Xl - X2 + X3 - X4 ; X9 + XIO  b3u :  X7  + Xs 

23.13  ag :  Xl + X2 + X3 + X4 ; Xs + X6 ; X7  + Xs ; X 1 3  - X14 b2g :  X9 - XIO  
b3g :  Xl - X2 - X3 + X4 ; Xu - X12 b lu :  Xl + X2 - X3 - X4 ; X7 - Xs ; X1 3 + X14 
b2u :  Xl - X2 + X3 - X4 ; Xu + X1 2 b3u :  Xs - X6 ; X9 + XIO  

23.14 ag :  Xl + X2 ; X3 + X4 ; X5 - X6 ; X7 - Xs bg : X9 - XIO  
au : X9 + XIO  bu : Xl - X2 ; X3 - X4 ; Xs + X6 ; X7 + Xs 
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23.15 The first ten wave functions are the same as in Problem 23 . 14 except that the oxygen orbitals 
are replaced by carbon orbitals. The remaining eight functions are : 
ag : X l ! + X1 2 ; X 1 3 - X14 ; X I S - X1 6 bg :  X1 7 - X1 8 
au : X1 7 + X1 8 bu :  Xl l  - X 1 2 ; X 1 3 + X14 ; XI S + X1 6 

23.16 r = 5a1 + al + 5e 23.17  r = 5al + al + 2b1 + 4bl 

Chapter 24 

24.1  (a) 43.0 % (b) 1 05 m- I (c) 0.09 1 5  24.2 76.2 % 24.3 6350 ml/mol 24.4 4.36 
24.5 0.0269 mm 24.6 9.47 ftmol/L 24.7 4.82 x 104 ml/mol 
24.8 (a) Sl : 3S1 , I SO ; sp : 3PZ , 1 , 0 ; 1P1 ; sd ; 3D3 , 1 . 1 ; 1D2 ; pd : 3F4 , 3 , z ; IF3 ; 3D3 , 2 , 1 ; ID2 ; 3Pl . 1 , 0 ; 

1P l ; dl : 3GS , 4, 3 ; I G4 ; 3F4, 3 , z ; IF3 ; 3D3 , 2 , 1 ; ID1 ; 3Pl, 1 , 0 ; IP1 ; 3S 1 ; I SO 
(b) Sl : ISO ; sp : same as (a) ; sd : same as (a) ; pd :  same as (a) ; dl : 1 G4 ; 3 F 4, 3 , 1 ;  1 Dl ; 

3 Pl, 1 , 0 ; ISO 
24.9 (b) ; (c) ; (e) ; (j) 

24. 10  [term ; Jlz/( - JlB)] : e Dl ; 0, ± 1 ; ± 2) ; e P2 ; 0 ; ±t ± 3) ; ep1 ; 0 ; ± t) ;  e Po ; 0) ;  CSo ; 0) 
24. 11  [term ; Jlz/( - JlB)] : eD3 ; 0 ; ±t ±t ± 4) ; eD2 ; 0 ; ±i ;  ± i) ; eDl ; O ; ± 1) ; CDz ; 0, ± 1 ; ± 2) ;  

epz ; O ; ± t  ±3) ; ep1 ; 0 ; ± t) ; epo ; 0) ; CP1 ; 0, ± 1) ; eS1 ; 0 ; ± 2) ; CSo ; 0) 
24.12 In v = Vo + kVL , k is given. 

(a) 3S1 +-+ 3pz : 0 ;  ±t ± 1 ; ±t ± 2. 3S1 +-+ 3P1 : ± t ±t ± 2. 3S1 +-+ 3PO ; 0 ; ± 2 
(b) 3PZ +-+ 3D3 : 0 ;  ±i ;  ± t  ± 1 ; ±i ;  ± t  ± t  ± i  3Pl +->3Dl : ±t ±t ;  ±i ;  ±i ;  ±t ± V· 

3P2 +-+ 3D 1 : 0 ;  ± t ± 1 ; ±t 3P1 f-> 3Dl : 0;  ±t ±i; ±i; ± l  
3P1 +-+ 3D 1 : ±1 ; ± I ; ± l  3Po +-+ 3D1 : O ; ±1 

(c) lP3/1 +-> zDs/l : ± /s ; ±t ± 1 ; ± iL ± it ± l zp3/2 <-+ lD312 : ± 14S ; ± 185 ; ± t ± l� ; ± �  
24.13 (a) (Element ; vdMHz) : ( l !B ; 1 3 .660) ; ( l 3C ; 10.704) ; C 9F ; 40.053) ; e Lp ;  1 7.234) 

(b) (Element ; 60 MHz ;  1 00 MHz) ; ( l lB ; 4.3924 T ;  7.3206 T) ; ( 1 3C ; 5 .6054 T ; 9 .3423 T) ; C 9F ; 
1 .4980 T ;  2.4967 T) ; e 1 p ; 3 .48 1 5  T ;  5 .8025 T) 

24.14 7.4501 MHz 24. 16 41 .3284 pm 
24.17  slope = 0.49748 x 108 s - 1/1 ; intercept = - 0.49673 X 108 s - 1/2 

24.18 0.675 ; 0.647 ; 1 .76 ' x  10- 4 ; 9.90 x 10 - 7 ; 2.56 x 10- 40 ; 8.98 x 1O- 2 s 
24.19 0.0832 cm ; 0.533 cm ; 1 1 .70 cm 24.20 5 .9326 kV 24.21 52.40 MJ/mol 
24.22 1 .76 MJ/mol ; 1 .40 MJ/mol ; 1 .22 MJ/mol 

Chapter 25 

25.1 1 = 8.4585 X 10- 47  kg ml ; r = 228,03 pm ; Vo = 33 10  cm- l 
25.2 1 = 4.272 x 1O- 47 kg ml ; 2B = 1 3 . 1 1 cm- 1 
25.3 (X ; I/kg mZ ; 2B/cm- 1) 

(a) 120. 1 pm from terminal N atom ; 6.675 x 1 0 - 46 kg m2, 0 .8387 cm- l 
(b) on C atom ; 7. 1 73 x 10- 46 kg mZ ; 0.7806 cm - 1 
(c) 295.4 pm from H atom ; 1 . 845 x 1O- 4s kg mZ ; 0.3035 cm- 1 

25.4 5 .5594 x 10 - 2 1 J ;  1 .6678 X lO- z0 J ; 2.7797 X 10- 20 J ; k = 322.74 N/m 
25.5 [vo/cm - 1 ; Eo/(J/mol)] :  79Brz : 325.32 1 ; 1945.85 ;  79Br8 1 Br : 323.306 ; 1933,80 ; 8 1Brl :  321 .379 ; 

1921 .68 
25.6 Vo = 2989. 14 cm- 1 ; Xe = 0.0017288 ; Jl = 0.979593 g/mol ; k = 5 1 5 .70 N/m 
25.7 V j : A/nm = 424.6, 573 , 7 ;  vl : A/nm = 465.5, 5 12.8 
25.8 (a) Forbidden : all 9 <-+ g;  all u <-+ u; Big <-+ Biu (i = 1 , 2, 3) 

Allowed : Ag +-+ B1u BI g """ Au B19 +-+ B1 u B3g f-> B1 u 
Ag +-> B1U B 1g <-+ Blu B2g +-> Au B3g +-+ B1U 
Ag <-> B3u B 1g +-+ B3u B2g +-+ B3u B3g <-+ Au 

(b) Forbidden : A l +-> Al . Allowed : A l f-> A
I ; A l +-+ E ; A2 +-> Al ;  Al +--> E; E +--> E 

(c) Allowed : A'l +-+ A� A� <-+ Al E' ...... E' A'; <-> E" E" +-+ E" 
A� +-> E' E' f-> E" A� +4 E" 
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25.9 (a) Lu/(g/mol) ; Vjcm- 1] : (H3 5Cl : 0.979593 ; 2990.946) (H3 7Cl : 0.98 1077 ; 2988 .682) 
(D3 5Cl : 1 . 90441 ; 2145. 12)(D3 7Cl : 1 .9 1003 ; 2141 .96) 

(b) (1/10- 47 kg m2 ; 2B/cm- 1) :  (H3 5Cl : 2.6923 ; 20.795)(H3 7Cl : 2.6964 ; 20.764) ; 
(D3 5Cl : 5.2340 ; 1O.697)(D3 7Cl : 5.2495 ; 10.665) 

25.10 (a) Let (/tx)mn = (2/L) J� sin(mnx/L)(qx) sin(nnx/L) dx and /t = qL. If n + m = even, (Ilx)mn = 0 ;  
if n + m = odd, (/tx)mn = - 8mn/t/n2(m2 - n2)2 

(b) Even to odd allowed, even to even and odd to odd are forbidden. 

Chapter 26 
26. 1  fl.U = a[( l/b) - (p/RT)] = alb 
26.3 R/(cm3/mol) : 20. 6 ;  15 .56 ; 16 .04 
26.5 ( Ui) liq/( Ui)gas = 1000 

26.2 1 .46 x 10- 40 C m2/y ; 1 3 .21 x 10- 30 C m 
26.4 1 .66 x 10- 40 C m2jV 

26.6 A = m:m r8/(6 - n) ; B = 6fm rQ/(6 - n) ; f/frn = [nrg/(n - 6)1'6] - [6rO/(n - 6)rn] ;  «(J/ror 6 = 6/n 
26.7 (/fm = 2(ro/r)6 - (ro/r) 1 2 ; (/4(m = «(J/r)6 - «(J/r) 1 2 
26.8 (J/mol) : (a) - 1 5.3 (b) - 1 93 (c) - 393 (d) - 902 
26.9 Dipole-Induced Dipole : - 2.46 x 10- 2 1 J ; dipole-dipole : -43.6 x 10- 2 1 J ;  

dispersion : - 8.67 x 10- 2 1 J 
26.1 0  (Ion ; r/pm) : (02 - ;  140) ;  (F- ; 100) ; (Ne ; 73) ; (Na + ; 58) ; (Mg2 + ; 49) ; (AI3 + ; 41 ) ;  (Si4 + ;  34) 

Chapter 27 
27. 1  Co : 1 .622 ; Mg : 1 .623 ; Ti : 1 . 586 ; Zn : 1 .861 27. 2  fcc : 4 atoms ; bee : 2 atoms 
27.3 6 atoms 27.4 fcc : 26.0 % empty ; bee : 32.0 % empty 27.5 l Cs + ; 1 Cl-
27.6 4Na + ; 4Cl- 27.7 fcc : 1 hole/atom ; bee : 1 . 5  hole/atom 27.8 rh/ra = 2 1 /2 - 1 = 0.414 
27.9 (a) 8 (b) 4 pairs (c) 2 pairs (d) 4 CaF 2 units (e) 2 Ti02 units 

27. 10 J3 - 1 = 0.732 27. 1 1  -Ii - 1 = 0.414 
27. 12 1 fourfold axis ; 4 twofold axes ; 5 planes of symmetry ; center of symmetry 
27. 1 3  (a) 100 ;  010 ;  001 ; 100 ;  010 ;  001 (b) 1 10 ;  l IO ;  101 ; . . .  27. 14 1 1 1  is close-packed 
27. 15 3 16.2 pm 27. 16 1 54.4 pm 27. 17 01 1 1  = 21 .68° ; 0200 = 25.25° 

Chapter 28 
28. 1 (a) 1 (b) 1 . 1 667 (c) 1 .233 (d) 1 .293 28.2 880 kJ/mol ; 770 kJ/mol 
28.3 UcCNaCl) = 738 kJ/mol ;  UcCCsCI) = 744 kJ/mol 
28.4 (a) CsF ; RbF ; KF ; NaF ; LiF (b) KI ; KBr ; KCl ; KF 28.5 � 1 : 4 
28.6 281 .9 pm ; K = 4.0 X 10- 1 1  Pa- 1 = 4. 1 x 10- 6 atm- 1 

Chapter 29 
29.2 SINk = 73.3597 + In(V/N m3) + -i In(M moljkg) + -i In(T/K) ; A/NkT = 1 . 5  - SINk ; 

G = A + NkT; for Ar : [S/(J/K mol) ; A/(kJ/mol) ; G/(kJ/mol)] :  1 atm, 298 . 15  K : 
(1 54.73 5 ;  - 42.41 6 ;  - 39.937) ; 1 atm, 1000 K :  (179.890 ; - 167.418 ; - 159 . 104) 

29.3 
U/(kJ/mol) H/(kJ/mol) S(J/K mol) A/(kJ/mol) G/(kJ/mol) 

298. 1 5  1000 298. 1 5  1 000 298 . 1 5  1 000 298 . 1 5  1000 298 . 1 5  

Trans. 3 .7 18  12.472 6 . 197 20.786 1 50.309 1 75.464 - 41 .096 - 162.992 - 38.6 1 7  
Rot. 2.479 8.3 14 2.479 8 .314 4 1 . 1 86 5 1 .248 - 9.801 - 42.934 - 9.801 
Vih. 13 .885 14.905 1 3.885 14.905 0.00 1 1 .320 13 .885 1 3 .585 13.885 
Total 20.082 35.691 22.561 44. 005 1 9 1 .496 228.D32 - 37.012 - 192.341 - 34.533 
Note : U 0 = H 0 = N Athv = 13 .885 kJ/mol is included. 

29.4 (a) Cv!Nk = (0/T)2 exp( - O/T)[1 - exp( - 0/T)] 2 ; CkYJ) = R ;  
(c) [O/T; cv!CvCoo)] : (0 ; 1 ) ;  (0.5 ; 0.9794) ;  (1 .0 ; 0.9207) ;  ( 1 . 5 ; 0.83 18) ;  (2 ; 0.7241) ; 

(3 ; 0.4963) ;  (4 ; 0.3041) ; (5 ; 0. 1 707) ; (6 ; 0.0897) 
29.5 (a) 960.3 K (b) 3.770 JIK mol (c) Doubled ; 7.540 J/K mol (d) 13 .5  mJ/K mol 

1000 

- 1 54.678 
- 42.934 

13 .585 
- 1 84.027 
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29.6 U/(kl/mol) H/(kl/mol) S/(J/K mol) A/(kl/mol) G/(kl/mol) 
Trans .  3.7 1 8  6. 197 135 . 157 - 36.579 - 34.100 
Rot. 2.479 2.479 54.724 - 13 .837 - 13 .837 
Vib . 8 1 8 .324 8.324 0.079 8.301 8 .301 

28z 8.647 8.647 2.906 7.78 1 7.78 1 
83 14.052 14.052 0.001 1 4.052 14.052 

Total 37.220 39.699 192.867 - 20.282 - 17.803 

Note : V ° = Ho = N A±h(Vl + 2vz + V3) = 30.339 kl/mol is included. 
29.7 (T/K ; NJ/N, J = 0, 2, 4) : (10, 1 .00 ; 2.8 x 1O- z2 ; 5 .6 x 10- 74) ; 

(50 ; 0.9998 ; 1 .77 x 10-4 ; 1 . 3  x 10- 14) ;  ( 100 ; 0.971 1 ;  2.89 x lo- z ; 3.3 x 10- 7) 
29.8 (T/K ; SINk ; Cv/Nk) : 

(a) a-Hz : ( 100 ;  2.20 1 6 ;  0.0332) ; ( 1 50 ;  2.2495 ; 0.2509) ; (200 ; 2.3645 ; 0.56 10) 
(b) p-Hl : ( l 00 ;  0. 1 774 ; 0.7370) ;  ( 150 ;  0.6349 ; 1 .424 1 ) ;  (200 ; 1 .0506 ; 1 .3945) 
(c) (T/K ; K) : (100 ; 1 .586) ;  ( 150 ;  2.494) ;  (200 ; 2.852) 

29.9 (a) 861 .7 ; 19.62 (b) 2.65 x 1033 
29.10 (T/K ; KJ : (800 ; 0.245) ; (1000 ; 0.720) ;  ( 1200 ; 1 .76) 
29.1 1  (a) 87 (b) 2.10 x 109 (c) 263 (d) 5 . 1 5  x 1OZ 3  29.12 7.62 x 10- 9 
29.13 Lowers the value of Ii. 
29.14 (a) p = v3(2nm)311(kT)- 1 11 exp(W + iNhv)/NkT 

(b) AHvap = - (W + iNAhv + iRT) 
(c) Diatomic 

Chapter 30 
30. 1  (a) 1 .64 x 101 0/s (b) 1 .27 x Wafs (c) 1 .64 x 106/s 

(d) 2.01 x lOz 9/cm3 s ; 9 .35 x lOz 8/cm3 s ; 2.01 x 1 OZ 1/cm3 s 
30.2 (a) (p/atm ; A/em) : ( 1 ; 6.79 x 10- 6) ;  (0. 1 ;  6.79 x 10- 5) ;  (0.01 ; 6.79 x 10-4) 

(b) 67.9 m (c) 1 360 
30.3 (a) 1 .05 x 1 0 - 5  em (b) 1 .59 
30.4 (a) doubled (b) quadrupled (c) halved (d) None 
30.5 (N = number/area ; A = area). A. = 1/2.j2uN ; ZI = 2.j2u<c)N ; 

Ztotal = ±ZJ:JA = .j2u<c)NZA ; A. = 22 ft ;  Zl = 5.4/min ; Ztotal = 54/min 
30.6 /(H,/Ko2 = 4 30.7 3.23 x 10- 3 W/cmz 

30.8 CzH6 has more internal degrees of freedom ; hence Cv is much larger. 
30.9 (a) 1 .226 (b) 279 pm 30.10 340 pm 30.1 1  862 W 30.12 3 . 1  W/ml 

30.13 (a) 235 W (b) 19.75 DC ; 1 . 59 DC 30.14 1 .7 mm 30.15 2.7 s 
30.16 (a) 2.8 L/min (b) 6.5 L/min (c) 1 .4 L/min 30.17 (a) 4.76 atm (b) 47 L/min 
30.18 3.0 min 
30.19 V = (n/81Jl)(pl - pz)(b2 - aZ)[bZ + aZ - (bz - aZ)/ln(bja)J�� 

Note : If b = a(1 + A) where A � 1, then V = (n/61Jl)(pl - pz)a4 A 3 
30.20 0.3266 m Pa s 30.21 6.855 kl/mol 30.22 1 .55 x 10- 3  mol/cmz day 
30.23 1 . 10 x 10- 1 0 mZ/s 

Chapter 31 
31 .1  (a) 4.0 n; 0.25 S (b) 50 Vim (c) 1 .27 x 108 A/mz (d) 3.93 x 10- 7  n m;  2.55 x 106 S/m 
31.2 6.24 x 10 1 8/s 31.3 61 rnA 31.4 79 /1V 31.5 9.73 x 10- 8  n m 
31 .6 (a) 1 .89 x 10-4  (m/s)/(V/m) (b) 4.71  (c) 24.0 nV 31.7 1 . 12  x 10- 1 0 m3/C 
31 .8 188  cm3 31.9 10.9 hr 31.10 6.68 g 31 . 1 1  26.70 rnA 31.12 30.60 rnA 

31.13 720 hr 31.14 (a) 0.59389/m (b) 0.575 14 S/m 
31 .15  (a) 2.58476 x 105 S/m (b) 6.5 17  S/m (c) 0.2492 m 
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31.16 (a)(b) [Ion : uJ(1O- 8 mZfV s) ; vJCum/s)] : (H+ : 36.256 ;  14.5) ; (Na+ : 5 . 1 93 ; 2.08) ; 
(Caz + :  6. 167 ;  2.47) ; (La3 + : 7.224 ; 2 .89) ; (OH- : 20.55 ; 8 .22) ; (Br- : 8 .099 ; 3 .24) ; 
(SO�- : 8.294 ; 3 .32) ; (PzO�- :  9 .94 ; 3 .98) 

31.17 (a) 73 .55 x 10- 4 S mZ/mol (b) 4.574 Ilm/s (c) t + = 0.6426 
31 .18 (salt : K/(S/m) ;  R/kQ) : (AgN03 : 0. 133 ; 3 .75) ; (HC! : 0.426 ; 1 . 1 7) ;  (CaClz : 0.272 ; 1 . 84) ; 

(MgS04 : 0.266 ; 1 .88) ; [LaZ(S04h: 0.898 ; 0.557J 
31 . 19  (a) !ll1c = - !lna = t + Q/F (b) !lnc = - L Q/F ; !lna = - t+ Q/F 

(c) !lnc = t + Q/F ;  !lna = L Q/F 
31 .20 0.83 31.21 (t + )ave = 0.4888 31 .22 0.33 31 .23 0.61 
31 .24 0. 1 792 ; 0.6038 ; 0.5095 ; 0.5620 ; 0.5228 
31 .25 t(H+)  = 0. 1 1 1 ;  t(Ca2 + )  = 0.379 ; t(CI - )  = 0.5 10 31 .26 (HCI/NaCl) = 0.462 
31 .27 (a) 4.01 x 1O- 8 mzfV s (b) 6.0 1'.m/s 31 .28 126.3 x 1O- 4 S mz/mol 
31 .29 425.92 x 10- 4 S mZ/mol 
31 .30 (Soln : A/1O- 4 S m2/mol) : (HC! : 424. 58 ; 421 . 1 7 ; 410.38) ; (KCI : 148.90 ; 146.8 6 ;  140.40) ; 

(LiCI : 1 14. 1 6 ;  1 12.29 ; 106.37) 
31 .31 Na+ : 97 x 10- 4 S mZ/mol ; Cl - : 50.9 x 10- 4 S m2/mol 31 .32 382. 19  x 10-4 S m2/mol 
31 .33 (a) 388 . 1  x 1O- 4 S mz/mol (b) 1 .840 x 10- 5  (c) 0 .128 ; 0.09 1 9 ; 0.0660 
31 .34 (a) 92. 1/m (b) 3 .65 x 10- 4 S m2/mol (c) 0.0134 (d) 1 .83 x 105 
31 .35 1 .08 x 10- 1 0 31 .36 6 .371 x 10- 9 
31 .37 (c) [v/em3 ; K/(S/m)] : (0 ; 4.26) ; ( 10 ; 3 .05) ; (25 ; 1 . 84) ; (40 ; 1 .04) ; (45 ; 0.823) ; (50 ; 0.632) ; 

(55 ; 0.720) ; (60 ; 8 .01) ; (75 ; 1 .00) ; (90 ; 1 . 1 6) ;  ( 100 ;  1 .25) 
31 .38 [v/em3 ; K/(S/m)] : (0 ; 0.0052) ; (10 ; 0. 1 54) ; (40 ; 0.405) ; (45 ; 0.43 1 ) ;  (50 ; 0.455) ; (55 ; 0 .552) ; 

(60 ; 0.639) ; (90 ; 1 .03) ; ( 100 ;  1 . 1 3) 
31 .39 (a) [Ion : Df/( 1O- 9 m2/s)] : (H+ : 9 .3 1 5) ;  (OH - : 5.280) ; (Na+ : 1 . 334) ; (Ag+ : 1 . 648) ; 

(Ca2 + :  0.7922) ; (Cu2 + :  0.7 1 37) ; (NO;- : 1 .903) ; (SO�- : 1 .0654) ; [Co(NH3)� + :  0.9036J 
(b) [Ion : uJ(m/sN) ; uJ(m2/s V) : [Ag+ : 4.004( 101 1) ;  6 .4 16(1O- 8)J ; [Cu2 + :  1 . 734(101 1) ;  

5 .555(10- 8)J 
31 .40 Doo/( 1O- 9 m2/s) : 3 .355 ; 1 .247 ; 0.8495 ; 0.8266 
31 .41 (Cpd :  !l<p/mV) : (CuS04 : 3 .46) ; (HC! : - 35.9) ; (K2S04 : - 10. 1) ; [La(N03h :  1 5.4J 

Chapter 32 

32.1 (a) d(¢/V)/dt = ( l /RT) dp/dt (b) p = poo( l - !e- k,) ;  Plot In(pOO - p) VS. t 
(c) 2790 s ;  15,800 s (d) 0.9 1 6  

32.2 (a) d(¢/V)/dt = - (lid) dA/dt (b) (l/A) = (l/Ao) + (k/d)t ; Plot l/A VS. t. 
32.3 (a) C I /2 = d/2 - !l< t ;  Plot C I /2 vs t. 

(b) C - I /2 = C;; I /2 + !kt ; Plot C - I /2 VS. t. c l - n = d -n + (/1 - l)kt ; Plot c 1 - n VS. t. 

32.5 (a) 0.0231/min (b) 0 .198 
32.7 (a) 1200 s (b) 3970 s 32.8 72.2 hr 

(c) T = (2n - l - l)/(n - l)kco- 1 
32.4 (a) 2.08 x 1O- 3/s (b) 138 s 
32.6 (a) First order (b) 47600 s 
32.9 (a) 75.4 % (b) 1060 days 32.10 7400/min 32.1 1  1 . 5  x 109 yr 32.12 6000 yr 

32.13 17 min 
32.14 (t/min ; N/No) :  (30 ; 1 . 32) ; (60 ; 1 . 74) ; (75 ; 2.00) ; (90 ; 2.30) ; ( 150 ;  4.00) 
32.15 (a) 7. 1 8 % (b) 6.99 % (c) 6.93 % 32.16 (a) 29000 s (b) 1 50000 s 
32.17 (a) k = 0.278 L/mol-min ; T = 1 80 min (b) 24 min 
32.18 (a) NO : second ; Hz : first (b) d(¢/V)/dt = - (RT) - I (dp/dt) 

(c) - dp/dt = [k/(RT)zJ [2p - (2 - xo)PoJ Z [2p - (1 + xo)PoJ 
32.19 A :  second ; B :  first ; k = 3.2 X 108 U/mol2 s 
32.20 (a) 1 .735 (b) 0.0830 (L/mol)o . 7 3 5/s 
32.21 (a) 464 000 s (b) 232 000 s 
32.22 In[(Y I - Y)/YIJ - In[(yz - Y)/Y2J = 2k1K- 1/2at, where Y = ¢/V; " - 1 = kdK ; 

Yl = aKI /Z/(2K 1/2 - 1) ; Y2 = aKI /z/(2IC/2 + 1) 
32.23 In[(Ye - Y)/YeJ = - kl(1  + I/K)t ; Ye = aK/( 1 + K) 



32.24 In[(Y I - Y)/Y IJ - In[(Yz - Y)/Y2J = - kl ( l  + 16a/K) I /2 t ;  
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Yl = (K/8)[ - 1  + (1  + 16a/K) I /2J ; Yz = (K/8)[ - 1  - (1  + 16a/K) I /2J 
32.25 53 .6 kJ/mol 32.26 (a) 1 50 kJ/mol ; 9 .93 x 109 L/mol s (b) 0.0235 L/mol s 
32.27 A = 4,42 X 101 5/min ; k = 0.0023 1/min 32.28 233 32.29 219 kJ/mol 
32.30 1 . 1 1  x 10� 6 moljL 
32.31 (a) d[HBrJ/dt = 2k l [Br2J 

(b) d[HBrJ/dt = 2k l [Br2J {k2[H2J - k3 [HBrJ }/{kz [H2J + k3 [HBrJ } 
32.32 d[CH4J/dt = kz(kdkS/Z [CH3CHOJ 3/2 32.33 200 kJ/mol 32.34 30 times larger 
32.35 (a) CH4 and CHzCO (c) 260 kJ/mol 
32.36 (a) - d[03J/dt = 2k1kz [03J

z/{L 1 [OzJ + k2 [03J } 
(b) When L 1 [OzJ � kZ[03J ,  then - d[03J/dt = 2k1 [03J 

32.37 -d[NzOsJ/dt = [2k lk3/(L l + 2k3)J [Nz05J 
32.38 (a) , = l/(kf + kr) (b) , = l/(kf + 4kr CA) 
32.39 cAico = exp( - ki t) ; cB/CO = [kd(kz - k1 )J [exp( - kl t) - exp( - k2 t)J ; 

cc/eo = 1 - [k l kz/(k2 - kl)J [(1/k l )  exp( - ki t) - (1/k2) exp( - k2 t)] 
32.40 kH + = 4.58 X 1O�4 L/mol min ; kCICH2COOH = 2.35 X 1O� 5 L/mol min 
32.41 Urnax = 0.0377 mol/L s ; Km = 0.0263 moljL ; k2 = 9,41 x 106/s 32.43 2.5 x 1O� 3 moljL s 
32.44 U = kz[EJo { [SJ o  - [EJ o[PJ/K2 - [PJ/K 1Kz}/{ [SJ o  + K", + (L 2/k l)[PJ} 

Chapter 33 

33.1 (a) 0.273 L/mol s (b) 380 pm 33.2 175 kJ/mol 33.3 0.00753 L/mol s 
33.4 Hz + lz : k = 0.05 17  L/mol s ; HI + HI : k = 3.26 X 1O� 4 L/mol s 
33.5 300 K :  (p/atm ; Z3/Z2) :  (0. 1 ;  2.93 x 1O� 4) ;  ( 1 ; 2.93 x 1O� 3) ; ( 10 ;  0.0293) ; ( 100 ; 0.293) . 

600 K, values are i as large 
33.6 0.296 ; 0.0370 
33.8 If (ABC) is linear, A � 4 X 109 L/mol s ; if (ABC) is nonlinear, A � 4 X 101 0 L/mol s 
33.9 �S t /(J/K mol) = - 180; - 150 33.10  �S t /(J/K mol) : 120 ;  94 ; - 74 

33.1 1  (a) Decreases (b) Increases (c) No effect 33.12  A = N A nrlB(8kT/njl) 1 /2 
33.13 7 x 105 m3/mol s ; observed : 4 x 106 m3/mol s 

Chapter 34 

34.1 1O� 3 moljmz s 34.2 k500/k460 : (a) 64 000 (b) 35 
34.3 (a) HI weakly adsorbed (b) HI\trongly adsorbed (c) S03 very strongly adsorbed 

(d) COz more strongly adsorbed han H2 
34.4 (a) Pt : ± 2.5 jlV (b) ± 2.5 MV 34.5 ia = 0.41 A/cmz ; ic = 1 .02 A/cm2 
34.6 (a) 6.2 x 101 6/cmz s (b) 62/s 34.7 (a) Decreases by 9.65 kJ/mol (b) i +/io = 49 
34.8 [ - i/(A/cm2) ;  11] : ( 1O� 3 ; - 5.61  jlV) ; ( lO� Z ; - 56 . 1  jlV) ; ( 1O� 1 ; - 564 jlV) ; ( 1 ; - 5.93 mY) 
34.9 (a) - 2.5 x 1O� 9 A/cmz (b) 2.9 x 1O� 6 

34.10  [Ap,/Acd ; <Pcorr/V ; icon/(mA/cmZ)] : (0.01 ; - 0,447 ; 1 .86) ; (0. 1 ; - 0,413 ; 9 .7 1 ) ;  
( 1 ; - 0.374 ; 45,4) ; ( 10 ; - 0.335 ; 2 1 1 ) ;  ( 100 ;  - 0.296 ; 978) 

34.n [Ac/Aa ; <Pcorr/V ;  icorr/(mA/cm2)] : ( 1 ; - 0.462 ; 2 .5 x 1O� 6) ;  ( 103 ; - 0.462 ; 2.50 x 1O� 3) ;  
( 106 ; -0.447 ; 1 .86) ; ( 109 ; - 0.335 ; 2 1 1 )  

34.12  4.66 mZ /mol 34.13 3 . 0  x 101 9/s 34.14 0.0393 
34.15 (A/nm ; T) : (340 ; 0.986) ; (320 ; 0.8 13 ) ;  (3 10 ;  0.437) ;  (300 ; 0.0479) ; (290 ; 2 .5 x 1 O �4) ; 

(280 ; 4.0 x 1O� 1 5 ) ; (260 ; 1 .0 x 1O� 39) ;  (240 ; 2 .5 x 1O� 2 8) : (220 : 1 .0 x 1 O � 6) 
34.16 2.20 x 1 0 1 8 ; la = 1 . 83  x 1 0 1 5 s � 1 34. 17 4.55 x 1 0 1 8 ; 2.41 mJ/s 
34. 18 <PF = 0.33 ; 'F = 1 .7  X 1O� 7 s 34.19 klsc = 3 x 106/s ; <PF = 0.25 
34.20 0.044/s ; 0.36/s ; 0.82 34.21 0.045/s ; 0.26/s ; 7.3 
34.22 106/s ; 0.016/s ; 0,42/s ; 2,4 x 106/s 
34.23 (a) <P = kz [AJ/{k2 [AJ + k3} 

(b) Fluorescence is weak ; most A * are deactivated by collision before fluorescence can occur. 
34.24 d[COJ/dt = kz(Ia/2k4) 1 /2 [CH3CHOJ ; <Pco = [kz/(2k4 ia) l /zJ [CH3CHOJ 
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34.25 (a) - d[03]/dt = 2cP 11a/{ 1 + (k3/k2)[02] [M]/[03] } 
(b) cPo = 2cPd{1 + (k3/k2)[02] [M]/[03] } 
(c) cP 1 = 1 

34.26 d[H2]/dt = cP ; la + cP2 1a + (2cP2 1a k4/k5)[M] ; cPH2 = cP 1 + cP2 + (2cP2 k4/k5 )[M] 

Chapter 35 
35.1 4. 1 x 10 - 3  35.2 (a) 2.5 kg/mol (b) 3.0 kg/mol 
35.3 [cP ;  x ; I'lSmiJ(JjK mol)] : (0 ; 0 ;  0) ; (0.2, 0.00048 ; 1 .86) ; (0.4 ; 0.0013 ; 4.26) ; (0.6 ; 0.0029 ; 7.63) ; 

(0.8 ; 0.0076 ; 13 .4) ; (1 ; 1 ;  0) 
35.4 1 1 2 Pa 35.5 <M)N = 300 kg/mol ; w = 1 .9 1 X 1 0 - 2 1 J = 1 . 1 5  kJ/mol 
35.7 (Raoult ; Flory ; mod. Flory) : (0.999963 1 ; 0.999820 ; 0.999955 1 ) ;  (0.99808 ; 0.824 ; 0.907) ; 
35.8 10.08 kg/mol 35.9 9 .874 kg/mol 35.10 78 kg/mol 35. 1 1  18 kg/mol 

35.12 K = 3.00 X 10- 3 m3jkg; a = 0.640 
35. 1 3  [8 ; (10/10)/(10/1 O)maJ : (0 ; 1 ) ; (in ; 0.927) ; (in ; 0.75) ; (in ; 0.573) ; (tn ; 0.5) 
35.14 10(540 nm)/10(750 nm) = 3.72 35.15 K = 3.38 X 10- 5  m2 mOl/kg2 ; M = 78.2 kg/mol 
35.16 K = 1 .00 X 10 - 7 m2 moljkg2 ; R90 = 0.02/m 35. 1 7  0.934/m ; 123 kg/mol 
35.18 (a) K = 9 . 1 8  X 10- 5 m2 moljkg2 ; 2 .46 times larger (b) 2.30/m 
35.19 (a) - M  = 0.0 156 W/m2 ; (b) 47.8 kg/mol 35.20 (a) 150 kg/mol (b) 4.46 nm 
35.21 (a) 576 nm/s (b) 268 min (c) 5.47 x 10- 1 1  kg/s (d) 7.40 x 10- 1 1  m2/s 
35.22 5.22 x 10- 14 s 35.23 69.9 kg/mol 35.24 C7/C6 = e409 35.25 C7/C6 = e- 0 . 006 84 
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absolute reaction rates ,  theory of, 856ff. 
absolute zero , 56 
absorbance ,  586 
absorption 

with dissociation , 900 
Einstein coefficient of, 649 

absorption edge , 6 1 3  
absorption spectra, 584 

of organic molecules ,  899 
absorption spectroscopy,  582 
acetylene , 549 
acetylide ion , 549 
acid-base catalysis , 838 
actinometer, 891 
activated complex ,  856 
activation 

energy of, 847ff. 
entropy of, 860 
Gibbs energy of, 860 

activation energy , 8 1 3 ,  847 
table of, 873 

activation enthalpy , 849 
active centers , 873 
activity 

and effective concentration, 354 
and reaction equilibrium, 353.f{. 
chemical potential and , 348 , 354 
colligative properties and practical system, 

352ff. 
concept of, 347ff. 
determination from cell potential s ,  39 1ff. 
in electrolytes ,  354ff. 
mean ionic , 355 
of volatile substances , 349 
practical system 

for involatile solute , 352 
for volatile solute , 35 1  

rational system of, 348 
single ion , 355 

activity coefficient 

and colligative properties , 357 
determination from cell potentials ,  39 1ff. 
mean ionic table of, 358 
mean ionic ,  356ff. 

additivity rules ,  247 
adenine , 9 14  
adsorbate , 426 
adsorbent, 426 
adsorption , 426ff. 

chemical , 427 
physical, 427 
on solids ,  426 
surface tension and , 420 

adsorption isotherm 
BET, 428 
Freundlich ,  426 
Gibbs ,  423 
Langmuir , 427 , 869 

advancement capacity , 5 
advancement of reaction , 5 ,  229ff. ,  800 
affinity of a reaction , 854 
air-conditioning, 1 70 
alcohols , boiling points of, 676 
alkali metals 

electronic configuration of, 527 
spectra of, 596 

alkaline earth metal s ,  spectra of, 597 
alpha particle scattering , 447 
alpha ray scattering, 45 1 
alpha rays ,  450 
amines , boiling points of, 676 
amino �cids , 9 14  
ammoma 

molecular geometry , 544 
molecular orbitals for, 570 
symmetry of, 566 
synthesis , 237 

amorphous solids ,  68 1 
amount of substance , 4 
angular momentum, 504 
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and magnetic moment , 599 
spin , 524, 590 
total , 504, 507, 589, 590 
z-component of, 506, 590 
z-component of spin, 590 

anharmonicity , 629 
anode , definition of, 399 
anodic current , 875 
antibonding orbital , 557 
anti-Stokes line , 638 
AOs , 571  
Arrhenius ,  S . ,  447 , 773 , 8 1 3  
Arrhenius equation, 8 1 3 ,  848 , 853 , 858 
associated liquids ,  entropies of vaporization of, 

678 
asymmetric top , 635 
asymmetry effect, 784 
atmosphere 

composition of, 25 , 30 
ionic , 364 

atom,  2 , 445 
Bohr model , 447 , 456, 464 
Bohr-Sommerfeld model , 459 
energy states of, 589 
ionization energy of, 528 
magnetic properties of, 523 , 599jf. 
nuclear model , 447 , 452 , 457 
quantum hypothesis in, 447 
radius ,  528 
Rutherford model , 447 , 452 , 457 , 465 
Schrodinger model , 464 
Thomson ' s  model of, 447 

atomic bomb , 826 
atomic mas·s ,  2 
atomic mass unit , 2 
atomic spectra 

effect of magnetic field on, 600 
examples of, 595 
of alkali metals ,  596 
of alkaline earth metals ,  597 
of calcium atom, 598 
of hydrogen atom,  584 
of lithium atom, 595 
one-electron systems , 596ff 
theory of, 587ff 
two-electron systems , 597ff 

atomic spectroscopy, 579jf. , 591.1]", 
atomic theories , early , 445 
atomic weight (see atomic mass) ,  3 
attractive forces (see intermolecular forces) ,  35 
Aufbau Prinzip, 525 
average values of velocity components ,  7 1  
Avogadro constant , 4 
Avogadro ' s  law , 1 1 , 446 
axis of rotation, 692 
azeotropes ,  305ff 

tables of, 306 
azide ion , 550 
azimuthal quantum number, 5 1 2 ,  5 1 7  

letter code for, 5 1 8  
selection rule , 5 1 8  

bacterial growth , 806ff 
Balmer, 457 
Balmer series ,  5 1 7 ,  585 
band system, 644 
bands , vibration-rotation , 628ff 
barometric distribution law, 22ff 
bee, 683 , 685 
Beattie-Bridgeman 

constants for, 48 
equation , 47 

Becquerel , 447 
BecquereJ ,  H . ,  450 
Beer-Lambert law, 586 
Beer ' s  law, 585 , 586, 587 
benzene , molecular geometry , 548 
Berthelot 

equation , 47 
modified, 47 

BET adsorption isotherm, 428 
beta rays ,  450 
bimolecular reactions , 8 1 4  

on  surfaces ,  870jf .
. 

binding energies of I s  electrons ,  6 1 8  
blackbody radiation, 452ff 

Planck treatment of, 454 
quantum hypothesis and , 447 
Rayleigh-Jeans treatment of, 453 

Blodgett , 425 
blue sky , 933 
Bodenstein and Lind , 820 
body-centered cubic structure , 683 , 685 
Bohr magneton , 523 , 600 
Bohr model, 464 

of hydrogen atom, 456ff 
Bohr, N . ,  447 , 452 
boiling point elevation , 28 1 ,  287ff 

and activities , 350 
of polymer solutions ,  924 

boiling point elevation constant , 287 
table of, 288 

Boltzmann constant , 67 
Boltzmann distribution , 24, 88, 454, 852 , 938 

for ions ,  36 1  
for ions in  steady-state, 793 

Boltzmann paradox , 1 90 
bond 

covalent , 690 
double, 549 
hydrogen , 677 
refraction of, 667 
triple ,  549 
van der Waals ,  690 

bond energy , 142,  583 
bond enthalpies ,  14 1  
bond length , 550 
bond order, 552 
bond strength , 539 
bonding orbital , 557 
borate ion , geometry of, 548 
Born ,  53 1 
Born-Haber cycle , 7 1 2  
Born-Oppenheimer approximation , 53 1 ,  625 
Born repulsion , 7 1 1 
boron trifluoride , geometry of, 549 
boundary , definition of, 103 
boundary surfaces , 539 
Boyle temperature , 38, 2 1 5  
Boyle ' s  law , 9 
Brackett series ,  5 1 7  
Bragg' s  law , 702 
branching chains ,  825 
Bravais lattices ,  695 , 696 
Bredig arc , 436 
Bronsted-Bjerrum equation , 863 
Brunauer, S . ,  428 
bubbles ,  4 17  
bubble-cap column , 303 
Bunsen absorption coefficient , 3 1 2  

Caesar, J . ,  3 1  
caloric , 446 



calorimeter 
adiabatic ,  1 43 
bomb , 1 3 8 ,  1 44 

calorimetry , 1 34 ,  143 
Calvin , M . , 907 
Cannizaro , 446 
capacitance , 663 
capacitor, 659 
capillary depression, 4 1 2ff. 
capillary rise ,  4 1 2ff. 
carbon dioxide , 550 

phase diagram for, 266 
vibrational energy of, 633 
vibrational modes for, 632 

carbon monoxide , 549 
carbonate ion , geometry of, 548 
Carnot, S . ,  1 5 3 ,  446 
Carnot cycle , I 53ff. , 1 65 

ideal gas in , 1 6 1  
Carnot engine , 1 65 

heat pump , 1 63 
refrigerator, 1 62 ,  1 69 

cartesian coordinates ,  468 
catalysis , 832ff. 

acid-base, 838 
enzyme , 836ff. 
role of surface in , 872 

catalyst , 799 , 802 
cathode , definition of, 399 
cathodic areas , 887 
cathodic current , 875 
ccp .  683 , 684 
cell 

concentration, 392ff. 
heat effect in reversible , 383 
reversible , 389 
with transference ,  393 
without transference , 394 

cell diagrams ,  375ff. 
cell potential 

and Gibbs energy , 377 
measurement of, 389 
temperature dependence of, 382 

cell reaction, 37 1 
Celsius , 97 
central field problem, 5 1 1  
centrifugal force ,  936 
cesium chloride structure , 686 
CH notation ,  683 
chain branching , 825 
chain initiation , 821 
chain propagation , 82 1 
chain reactions ,  82 1ff. 
chain termination, 821  
change in state , 105 ,  1 54 

adiabatic ,  1 26ff. 
at constant pressure , 1 19 
at constant volume , 1 1 7ff. 
definition of, l 03ff. 
reversible and irreversible , I I I  

character of a matrix , 564 
characteristic temperatures 

for diatomic molecules ,  732 
vibrational , 79ff. 

charge to mass ratio 
electron, 449 
proton , 449 

Charles ' s  law , 9, 1 0  
chemical bond , 53 1ff. 
chemical equations ,  4 
chemical equilibrium, 22 1 ,  229ff. 

between ideal gases and pure condensed 
phases ,  240 

in mixture of ideal gases , 232ff. 
in real gas mixture , 234 

Index 1-3 

chemical kinetics ,  799ff. ,  847ff. .  867ff. 
theoretical aspects ,  847ff. 

chemical potential , 223 
activity and , 348 
and activity , 354 
in ideal dilute solutions ,  309ff. 
in ideal solution, 280, 296 
mean ionic , 355 
of electrically charged species ,  372ff. 

conventions for, 373fT 
of electrolyte , 355ff. 
of ideal gas in a mixture , 224ff. 
of pure ideal gas , 224ff. 
of solute in binary ideal solution , 280 
partition function and, 726 
temperature and , 259ff. 

chemical reactions , 1 29fT 
and entropy of the universe , 245 
entropy changes in, 188  
heat of, 1 29ff. 

chemical shift ,  605 , 6 1 8  
chemiluminescence , 908 
chemisorption , 427 
chlorophyll , 906 
Christiansen, J. A . ,  820 
chromatography , gel permeation , 928 
circular frequency,  49 1 
Clapeyron equation , 262 , 301 

integration of, 268ff. 
Clausius ,  R . , 1 6 1 , 446 
Clausius inequality , 1 67 
Clausius-Clapeyron equation , 89, 242 , 288 
Clausius-Mosotti equation , 664 
Clement-Desormes experiment , 146 
closed shells ,  591  
close-packed structures ,  geometric requirements 

in, 682 
coefficient of performance 

of heat pump , 1 63 
of refrigerator, 1 63 

coefficient of thermal conductivity ,  746 , 750 
coefficient of viscosity , 752 

table of, 755 
unit for, 754 

cohesive energy 
in ionic crystals ,  709ff. 
in metals , 7 1 8  
o f  ionic crystal s ,  53 1 

coinage metals , electronic configuration of, 527 
colligative properties ,  277ff. .  28 1ff. 

activities and , 350ff. 
of polymer solutions ,  920ff. 

collision 
binary , 85 1 
cross section , 895 
in a gas , 750 
elastic , 52 
ternary , 85 1 

collision theory , 859 
of reaction rates ,  849 

colloid mill , 436 
colloidal electrolytes ,  438 
colloidal solution, distribution of particles in , 26 
colloids , 435 

lyophilic , 435 
lyophobic , 435 , 438 

combination bands , 636 
combining volumes ,  law of, 446 
common ion effect, 367 
commutator , 470 ,  473 
complex reactions ,  8 19ff. 
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complexion 
of a system, 1 9 1  
of  an  ensemble , 723 

components , definition of, 272 
compound , 1 ,  445 
compound interest , 807 
compressibility 

coefficient of, 1 72 
table of values ,  87 

of a reactive system, 243 
compressibility factor, 33ff" 37ff" 2 1 5  
compression , 1 09 
Compton effect, 490 
concentration cell s ,  392ff, 
conductance , 765 , 766 

at high fields and frequencies ,  786 
in nonaqueous solvents ,  786 

conductance measurements ,  applications of, 
778ff, 

conductimetric titrations ,  780 
conductivity,  765 , 766 

infinite dilution ,  determination of, 773 
molar, 766, 772 
of hydrogen ion , 783 
of hydroxyl ion , 783 
in ionic solutions , 769 
in metals ,  766 
temperature dependence of, 784 

conductivity cell , 770 
conductors , energy bands in , 7 1 5  
conjugate coordinates and momenta, 489 
conjugate solutions , 320 
consecutive reactions , 8 1 7  
conservation of energy , law of, 93 , 446 
conservation of mass 

and chemical equations , 4 
law of, 3 

consolute temperatures ,  320, 32 1  
constants 

fundamental , A-22 
mathematical, A-23 

construction principle , 525 
contact angle , 4 1 3  
continuity of  state , principle of, 41  
conventions for Gibbs energy , summary of, 374 
coordination number, 552 , 683 , 688, 689 
correlation diagram for diatomic molecules ,  557 , 

558 , 559 
correspondence principle , 485 
corresponding states ,  law of, 45 
corrosion, 886ff. 

by metal contact , 889 
by oxygen, 888 
of metals in acids ,  886 

corrosion inhibition , 889 
Coulomb ' s  law, 661 , 709 , A- l l  
coupled reactions , 246 
covalent bond , 53 1ff" 538ff" 690 

directional character of, 539ff, 
in elements of second and higher periods , 552 
partial ionic character , 539 

covalent crystals ,  682 
geometric requirements in , 690 

critical constants ,  45 
critical solution temperature , 320 
critical state , 43 
crosslinking, 9 1 5  
cryohydrate , 327 
crystal classes ,  692 
crystal habit , 694 
crystal planes ,  designation of, 697 
crystal structures for common metals ,  686 
crystal systems ,  692 

crystalline solids ,  68 1 
crystals 

covalent , 682 
hydrogen bonded , 682 
ionic , 682 
metals ,  682 
packing in ionic , 686 
symmetry of, 691 
van der Waals , 682 
x-ray examination of, 700 

cubic close-packed structure , 683 , 684 
cubic system, 692 
Curie , M . ,  45 1 
Curie , P . , 45 1 
current , 765 , 766 

anodic , 875 
cathodic , 875 

current density , 766 
at an electrode , 875ff, 
exchange , 876 
rate of reaction and , 875 

current-potential relation , 878ff, 
general consequences of, 884ff, 

cyanamide ion , 550 
cyanate ion , 550 
cyanide ion , 549 
cycle 

definition of, l03ff, 
reversible , 1 54 

cyclic integrals ,  1 1 3 
cyclic rule , I 75jf. 
cytosine , 9 1 4  

D lines ,  596 , 597 
Dalton, J . ,  445 
Dalton' s  law, 1 9 ,  27, 57 
Daniell cell , 206 , 375 , 405 
Davisson, 447 , 460 
deBroglie , 447 , 459 
deBroglie formula, 459 , 46 1 
deBroglie wavelength for particle in a box , 483 
Debye , P . , 1 86 ,  357 
Debye equation , 664 
Debye length , 364 
Debye-Falkenhagen effect, 786 
Debye-Hiickel limiting law, 363 , 365 ,  863 
Debye-Hiickel theory , 357jf. , 784 
Debye-Scherrer method, 703 
Debye unit for dipole moment , 665 
decay constant , 806 
deDonder' s inequality , 854 
degeneracy ,  475 , 533 , 726 , 733 
degree of dissociation , salt effect on, 366 
degrees of freedom, 73 , 625 

thermodynamic , 27 1 
densitometer, 704 
derivative ,  A- I 
detergents ,  438 
deuterium oxide , conductivity in , 782 
dialysis , 437 
diameter , molecular, 750 
diamond structure , 690 
diatomic molecules ,  626 , 628 

characteristic temperatures for, 732 
charge distribution in, 626 
heteronuclear, 626 
homonuclear, 626 
internal energy of, 500 
selection rules for, 642 
wave functions for, 642 

dielectric , polarization in , 659jf. 
dielectric constant , 66 Iff, , 673 



Dieterici equation , 47 
differentials 

- exact , 1 09 
exact and inexact , 1 1 5 
inexact , 1 09 

diffraction angle , 460 
diffraction pattern , 460 

x-ray , 693 
diffusion , 746 , 755ff. 

charge transport and , 786ff 
of an electrolyte , 789ff. 
surface , 426 

diffusion coefficient , 746 , 868 
of electrolyte , 790 , 79 1 
of ions ,  788 
of macromolecule , 938 

diffusion layer, 868 
diffusion potential , 789 , 792 
dilution law, 774 
dinitrogen tetroxide , dissociation of, 236 
dipole moment, 626, 66 1 

Debye unit for, 665 
definition of, 626 
per unit volume , 66 1 ,  663 
permanent , 663 
table of, 665 

direction of natural processes , 95 
dispersion energy , 670 
dispersion forces ,  670 
distillation 

columns ,  303ff. 
fractional , 302ff. 
isothermal , 300ff. 
of azeotropic mixtures ,  305ff. 
of immiscible liquids ,  322 
of partially miscible liquids ,  322 

distribution 
barometric,  22 
Boltzmann, 88 
classification interval , 57 
energy , 69ff. , 1 93ff. 
Maxwell , 58ff , 8 1  
Maxwell-Boltzmann , 80, 90 
of particles in a colloidal solution , 26 
of solute between two solvents , 3 1 3  
spatial , 57 
uniform , 1 90 
velocity , 57 
verification of, 8 1  

distribution function , 57ff , 723ff 
gaussian , 6 1  

distribution law , Nernst , 3 1 3  
DNA, 9 14  
Dobereiner' s triads ,  447 
donor molecule , 553 
Dorn effect, 434 
double layer , 432 

Gouy , 432 
Gouy-Chapman, 432 
Helmholtz , 432 
Stern , 433 

double-salt formation , 340 
doublet, 591 
driving forces for natural changes ,  208 
droplets ,  vapor pressure of small , 4 14  
dry cell , 37 1  
Dulong and Petit , 446 
duNouy tensiometer, 409 
D-line , 6 1 1  

Edison storage cell , 402 
EER, 1 70 
Eigen, M . ,  828 

eigenfunctions , 472 
degenerate , 475 
nondegenerate , 475 
ortho-normal set, 477 

eigenstates ,  473 
degenerate , 475 
nondegenerate, 475 

eigenvalues , 472 
spectrum of, 474 

einstein , definition of, 58 1  
Einstein , A . ,  447 , 455 , 456 

Index 1-5 

Einstein coefficient of absorption , 649 , 896 
electric field , 766 , A- 1 1  

in a dielectric ,  659 
of light wave,  579 

electric potential , 37 1 ,  766 , A- 1 2  
at surface of a sphere , 359 

electrical conduction , 765ff. 
electrical conductivity , 746 , 765 
electrical double layer , 432 

stability of lyophobic colloids ,  437 
electrical phenomena at interfaces ,  432 
electrical transport , 765ff. 
electrical work, 37 1ff. 
electrochemical cell , 206 , 37 1ff 

as power source , 396 
classification of, 396 
diagrams for, 375ff. 
fuel cell , 396 
primary cell , 396 

electrochemical potential , 373 , 787 
electrochemical processes ,  technical , 395ff. 
electrochemical terminology , 399 
electrode 

calomel , 384 
gas-ion, 383 
irreversible , 876 
kinds of, 383ff. 
mercury-mercuric oxide , 384 
mercury-mercurous sulfate , 384 
metal ion-metal , 384 
metal-insoluble salt-anion ,  384 
oxidation-reduction, 384 
quinhydrone , 404 
reversible , 876 
silver-silver chloride , 384 

electrode potential s ,  380ff 
standard , table of, 38 1  

electrokinetic effects , 434 
electrolysis , 874ff. 
electrolyte 

activity of, 354ff 
chemical potential of, 355 
diffusion of, 789ff 

electrolytic solutions 
electrical conduction in, 769ff. 
equilibrium in, 365ff. 
Gibbs energy of, 355 
structure of, 358ff 

electromachining, 395 
electromagnetic wave , 579 
electromotive force , 377 
electron 

discovery of, 446ff. 
magnetic moment of, 523 
shells , 525 
subshells , 525 
wavelength of, 447 

electron cloud 
in hydrogen atom, 5 1 9  
i n  hydrogen molecule , 536 
in molecular orbital s ,  556 
in states with angular momentum, 521 
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electron gas , heat capacity for, 729 
electron groups ,  refraction of, 666 
electron pair , 532ff. 

wave function for, 533 
electron probe , 6 1 5  
electron spectroscopy for chemical analysis , 6 1 7  
electron spin , 523 
electronic band, 644 
electronic configuration 

for water molecule , 646 
of alkali metals , 527 
of atoms ,  526, 527 
of eoinage metals ,  527 
of halogens , 527 
of inert gases ,  527 
of inner transition elements , 527 
of transition elements ,  527 
table of, 526 
term symbols from ,  592ff. 

electronic levels 
singlet , 89 1 
triplet , 89 1 

electronic spectra, 64 1ff. 
of polyatomic molecules ,  646 

electronic structure , 583 
acetylene , 549 
acetylide ion , 549 
azide ion , 550 
carbon dioxide , 550 
carbon monoxide , 549 
cyanamide ion , 550 
cyanate ion, 550 
cyanide ion , 549 
hexafluorophosphate ion, 553 
macroscopic properties and , 709ff. 
nitrogen ,  549 
nitronium ion , 550 
nitrous oxide , 550 
of solids ,  7 1 3  
phosphorus pentafluoride , 553 
sulfur hexafluoride , 553 

electrons 
equivalent , 592 
nonequivalent , 593 

electroosmosi s ,  434 
electrophoresis , 434 
electrophoretic effect , 784 
electroplating, 395 
electrostatics , fundamentals of, A- I I  
electro-osmotic counter pressure , 434 
element , 1 
elementary reactions , 803 , 8 1 4  

equilibrium constants for, 8 1 6  
elements of  symmetry , 56 1  
emf, 377 
emission spectra, 582, 585 

of organic molecules , 899 
emissive power, 453 
Emmet, P ,  H" 428 
emulsions ,  439 
endothermic reaction , 1 30 
end-group analysis , 929 
energy , 1 03 

activation , 847ff. 
average per molecule , 66 
bond , 1 42 
changes ,  1 1 6ff. 
conservation of, 93ff. 
conservation of mechanical , 94 
conversion between kinds of, 94ff 
dispersion , 670 
electrical , 93 
interaction , 670ff. 

interaction, contributions to, 674ff, 
ionization , 670 
kinds of, 93 
kinetic , 93 , 95 
magnetic , 93 
mechanical , 93 
nuclear, 93 
of a system, 72 1ff, 

definition of, 1 14 
of photon , 581  
of transition, 682 
of vaporization , 659 
potential , 93 , 95 
properties of, 1 1 5 
relativistic , 93 
rotational , 74 
strain , 93 
surface , 93 
thermal , 93 , 95 
translational , 74 
vibrational , 74 

energy band , 7 1 3  
i n  conductors , 7 1 5  
i n  insulators , 7 1 5  
i n  ionic crystals , 7 1 6  
i n  semiconductors , 7 1 6  

energy distribution , 193ff. , 721ff. 
energy efficiency rating (EER) , 170 
energy levels ,  583 

for water molecule , 574 
molecular, 554ff. 
of diatomic molecules , 558 , 559 
particle in a box , 484 
rotational , 627 

ensemble , 72 1 
complexions of, 723 

enthalpy , 1 20ff. 
activation , 849 
bond , 14 1  
conventional vlaues of, 1 33  
of  formation, 1 3 1  

standard , 1 32  
entropy ,  1 53ff. 

and probability , 1 89ff. 
as function of T ,  1 82 
as function of T and P, 1 80ff. 
as function of T and V ,  1 78ff. 
definition of, 164 
of activation , 860 
of mixing, 1 96 
of mixing, 226ff, 
of the universe ,  196 

chemical reactions and , 245 
of vaporization of associated liquids ,  678 
properties of, 1 7 1ff. 
standard state for ideal gas , 1 84 
standard values , table of, 1 87 
statistical definition of, 192 ,  723 

entropy changes 
at constant T,  1 72ff. 
in chemical reactions ,  188  
in  ideal gas , 1 82ff. 
with changes in state variable s ,  177ff. 

entropy production , 853ff. 
enzyme 

turnover number for, 838 
enzyme catalysis , 836ff, 
EPR, 603 
equation of state , 9, 14 

for a gas mixture , 1 9  
thermodynamic, 2 1Off. 

equilibrium 
and activity , 353ff. 



and integration of Clapeyron equation , 268ff. 
between condensed phases ,  3 1 9ff. 
conditions for, 203ff. 
gas-solid , 336 
heterogeneous ,  240 
homogeneous ,  240 
in electrochemical cell s ,  37 1  
in  ionic solutions , 365ff. 
in non-ideal systems ,  347ff. 
in three-component systems ,  337 
liquid-gas , 264 
liquid-liquid, 3 1 9ff. 

in three-component system, 337 
liquid-vapor, phase diagrams for, 297ff. 
metastable , 268 
phase (see phase equilibrium) 
solid-gas , 265 
solid-liquid, 263 , 324ff. 
vaporization , 242 

equilibrium constant 
calorimetric measurements of, 239, 244 
for elementary reactions , 8 1 6  
from half-cell potentials ,  385ff. 
in ionic solutions ,  354 
mole fraction , 234 
partition function and , 738 
pressure , 233ff. 
temperature dependence of, 238ff. 

equilibrium diagram (see phase diagram) 
equipartition of energy , 7 Iff. 

law of, 453 
equivalent electrons ,  592 
equivalent weight , 769 , 770 
error function , 65ff. , 497 

table , 65 
ESCA, 6 17  
escaping tendency , 223 

contributions to, 373 
of electrically charged particle , 372ff. 

ESR, 603 
ethane , decomposition of, 822ff. 
ethylene 

cis-form, 548 
molecular geometry , 547 
trans-form, 548 

Euler equation , 482 
eutectic diagram, 324ff. 
eutectic halt , 327 
eutectic temperature , 325 
exact differential , 1 65 ,  1 7 1  

properties of, 1 74ff. 
exaltation , 668 
exchange current density , 880 

definition of, 876 
exchange degeneracy ,  533 
excited state , 77 
exclusion principle , 524 
exothermic reaction , 1 29 
expansion theorem, 476 
expansion work , 1 06 
expectation values , 468 , 473 
explosion limits , 826 
explosions ,  825 
extensive properties ,  definition of, 14  
extensive variable s ,  14 ,  1 8  
extent of reaction (see advancement of reaction) 
Eyring, H . ,  856 
Eyring equation, 858 

face-centered cubic structure , 683 , 684 
factorial function, 62ff. 
Faraday , 446 
fcc ,  683 , 684 

Fick' s  law, 746 , 788 
Fick ' s  second law, 758 
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first law of thermodynamics ,  1 03 ,  1 29ff. , 1 53 ,  
446 

first-order reactions ,  804ff. 
pseudo , 8 1 1  

flash photolysis , 896ff. 
Flory' s  equation , 920 
flow , 747 

definition of, 746 
fluorescence, 889, 89 1ff. 

cross sections for quenching, 895 
decay of, 896 
quenching, 893ff. 

flux (see flow) , 747 , A- 1 2  
foams ,  439 
forbidden transition, 649 
force constants , 583 
formaldehyde 

molecular geometry , 547 
formation reaction , B lff. 
fossil fuel , 1 64 ,  1 70 
Fourier' s  law , 746 
fractional distillation, 302ff. 
fractionating column, 303 
Franck-Condon principle , 642 , 892 
free energy (see Gibbs energy) , 205ff. 
free particle , quantum mechanics of, 480 
free radicals ,  82 Iff. 
freezing point depression , 28 Iff. 

and activities ,  350 
and mean ionic activity .coefficient , 357 
and practical activity , 353 
of polymer solutions ,  924 

freezing point depression constant , 284 
table of, 285 

freezing point elevation , 333 
free-radical mechanisms , 82 1ff. 
frequency 

circular, 49 1 
definition of, 579 

frequency factor, 8 1 3 ,  858 
Freundlich adsorption isotherm, 426 
frictional coefficient , 746 , 767 
frictional force ,  767 , 935 
fuel cell , 396 ,  399ff. 

reactions ,  table of, 40 1 
fugacity , 2 1 5 ,  224 , 347 
function ,  A- I 

complex , 467ff. 
of several variables , A-3 
operator corresponding to , 469 
real , 467ff. 

fundamental constants ,  A-22 
fundamental equations of thermodynamics , 208ff. 
fusion , heat of, 88 

g, 652 
gamma ray scattering, 489 
gamma rays ,  450 
gas constant , 1 2  
gas imperfection , 659 
gases ,  8ff. 

heat capacity of, 75ff. 
table , 76 

ideal , 9ff· 
kinetic theory of, 5 1ff. 
liquefaction of, 34 
model of, 5 1  
pressure calculation, 52 
real , 33ff. 
structure of, 5 1  

gauss ,  600 



1 -8 I ndex 

gaussian distribution , 6 1  
gaussian surface ,  660 
Gauss ' s  law, A- 1 3  
Gay-Lussac ,  1 0 ,  446 
Geiger, 447 , 45 1 
gel permeation chromatography, 928 
gelatin , 436 
gels , 435 
geometric isomers , 548 
geometric requirements 

in close-packed structures ,  682 
in covalent crystals ,  690 
in ioni crystals ,  686 

geometry , molecular , 542 
gerade , 652 
Germer, 447 , 460 
Gibbs ,  447 
Gibbs ,  J. W . ,  272 
Gibbs adsorption isotherm , 423 
Gibbs energy , 205ff. ,  22 1 ,  420 , 745 

and cell potential , 377 
as function of advancement , 23 1 
electrical contribution to , 359 
'emulsions and , 439 
of a mixture , 223 
of activation , 860 
of cell reaction, 37 1  
of  electrolytic solution , 355 
of electrons , 379 
of formation, 235ff. 
of ideal gas , 2 1 4  
o f  liquids and solids ,  2 1 3  
of mixing, 226ff. 
of reaction , 230ff. 

standard value,  232 
of real gases ,  2 1 5  
of surface film, 407 
partial molar, 224 
properties of, 2 1 3  
standard , 235ff. 

in lead-acid cell , 399 
of adsorption , 43 1 

standard state for, 2 13ff. 
temperature dependence of, 2 1 6  
variation i n  composition and , 221ff. 

Gibbs energy of activation 
for electrode reactions , 878ft. 

Gibbs free energy , 205 
Gibbs function, 205 
Gibbs-Duhem equation , 249 , 280 , 352 , 42 1 
Gibbs-Helmholtz equation , 2 1 6 ,  283 
Gibbs-Konovalov theorem , 305 
glide plane , 695 
Goudsmit , 523 
Gouy, 432 
Grahame , D. C . ,  432 
Graham' s  law, 756 
graph label s ,  A-20 
gravitational distribution law (see barometric 

distribution) 
Grotthuss and Draper, law of, 890 
ground state , 77 
ground state energy , definition of, 532 
group 

character table for, 564ff. ,  A-28 
classes of, 562 
definition of, 562 
irreducible representations of, 564ff. 
multiplication table for, 563 
orthogonality theorem , 569ff. 
reducible representations of, 569ff. 
representations of, 564 
theory , 561 

growth law , 807 
guanine , 9 1 4  
gutta percha, 9 1 6  
gyro magnetic ratio (see magnetogyric ratio) , 599 

habit, 694 
half-cell , 375 
half-cell potential , 380ff. 

determination of standard value , 390 
significance of, 387ff. 

half-life , 804 
half-reaction, 874 
Hall coefficient , 768 
Hall effect , 767ff. 
Hall potential , 768 
hamiltonian operator , 470 

eigenfunctions of, 472 
linearity ,  475 
symmetry operations and , 560 

harmonic oscillator, 49 1ff. 
classical mechanics of, 49 1 
eigenfunctions for, 495 
energy levels of, 494 
partition function for, 728ff. 
potential energy of, 629 
quantum mechanics of, 493 
selection rules for, 650 

hcp ,  683 , 684 
heat 

definition of, 1 05 
in operation of reversible cell , 383 
mechanical equivalent of, 1 06 
of combustion , 1 34ff. 
of dilution ,  1 36  
of  formation, 1 3 1  
of fusion , 88 
of reaction , 1 29ff. 
of solution, 1 36 
of solution , differential , 250 
of sublimation, 88 
of vaporization , 88 

heat capacity 
at constant pressure , 1 2 1  
constant volume , 75 
Debye theory , 729 
Debye-T-cubed law for, 186 
difference (Cp - c,,) , 1 22 
Einstein theory , 73 1 
of a reactive system, 243 
of electron gas , 729 
of gases ,  75ff. 

table of values ,  1 40 
of solids near 0 K, 1 86 
ratio (CpIC,.) , 1 23 
table of, 76 
vibrational , 77ff. 

heat conduction, law of, 746 , 750 
heat engine, 1 54ff. 

efficiency of, 1 57ff. 
heat of combustion, 1 34ff. 
heat of dilution , 1 36  
heat of  formation, 1 3 1ff. 

determination of, 134 
for gaseous atoms , table of values , 142 

heat of mixing , 228 
heat of reaction 

at constant volume, 1 37 
dependence on temperature , 1 38  
measurement of, 143 

heat of solution , 1 36  
differential , 1 37 ,  250 
integral , 1 37 

heat pump , 1 63 ,  1 70 



heat reservoir , definition of, 1 54 
Heisenberg, W . ,  447 , 460 , 49 1 
Heisenberg uncertainty principle (see uncertainty 

principle) 
Heitler , 532 
Helmholtz , 432,  446 
Helmholtz double-layer, 432 
Helmholtz energy , 205 

properties of, 2 1 2  
Helmholtz free energy , 205 
Helmholtz function , 205 
Helmholtz planes ,  432 
Henry ' s  law , 352 

and solubility of gases ,  3 1 1  
Hermite equation, 494 
Hermite polynomials ,  494ff. 

general expression for, 495 
table of, 495 

Hermitian operator, 474 , 476 
eigenvalues of, 474 

Hertz , 447 , 452 
Herzfeld , K. F . , 820 , 822 
Hess ' s  law , 135  
heterogeneous equilibrium, 240 
heterogeneous reactions ,  802 

rate of, 867ff. 
hevea, 9 1 5  
hexafluorophosphate ion , 553 
hexagonal close-packed structure , 683 , 684 
hexagonal system, 692 
Hinschelwood , C. N . ,  825 
Hittorf method, 775 
Hofeditz , W . ,  82 1 
hole 

octahedral , 687 
tetrahedral , 690 

homogeneous equilibrium, 240 
homogeneous reaction , 802 
Hooke ' s  law , 628 
Huckel , E . ,  357 
Hund, 532 
Hund ' s  rule , 591 , 594 
hybrid orbitals , 543 

octohedral , 553 
tetrahedral, 543 
trigonal , 546 
trigonal bipyramidal , 553 

hybridization , 543 
geometries of various ,  553 

hydrogen 
equilibrium, 737 
normal, 736 
ortho- and para-, 197 
ortho-, 735ff. 
para-, 735ff. 
spectrum of, 584 

hydrogen atom 
Bohr' s theory of, 447 
electron cloud in , 5 1 9  
energy levels of, 5 1 6  
probability distribution in, 5 1 9  
quantum mechanics of, 5 1 1  
radial equation solution of, 5 1 2  
selection rules for, 655 
wave functions for, 5 1 4 ,  5 1 5  

hydrogen bonding , 677ff. 
and infrared spectra, 678 
and x-ray diffraction , 678 

hydrogen electrode 
overvoltage at , 882 
polarization at , 876 
standard , 374 

hydrogen evolution reaction , 876 
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hydrogen fluoride , boiling point of, 676 
hydrogen molecule 

covalent bond in , 53 Iff. 
electron cloud in , 536 
molecular orbitals in , 555 
valence bond method, 534ff. 
wave functions for, 533ff. 

hydrogen-bromine reaction , 8 1 9ff. 
hydrogen-iodine reaction ,  S 1 5ff. 
hydrogen-oxygen cell, 400 

ideal dilute solution , 295 , 307ff. 
Chemical potentials in , 309ff. 
standard states for, 309ff. 

ideal gas , I 1ff. 
chemical potential in a mixture of, 224ff. 
chemical potential of (pure) , 224ff. 
in Carnot cycle , 1 6 1  
properties of, 1 5  

ideal gas law, 1 1  
deviation from ,  33ff. 

ideal gas mixture 
partial molar quantities in , 250 

ideal law of solubility , 286 
ideal mixture , definition of, 225ff. 
ideal solid solution , 333 
ideal solution 

as limiting law , 278 
chemical equilibrium in , 3 1 3  
chemical potential in , 280, 296 
definition of, 225ff. , 278 
properties of, 255 

imbibition , 436 
incongruent melting point , 330 
infrared absorption bands for water, 636 
infrared photography , 906 
infrared radiation , 583 
infrared spectroscopy , applications of, 636 
infrared spectrum 

and hydrogen bonding, 678 
of acetone, 637 

inhibitor, 799 , 802 , 833 
anodic , 889 
cathodic , 889 

innertransition elements ,  electronic configuration 
of, 527 

insulators , energy bands in, 7 1 5  
integrability ,  quadratic , 468 
integral , A-2 

cyclic , 1 1 3 . 
integrals ,  for kinetic theory of gases , 64 
intensive properties ,  definition (see variable in-

tensive) , 14  
intensive variables ,  14 ,  1 8  
interaction ,  laws of, 673ff. 
interaction energy , 670ff. 

contributions to , 674ff. 
interface ,  electrical phenomena at , 432 
interfacial angles ,  constancy of, 699 
interfacial tension 

liquid-liquid , 4 1 8  
solid-liquid, 4 1 8  
water-various liquids ,  4 1 8  

intermolecular forces ,  35 ,  8 6 ,  659ff. ,  668ff. 
internal conversion , 893ff. 
international system of units (SI) , 6, A- 17ff. 
internuclear distances ,  583 
interstitial compound , 687 
inversion operation , 652 , 692 
ion conductivities ,  778 
ion product of water 

determination of, 778 
table of values ,  780 
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ionic atmosphere , 364 
ionic crystal s ,  682 

cohesive energy of, 53 1 ,  709ff. 
energy bands in, 7 1 6  
geometric requirements i n ,  686 
packing in, 686 

ionic solutions (see electrolytic solutions) 
ionic structures in covalent bonding, 555 
ionization energy, 528, 529, 670 , 673 
ions ,  migration of, 77 1ff. 
irreversible thermodynamics ,  853 
irreversible changes in state , 1 1 1  
isobars of ideal gas , 1 5  
isometrics o f  ideal gas , 1 5  
isotherms 

of ideal gas , 1 5  
o f  van der Waals equation, 42 

isotonic solution , 291 
isotope , 2 
isotopes ,  450 
IUPAC , 205 

Jeans ,  J . ,  453 
Joule , J . ,  446 
Joule experiment , 106,  1 1 8 ,  1 24 
Joule-Thomson coefficient , 1 25 ,  2 1  Iff. 
Joule-Thomson effect, 1 25 
Joule-Thomson experiment, 1 1 9 ,  1 24 
Joule ' s  law, 1 1 9 ,  124, 2 1 1 
junction potential , 375 , 392 ,  792 

Kekule , 447 
Kelvin , 1 1 ,  99, 446 
Kel vin temperature scale , 1 60 
kinetic energy , 93 , 95 

average , 56 
of a molecule , 55 
of random motion, 56 

kinetic theory of gases ,  5 1ff. 
integrals for, 64 

kinetics (see chemical kinetics) 
Kohlrausch ' s  law , 771 
Kronecker delta , 476 
K-state , 6 1 1 

Laguerre polynomials ,  5 1 3 ,  5 1 4  
Lamer, V . ,  864 
laminar flow , 752 
Lande g factor, 599 
Langmuir, I . ,  4 10 ,  424, 425 , 756 
Langmuir and Blodgett , method of, 425 
Langmuir isotherm, 427 
Langmuir tray , 4 10 ,  424 
Larmor frequency,  60 1 ,  604 
laser, 638 
lattice 

body-centered cubic , 683 , 685 
Bravais , 695 , 696 
CsCl, 686 
face-centered cubic , 683 , 684 , 687 
hexagonal close-packed,  683 , 684 
NaCI , 687 
simple cubic , 686 

lattice constants for common metals ,  686 
Laue method , 701 
Laue pattern , 701 
Lavoisier, 445 
LCAOS , 571 
Ie systeme international d 'unites (SI) , 6 ,  A- 17ff. 
lead storage cell , 398, 403 
lead-antimony system , 325 
least-squares ,  method of, A-5ff. 
leBel, 446 

LeChatelier principle ,  239, 242ff. 
LeChatelier shift, 737 
Legendre equation , 505ff. 
Legendre functions ,  table of, 506 
Lennard-Jones potential , 673 
lever rule , 299 
Lewis , G. N . ,  347 ,  534 
light , 579 
light absorption , 585 
light scattering , 929ff. 
limestone decomposition, 240 
limiting law, Debye-Huckel , 363 , 365 
Lindemann mechanism, 8 1 7  
linear laws ,  746ff. 
linear operators , 470 
Lineweaver-Burk equation , 837 , 870 
liquefaction , 659 
liquids , 85ff. 

superheated, 43 
x-ray diffraction in , 705 

liquidus curve, 324, 332 
London , F . ,  532 ,  670 
London forces , 670 
long-range order, 68 1 
Lyman serie s ,  5 1 7 ,  585 
lyophilic colloids ,  435 
lyophobic colloids ,  435 

electrical double layer and stability of, 437 
L-state , 6 1 1  

macromolecules ,  9 1 3ff. 
macroscopic properties ,  electronic structure and , 

709ff. 
Madelung, E . ,  7 1 0  
Madelung constant , 7 1 0  
Madelung energy , 7 1 0  
magnetic field , 600 

of light wave , 579 
magnetic flux density , 600 , 766 
magnetic moment , 599 

nuclear, 603 
of electron , 523 
orbital , 524 
spin, 524 

magnetic properties of atoms , 599ff. 
magnetic quantum number, 5 1 2 ,  5 1 8 ,  590 
magnetic resonance spectroscopy , 603ff. 
magnetogyric ratio for electron , 599 
magneton 

Bohr ,  523 , 600 
nuclear , 603 

Marsden , 447 , 45 1 
mathematical constants ,  A-23 
mathematical interludes 

exact and inexact differentials ,  174ff. 
general ideas , A- Iff. 
kinetic theory integrals ,  62ff. 
operator algebra , 469ff. 
symmetry and group theory , 561  

matrices ,  A-7ff. 
symmetry operations as , A-9 

maximum work function , 205 
Maxwell , J. C . ,  447 , 452 
Maxwell distribution , 58ff. 

as energy distribution , 69 
average values and , 68ff. 
experimental verification of, 8 1  

Maxwell relations ,  209 
Maxwell-Boltzmann distribution ,  80, 90 
mean free path , definition , 750 
mean value theorem, A-2 
mechanical equilibrium , condition for, 2 12  
mechanical stability , 1 72 



mechanism, 8 I 3ff. 
free-radical , 82 1ff. 

Mendeleev , 447 
mercuric oxide decomposition , 241 
metals ,  682 

cohesive energy in , 7 1 8  
conduction in , 766 

metastable states ,  43 
methane , molecular geometry , 544 
Meyer , 447 
micelles ,  438 
Michaelis-Menten law, 837, 870 
microwave radiation , 583 
microwave spectrum, 635 
migration of ions , law of, 771 
Miller indices ,  698 
Millikan , R. A . , 449 
miscibility, partial 

in liquids ,  3 1 9ff. 
in solids ,  334 

mixed potential , 887 
mixing 

entropy of, 196 ,  226ff. 
Gibbs energy of, 226ff. 
heat of, 228 
volume of, 229 

mixture 
composition variable , 1 8  
equation of state , 1 9  
gas , 19  
Gibbs energy for, 223 

mobility, 766 , 767 
generalized , 766 , 787 

modes of motion , 625 
molality 

definition of, 1 9  
mean ionic , 356 

molar absorption coefficient , 586 
molar conductivity ,  789 

at infinite dilution , 772 
definition of, 772 
degree of dissociation and , 773 

molar ion conductivities ,  778 
molar mass ,  2 

determination of, 1 7  
mass average , 928 
number average , 926 
of a gas , I I ,  1 7  
of  polymers , 925ff. 
methods of measuring, 929ff. 

molar mass distribution , 925ff. 
molar polarization , 663 
molar refraction , 665 
molarity ,  definition of, 1 8  
mole , 3 ,  4 

of reaction , 4, 1 32  
mole fraction , definition of, 19  
mole ratio , definition of, 1 9  
molecular diameter, 754 
molecular energy level s ,  554jf. 
molecular geometry , 542 
molecular orbital method , 532 
molecular orbitals ,  554ff. 

construction of, 571  
degeneracy of, 57 1 
electron clouds in, 556 
for ammonia, 570 
for hydrogen molecule,  555 
for water molecule , 571  
symmetry adapted ,  571 

molecular partition functions , 725ff. 
molecular spectroscopy , 625ff. 
molecular weight (see molar mass) 

molecularity ,  8 1 4  
molecule , 2 ,  446 

geometry of, 635 
moment of inertia, 503 
monoclinic system, 692 
monomer, 9 14  
MOs , 57 1  
Moseley' s  law, 6 1 2  
motion 

modes of, 74, 625 
rotational , 74 
translational , 74 
vibrational, 74 

moving-boundary method, 777 
Mulliken, R . ,  532 
multiple bonds , 546 
multiplicity , 590 
M-state , 6 14  

Natta , G . ,  9 1 6  
natural changes 

driving forces for, 208 
entropy and , 196 

natural variables ,  209 
negative plate , 399 
neptunium , 827 
Nemst, W. , 1 86 ,  244 , 868 
Nemst equation , 377ff. 
Nemst heat theorem, 186 ,  244 
Nemst-Einstein equation , 789 
Newland ' s  octaves ,  447 
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Newtonian mechanics , 467 , 477 , 485 
nitrate ion , geometry of, 548 
nitrogen , 549 

electronic structure , 549 
nitronium ion, 550 
nitrous oxide , 550 

microwave spectrum of, 635 
NMR, 58 1 ,  603jf. 
NMR spectrum 

of acetaldehyde , 607 , 608 
of ethanol , 606 

nonaqueous solvents , conductance in , 786 
nonequivalent electrons , 593 
nonlinear molecules 

moments of inertia of, 635 
spectra of, 635 

nonpolar molecules ,  664 
normalization , 464, 476 
nuclear fission , 826 
nuclear magnetic moment , 603 
nuclear magnetic resonance , 603ff. 
nuclear magneton,  603 
nuclear model of atom, 457 
nuclear motions ,  53 1 
nuclear reactor , 826 
nuclear spin, 603 

quantum number, 735 
wave function for, 735 

nucleic acids , 9 1 3  

observables ,  expectation values of, 468 , 473 
octahedral hole , 687 
Ohm' s  law, 746 , 765 
oil-drop experiment , 449 
Onsager equation , 784 
operator 

differential , 469 
for coordinates ,  469 
for momentum , 469 
hamiltonian , 470ff. 
Hermitian , 474 
Laplacian , 47 1 
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operator algebra, 469ff. 
operators 

addition of, 469 
commutation of, 470 
multiplication of, 469 

Oppenheimer, J. R. , 53 1  
opposing reactions , 8 1 5ff. 
orbital 

antibonding, 557 
bonding , 557 
definition of, 532 
hybrid , 543 

order 
long-range , 68 1 
short-range , 68 1 

order of a reaction , determination of, 8 1 2  
orthogonality 

of wave functions ,  476 
theorem, 569f[ 

orthonormal set, 477 
orthorhombic system , 692 
ortho-hydrogen, 1 97 
osmometer, 924 
osmosis , 288ff. 
osmotic coefficient , 353 
osmotic pressure , 28 1 ,  288 

and activities ,  350 
measurement of, 29 1 
of polymer solutions , 922ff. 

Ostwald dilution law , 774 
overlap , 536 ,  539f[ 

of p orbitals , 541 
of s and p orbitals ,  541 
of s orbitals ,  540 
principle of maximum, 536 � 

overlap integral, 539f[ 
definition, 537 

overpotential , 876ff. 
overtone bands , 636 
overtone frequency , 632 
overvoltage , 876ff. 

activation ,  878 
hydrogen , 882ff. 
measurement of, 877f[ 

oxygen, paramagnetism of, 557 
ozone , decomposition of, 906 

P-branch , 629 
Paneth, F . ,  82 1 
paramagnetism of oxygen , 557 
para-hydrogen, 197 
partial molar quantities ,  247 

in ideal gas mixtures ,  250 
partial pressure , 224 

concept , 20 
Dalton' s  law , 20, 57 
proper quotient of, 232 

partial pressures ,  232 
equilibrium, 233 

particle in a box , 48 1ff. 
deBroglie wavelength for, 483 
energy levels , 484 
expectation values for position and momen

tum, 486 
wave functions ,  48 1 

particle in a three-dimensional box , 498f[ 
partition function , 722 

chemical potential and , 726 
equilibrium constant and,  738 

electronic degrees of freedom, 73 1f[ 
for harmonic oscillator, 728f[ 
for monatomic solid , 729f[ 
for rigid rotor, 73 1ff 
for translational degrees of freedom, 727 

general expressions for, 737 
molecular , 725ff. 
molecular and rate constant, 857 
thermodynamic functions and, 724ff. 

Paschen series ,  5 1 7 ,  585 
Pasteur, L . ,  446 
path , definition of, 1 03ff. 
pattern , units of, 69 1 
Pauli exclusion principle , 524, 534, 735 
Pauli principle , 588 
Pauling , L . ,  536,  532 
peptization ,  437 
periodic law , 447 
periodic system, general trends in, 527 
periodicity , 447 
peritectic point , 330 
peritectic reaction , 330 
permittivity , 661 

relative ,  66 1 
perpetual motion 

of first kind , 1 1 5 
of the second kind , 1 55ff. 

Perrin , 8 1 7  
Pfund series ,  5 1 7  
phase 

condensed, 85ff. 
definition of, 4 1  
stability of, 259 

phase diagram 
brass ,  335 
carbon dioxide , 266 
compound formation, 329 
condensed phases ,  32 1ff. 
copper-nickel , 333 
lead-antimony , 326 
potassium-sodium, 3 3 1  
pressure composition, 297ff. 
pure substances ,  266f[ 
sulfur, 267 
temperature composition , 301f[ 
water, 266 
water -ammonium chloride-ammonium sulfate , 

340 
water-butanol , 323 
water-copper sulfate , 336 
water-ferric chloride, 330 
water-nicotine , 32 1  
water-potassium carbonate-methyl alcohol , 

343 
water-sodium chloride , 328 
water-sodium sulfate , 332 
water-triethylamine , 321 

phase equilibrium in simple systems , 259ff. 
phase reaction ,  330 
phase rule , 259 , 27 1ff 
phosphorescence , 889 , 89 1ff. 

decay of, 896 
phosphorus pentafluoride , 553 
photochemical equivalence , law of, 890 
photochemical reaction 

examples of, 903 
hydrogen and bromine , 904 

photochemistry , 889ff. 
photoelectric effect, 447 , 455 , 456 

Einstein ' s  interpretation of, 455 ,  456 
quantum hypothesis in , 447 

photoelectric equation, 456 
photoelectron spectrum of water, 620 
photolysis of HI, 903 
photon , 456, 460 
photophysical processes ,  89 1f[ 
photosensitization ,  906 
photosensitized reactions , 905ff . 

. photo stationary state , 907ff. 



photosynthesis , 906ff. 
pi bond , 547 
Planck, M . ,  1 85 ,  244 , 447 , 452 , 455 , 581  
Planck' s  constant , 455 
plane of symmetry , 692 
plutonium, 827 
Poiseuille ' s  formula, 758ff. 
Poiseuille ' s  law , 746 
poisson equation, 360, A- 15  
Polanyi , M . ,  820 
polarizability ,  670 

distortion ,  663 
orientation, 663 

polarization , 874ff. 
in a dielectric , 659 
molar, 663 

polyamide , 9 1 4  
polyatomic molecules 

electronic spectra of, 646 
rotational and vibration-rotation spectra of, 

632ff· 
selection rules for, 656 

polyester, 9 14  
polyethylene , 9 1 3  
polyisoprenes 

cis- and trans- ,  9 1 5  
polymer molecules ,  distribution i n  gravity field , 

26 
polymer solutions ,  9 1 8  

boiling point elevation of, 924 
colligative properties of, 920ff. 
freezing point depression of, 924 
light scattering by,  929ff. 
osmotic pressure of, 922ff. 
thermodynamics of, 9 19ff. 
turbidity of, 934ff. 
vapor pressure of, 920 
viscosity of, 9 19 ,  940 

polymers , 9 1 3ff. 
addition , 9 1 4  
atactic , 9 1 6  
condensation, 9 1 4  
crystallinity in, 9 1 9  
isotactic , 9 1 6  
linear , 9 1 5  
molar mass distributions of, 925ff. 
molar masses of, 26, 925ff. 
primary structure of, 9 1 7  
secondary structure of, 9 17  
syndiotactic , 9 1 6  
tertiary structure of, 9 1 8  

positive plate , 399 
positive rays ,  446 , 450 
potential 

electrode , 380 
half-cell , 380 
liquid junction , 392 
mixed, 887 

potential energy , 93 , 95 
potentiometer, 389 
powder method, 703 
power plant , 1 64 ,  1 70 

Chalk Point, Md. , 1 69 
power sources ,  396ff. 

electrochemical cells as , 396 
practical , 398 
requirements for, 397 

practical activity, 3 5 1ff. 
pre-exponential factor, 8 1 3  
primary cell , 396 
primitive translations , 69 1 
principal quantum number, 5 1 3 ,  5 1 6  
probability ,  722 

and entropy , 1 89ff. 

probability amplitude , 464 , 467 
probability density, 464 , 468 
probability distribution 

in hydrogen atom, 5 1 9  
i n  s states ,  5 1 9  
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in states with angular momentum, 52 1ff. 
probability factor, 850 
problem working, 1 28 
process ,  definition of, 1 03ff. 
proper quotient 

of activities ,  354 
of activity coefficients ,  354 
of fugacity and activity,  380 
of molalities , 354 
of pressures ,  232 

protein , 9 14  
a-helix structure , 9 1 7  

proton 
in magnetic field , 604 
magnetic environment of, 605 

Proust, 445 
pseudo-first-order reactions , 8 1 1  

quadratic integrability ,  468 , 474 
quantization , 74ff. ,  474 
quantum hypothesis 

atom and , 447 
blackbody radiation and , 447 , 455 
photoelectric effect and , 447 

quantum mechanics , 447 , 460 
Heisenberg ' s  development of, 49 1 
of free particle , 480ff. 
of harmonic oscillator, 49 1 
of hydrogen atom,  5 1 1ff. 
of particle in a box, 48 1ff. 
of particle in a three-dimensional box, 498ff. 
of rigid rotor, 503ff. 
of simple systems , 479 
of time-dependent systems , 647 
postulates of, 467f]". 
principles of, 467 

quantum number 
azimuthal , 5 1 2 ,  5 1 7  
for total angular orbital angular momentum, 589 
for total spin angular momentum, 590 
for z-component of angular momentum, 590 
for z-component of spin angular momentum, 

590 
J, 590 
I, 5 1 2 ,  5 1 7  
L, 589 
m ,  5 1 2 ,  5 1 8  
magnetic , 5 1 2 ,  5 1 8 ,  590 
MJ , 590 
ML , 590 
Ms , 590 
in multielectron atoms ,  589 
n, 5 1 3 ,  5 1 6  
principal , 5 1 3 ,  5 1 6  
rotational , 629 
S , 590 
spin , 523 
vibrational , 628 

quantum of energy , 455 
quantum theory , 459 
quantum yield , definition of, 890 
quartet ,  591  
quenching, 893ff. 

cross section , 895 
Q-branch, 633 

radial distribution function in liquid sodium, 706 
radiation 

absorption and emission of, 458 
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and matter ,  452 
of various kinds ,  583 

radiation density , 649 
radiative transition , 893ff. 
radio frequencies ,  58 1 
radioactive decay , 805jf. 
radioactivity , 450 

discovery of, 447 
radiofrequency radiation, . 583 
radius ,  atomic,  528 
radius ratio rules ,  689 
Raman effect, 637 

selection rules for, 640 
Raman scattering, 638 
random motion , kinetic energy of, 56 
Raoult ' s  law, 307 , '279fL,,295fJ: 

and nonideal solilliOns ,  349�
rate constant , 803 

for very fast reactions ,  832 
rate determining step , 8 1  
rate laws ,  802jf. 
rate measurements ,  799jf. 
rate of reaction ,  7 1 , 75 1 ,  799ff. 

between ions ,  862 
collision theory of, 849 
definition of, 800 
dependence on temperature , 7 1 ,  8 1 3 ,  824 , 

847jf. 
empirical laws ,  799jf. 
for an electrode reaction , 878ff. 
in solution , 861 
mechanism, 799jf. 
of photochemical , 890ff. 
salt effects on, 862 
specific , 803 
theory of, 856jf. 

rational activities ,  349ff. 
rational intercepts ,  law of, 698 
Rayleigh-Jeans treatment of blackbody radiation, 

453 
Rayleigh ratio , 933 
Rayleigh scattering, 638 ,  929 
reaction equilibrium and activity, 353ff. 
reaction Gibbs energy , 230 
reaction order, 803 
reactions in solution , 827 
real gases , 33 

Gibbs energy of, 2 1 5  
isotherms of, 40 

real processes ,  1 1 3 
reduced mas s ,  definition of, 502 
refraction 

molar , 665 , 670 
table of, 666 , 667 
of bonds , 667 
of electron groups ,  666 

refractive index , 666 , 673 
refrigerator, 1 62 ,  1 69 
relative humidity ,  279 
relative permittivity ,  66 1 
relativity theory , 447 , 523 
relaxation methods , 828jf. 
relaxation time , 665 , 828ff. 
representations of a group , 564 
resistance , 765 , 766 
resistivity , 765 , 766 
resonance , 535 
resonance energy , 536,  538 
resonance hybrid , 535 
resonance structures ,  535 
reversibility 

of electrochemical cell, 389 
microscopic , 853 

reversible changes in state , I I I  

reversible cycle , 154 
reversible engine, 1 55 
reversible path , 1 72 
rhombohedral system, 692 
Rice,  F. 0 . ,  822 
Rice-Herzfeld mechanism, 822 
Rice-Ramsberger-Kassel theory , 852 
rigid rotor, 503ff. , 627 

wave functions for, 506 
Ritz , 457 
Roentgen, 446 , 447 
rotating crystal method, 703 
rotation-inversion , 692 
rotational constant , 627 
rotational energy , 74ff. 
rotational frequency , 627 
rotational spectrum, 627jf. 
rotations ,  53 1 
rotor, rigid, 506ff. ,  627 
rubber, 9 1 5ff. 
Rumford, 446 
Rutherford, 447 , 45 1 
Rutherford model of the atom, 465 
Rydberg, 457 
Rydberg constant , 457 
Rydberg formula, 5 1 7  
R-branch ,  629 

s states ,  probability distribution in, 5 1 9  
salt bridge , 375,  395 
salt effect, 366 
salting in, 367 
scattering 

alpha ray , 447 , 45 1 
gamma ray , 489 

Schrodinger, E . , 447 , 460 , 49 1 
Schrodinger equation , 447 , 46 1jf. , 470ff. , 480jf. ,  

72 1 
linear property of, 475 
time dependent , 470 
time independent , 472 

SchrOdinger model of the atom, 464 
Schulz-Hardy rule , 438 
screw axis , 695 
second law of thermodynamics ,  1 53jf. , 446 

Clausius statement of, 1 6 1  
Kelvin-Planck statement of, 1 55 ,  1 6 1  

second-order reactions ,  808jf. 
secondary cell , 396 
sedimentation ,  935ff. 
sedimentation constant ,  937 
sedimentation equilibrium,  938 
sedimentation potential , 434 
selection rule s ,  583 , 649 

for diatomic molecules ,  642 
for harmonic oscillator ,  650 
for hydrogen atom, 655 
for polyatomic molecules , 656 
for rotation , 629 
symmetry and , 65 1 

self-energy of charged sphere , 359 
semiconductors , 7 1 6jf. 

energy bands in, 7 1 6  
separation of  variables ,  499 
series (mathematical) , A-23 
series (spectroscopic) 

Balmer, 5 1 7 ,  585 
Brackett , 5 1 7  
Lyman , 5 1 7 ,  585 
Paschen , 5 1 7 ,  585 
Pfund, 5 1 7  

series limit , 5 1 7  
sessile drops ,  4 1 7  



SHE, 374 
shells , electron , 525 
short-range order , 68 1 
SI ,  6, 1 3 ,  A- 1 7jf. 
sigma bond , 547 
singlet, 591 
Slater, J .  C . ,  532 
Slater, N .  B . ,  852 
soaps ,  438 
sodium chloride structure , 687 
solar energy , 1 69 
solid solutions , 332 
solids , 85jf. 

electronic structure of, 7 1 3  
structure of, 68 1 
types of, 682 

solidus curve , 332 
sols , 435 
solubility, 285 

common-ion effect on, 339 
ideal law of, 286 
inert electrolyte effect on , 366ff. 
of fine particles , 4 14 ,  4 1 6  
o f  gases and Henry ' s  law , 3 1 1  
of salts ,  339 

solubility product, determination of,  780 
solubility product constant, 387 
solute , definition of, 277 
solutions ,  277jf. , 295jf. 

binary , 297ff. 
ideal dilute , 307jf. 
polymer, 9 1 8jf. 
solid , 332 

solvent , definition of,  277 
spectra, 447 

absorption , 584 
atomic,  5 1 6 ,  523 , 587ff. 
characteristic x-ray , 6 1 0  
electronic, 641jf. 
emission , 585 
infrared, 626 
infrared for HCI , 630 
magnetic field , effect on, 600 
origins of, 582 , 583 
rotational , 626 , 627 
vibrational-rotational , 626 , 628 , 632 

spectral regions ,  579, 580 
spectral terms ,  591 
spectroscopic terms ,  589 
spectroscopy 

absorption , 582 
emission , 582 
molecular, 625 
ultraviolet photoelectron, 6 1 8  
x-ray , 609jf. 
x-ray fluorescence , 6 14  
x-ray photoelectron , 6 1 7  

speed 
average , 69 
most probable , 67 
root-mean-square , 56 

spin angular momentum, 524 
spin quantum number, 523 
spontaneity, conditions for, 203ff. 
spreading coefficient , 420 
stability constant , 387 
stability of a system 

mechanical , 1 72 
thermal , 1 72 

standard half-cell potentials 
determination of, 390 
equilibrium constants from,  385jf. 

standard hydrogen electrode , 374 
standard reaction Gibbs energy , 232 

standard states 
for electrodes ,  377 
for Gibbs energy , 2 1 3jf. 

summary of, 374 
for hydrogen electrode , 379 
for ideal gas , 1 84 
for ideal dilute solution , 309jf. 
for practical activity , 3 5 1  

Stark-Einstein law, 890 
Stas , 447 
state 

equation of, 9 
of a system , 9 

Index 1- 1 5  

state of a system, variation with time , 648 
state property, 1 1 3 
state sum , 722 
state variable ,  definition of, 1 04 
statistical definition of entropy , 1 92 
statistical thermodynamics ,  1 89jf. , 72 1jf. 
Staudinger, 9 1 3  
steady-state approximation , 825 
Stefan-Boltzmann constant , 453 
Stefan-Boltzmann law, 453 
steric factor, 850 
Stern ,  433 
Stern double layer, 433 
Stern-Volmer plot , 894 
stimulated emission , 65 1 
Stirling formula, 724 
stoichiometry , 4 
Stokes line,  638 
Stokes-Einstein equation , 788 , 938 
Stoke ' s  law , 78 1jf. , 938 
stove-refrigerator, 1 59 
streaming potential , 434 
structure 

CaP 2(fluorite) ,  689 
CsCl, 686 , 688 
determination by x-ray diffraction, 704 
diamond , 690 
NaCl , 687 , 688 
of solids , 68 1 
thermodynamic properties and , 72 1jf. 
Ti02(rutile) ,  689 
ZnS(wurtzite) ,  688 
ZnS(zinc blende) , 688 

sublimation, 261 
heat of,  88 

subshell s ,  electron , 525 
substance ,  1 
substrate , 834 
sulfur, phase diagram for, 267 
sulfur hexafluoride ,  553 
superposition , 533 ,  543 

principle of, 475 
surface area, determination of, 43 1 
surface energy , 407ff. 

small particles and , 4 14  
thermodynamic treatment, 4 1 1 

surface excess ,  42 1 
surface films ,  424 
surface potential s ,  42(; 
surface reactions , mechanism of, 867ff. 
surface tension , 90, 407jf. 

adsorption and , 420 
liquids ,  408 
magnitude of, 408 
measurement of, 409 

drop-weight method, 4 10  
maximum bubble-pressure method , 4 17  
tensiometer, 409 
Wilhelmy slide method , 409 , 4 10  

surfaces 
bimolecular reactions on, 870jf. 
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decompositions on, 868ff. 
role of in catalysis , 872 

surroundings ,  definition of, 103 
Svedberg equation , 939 
symmetric top , 635 
symmetry 

center of, 561  
improper axis of, 561  
in the atomic pattern , 694 
n-fold axis of, 561  
of crystals ,  691 
of wave functions , 556, 560 
plane of, 561  
selection rules and, 65 1 

symmetry elements , 561 , 692 
symmetry number, 733 
symmetry operations , 560ff 

as matrice s ,  A-9 
hamiltonian operator and , 560jf. 

symmetry species ,  57 1 
system 

closed, definition of, 1 03 
definition of, 1 03 
isolated ,  1 03 
of variable composition, 221jf. 
open , definition of, 1 03 
properties of, 1 03 
state of, 1 03 

table headings , A-20 
Tafel equation, 880ff 
Tafel slope , 883 
Taylor, H .  S . ,  873 
Taylor' s theorem, A-3 
Teller , E . ,  428 
temperature 

absolute zero of, 56 
as parameter of distribution , 68 
concept of, 96 
flame , 1 5 1  
gas scale , 1 1  
scale , 1 1 ,  98jf. 
thermodynamic scale , I I  

temperature scale , 1 1 ,  98ff. 
absolute , 99 
current definition of, 99 
ideal gas , 1 1 ,  98 , 1 60 
kelvin, 99, 1 60 
thermodynamic , 99 , 1 60 

temperature-jump , 828 
tensiometer, 409 
term symbols ,  59 1 ,  641 

from electron configuration, 592ff 
termolecular reaction, 8 1 5 ,  850 
terms ,  589, 591  
tesla, 600 
tetragonal system, 692 
tetrahedral hole s ,  690 
tetrahedral hybrids ,  543 
tetramethyl silane, 607 
theoretical plate , 305 
thermal analysis , 327 
thermal conductivity , 748ff 
thermal contact , 96 
thermal equilibrium, 96 

condition for, 204 
law of, 96 

thermal expansion 
coefficient of, 1 0  
table of  values of, 87 

thermal motion , 56, 664 
thermal stability , 1 72 
thermochemistry , 103ff 
thermodynamic equation of state , 2 1 0ff. 

thermodynamic functions 
dependence on composition , 246 
partition functions and , 724ff. 

thermodynamic properties ,  A-24ff. 
thermodynamic temperature scale , 1 60 
thermodynamics 

chemical reaction, 1 29ff 
definitions for, 1 03 
first law of, 93 , 1 03ff. , 1 29ff. , 153 , 446 
fundamental equations of, 208ff. 
heat , definition of, 1 05 
irreversible , 853ff. 
of polymer solutions , 9 19ff 
second law of, 94jf. , 1 53ff , 446 

Clausius statement of, 1 6 1  
Kelvin statement , 155 
Kelvin-Planck statement of, 1 6 1  

statistical , 72 1jf. 
structure and, 72 1ff. 
terms ,  1 03ff 
third law of, 1 7 1jf. ,  1 85ff , 1 96jf. ,  244 
work 

definition of, 104 
maximum and· minimum values of, 1 1 0 

Zeroth law of, 96 
thermometric equation , 97jf. 
thermometry , 97ff. 
third law of thermodynamics, 1 7 1ff , 1 85jf. ,  

1 96jf. ,  244 
Thomson , J. J . ,  446 , 447 , 448 
thymine , 9 1 4  
tie line , 299 
time-dependent systems , quantum mechanics of. 

647 
TMS , 607 
transference numbers , 393 , 775ff 

Hittorf method, 775 
moving-boundary method, 777 

transients in a photochemical system, 896ff. 
transition , vertical , 642 
transition elements , electronic configuration of, 

527 
transition moment , 649 

integrals ,  649 , 656 
translational energy , 74jf. 
transmittance ,  586 
transport 

diffusive , 746 
electrical , 765ff 
general equation for, 747ff. 
of electrical charge , 746 
of energy , 746 
of mas s ,  746 
of momentum, 746 

transport numbers , 393 
transport properties ,  745ff 

in a gas , 757 
nonsteady state , 757 

triangular diagrams ,  337ff. 
triclinic system, 692 
trigonal hybrids ,  546 
trigonal system, 692 
triple point , 261 
triplet , 591  
Trouton' s  rule , 1 72jf. ,  659 
tunnel effect, 497 
turbidity,  934jf. 
turnover number, 838 
two-body problem, 500ff 

wave equation for, 500 , 502 
T-cubed law for heat capacity . 1 86 

u , 652 
Uhlenbeck, 523 



ultracentrifugation, 929 
ultracentrifuge , 935ff. 
ultraviolet catastrophe , 453 
ultraviolet photoelectron spectroscopy, 6 1 8  
ultraviolet radiation , 583 
uncertainty ,  definition of, 487 ff. 
uncertainty principle , 477 , 489ff. 
ungerade, 652 
unimolecular reactions , 8 1 4 ,  8 1 7  

theory of, 852 
universe , entropy of, 1 96 
uranium 

fission, 827 
fluorescence of salts of, 450 

valence bond method, 532 
for hydrogen molecule , 534 

valence shell electron pair repulsion, 546 
van der Waals bonds ,  690 
van der Waals constants , 67 1ff. 

table of, 36 
van der Waals  crystal s ,  682 
van der Waals equation , 47 , 34ff. 

isotherms of, 42 
van der Waals forces , 85 ,  427 , 437 ,  659 ,  7 12  
van der Waals solid , 7 1 3  
van't  Hoff, 446 
van't  Hoff equation , 289 
vapor pressure , 40 , 88 

activities and , 350 
effect of pressure on , 270 
lowering , 279, 28 1  
of  binary solution, 297ff. 
of polymer solutions, 920ff. 
of salt hydrates , 336 
of small droplets ,  414 

vaporization , heat of, 88 
vaporization equilibrium, 242 
variable 

dependent , 1 5 ,  A- I ,  A-3 
independent , 1 5 ,  A- I ,  A-3 
of state , definition of, 1 04 

variables 
composition , 1 8  
natural , 209 
reduced , 45 
separation of, 499 

variation theorem, 532 
vectors , A-7 
velocity components , 6 1  
velocity distribution ,  57 
velocity space ,  6 1  
velocity vector, component of, 54 
vertical transition, 642 
vibration-rotation band, 626 , 628ff. 

for Hel molecule , 630 
P-branch ,  629 
Q-branch ,  633 
R-branch ,  629 

vibrational energy, 74ff. 
vibrations , 53 1 ,  628 
virial equation , 47 
viscosimeter, 760 
viscosity , 90, 746 

coefficient of, 752 , 766, 781  
film, 426 
intrinsic , 940 
of polymer solutions , 9 1 9 ,  940 
specific , 940 

visible radiation ,  583 
Yolta, A . ,  395 
voltage efficiency ,  398 
volume of mixing, 229 
von Laue, M. , 700 

von Weimarn ' s  law, 4 1 6  
YSEPR, 546 
vulcanization , 9 1 6  

Walden' s  rule , 782 
water 

boiling point of, 676 
infrared absorption bands , 636 
microwave spectrum of, 635 
molecular geometry , 543 
phase diagram, 266 
photoelectron spectrum of, 620 

water molecule 
electronic configuration for, 646 
energy levels for, 574 
symmetry properties of, 562 
wave functions for, 57 lff. 

wave equation , classical , 460ff. 
wave function, 463ff. 

determinantal , 588 , 593 
for electron pair , 533 
for hydrogen atom, 5 1 4  
for hydrogen molecule , 533ff. 
for particle in a box , 48 1 
interpretation of, 463 
normalized , 464 , 468 
nuclear spin , 735 
one-electron, 588 
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symmetry of, 5 34 ,  556 , 560 
symmetry under interchange , 735 

wave mechanics ,  460 
wave nature of matter, 447 
wave number, 627 

definition of, 58 1  
wavelength 

definition of, 58 1  
of  a particle ,  459ff. 
of electrons ,  447 

Werner, A . , 447 
wet residues ,  method of, 342 
Wheatstone bridge , 770 
Wien effect, 786 
Wien' s  displacement law , 453 
Wilhelmy, 799 
Wohler , 446 
work 

electrical , 206 
expansion, 1 06 
maximum and minimum, 1 10 
thermodynamic , definition of, 104 

work function , 205 

x-ray diffraction 
and hydrogen bonding, 678 
in liquids ,  705 
pattern , symmetry of, 693 

x-ray diffractometer, 702 
x-ray examination of crystals ,  700 
x-ray fluorescence spectroscopy , 6 14ff. 
x-ray frequencies ,  58 1  
x-ray microanalysis , 6 1 5  
x-ray photoelectron spectroscopy,  6 17  
x-ray spectroscopy , 609ff. 
x-rays ,  446 , 583 

absorption of, 622 
discovery of, 447 

Zeeman effect , 600 , 622 
anomalous , 602 
normal , 601 

Zeroth law (see thermodynamics ) ,  96 
zeta potential , 435 , 438 
Ziegler, K . , 9 1 6  
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